
Simultaneous Tracking and Balancing of Humanoid Robots

for Imitating Human Motion Capture Data

Katsu Yamane∗† and Jessica Hodgins†∗
∗Disney Research, Pittsburgh †Carnegie Mellon University

Email: {kyamane|jkh}@disneyresearch.com

Abstract— This paper presents a control framework for
humanoid robots that uses all joints simultaneously to track
motion capture data and maintain balance. The controller
comprises two main components: a balance controller and a
tracking controller. The balance controller uses a regulator
designed for a simplified humanoid model to obtain the desired
input to keep balance based on the current state of the robot.
The simplified model is chosen so that a regulator can be
designed systematically using, for example, optimal control.
An example of such controller is a linear quadratic regulator
designed for an inverted pendulum model. The desired inputs
are typically the center of pressure and/or torques of some
representative joints. The tracking controller then computes the
joint torques that minimize the difference from desired inputs
as well as the error from desired joint accelerations to track the
motion capture data, considering exact full-body dynamics. We
demonstrate that the proposed controller effectively reproduces
different styles of storytelling motion using dynamics simulation
considering limitations in hardware.

Index Terms— Humanoid Robots, Motion Capture Data,
Balancing

I. INTRODUCTION

Programming humanoid robots, especially to perform nat-

ural, human-like motions is a difficult task. They are usually

programmed manually or by numerical optimization tech-

niques to minimize, for example, energy consumption subject

to dynamics and/or kinematics constraints. Although human

motion capture data is potentially a good starting point, it is

difficult to map captured data to humanoid robots because of

differences in kinematics and dynamics parameters. In fact,

most of the work in mapping human motion capture data to

other humanoid models has been in the graphics field where

full-body dynamics is not usually considered.

In this paper, we propose a control framework for hu-

manoid robots that uses all joints simultaneously to track

motion capture data and maintain balance (Fig. 1). We focus

on tracking joint angle trajectories, although some tasks

may require tracking other quantities such as end-effector

trajectories which will be addressed in future work. Although

the current controller only works in double support, the

balancing task is distributed among all joints including those

in the upper body. In addition, the controller does not require

segmentation or intensive pre-processing of motion capture

data, which makes it potentially applicable to realtime appli-

cations.

The controller comprises two components: a balance con-

troller and a tracking controller. The balance controller at-

tempts to keep the whole body balanced by using a simplified

Fig. 1. An example of original human motion (left) and simulated
humanoid motion (right).

model for which robust balance controller can be easily

designed. A typical example is an inverted pendulum with

linear quadratic regulator (LQR), which we will use for

our examples. The balance controller gives desired inputs

to keep the simplified model balanced. Examples of such

inputs include center of pressure (COP) and torques of

representative joints.

The tracking controller tries to make the joints follow the

reference trajectory specified by the motion capture data,

while respecting the desired inputs given by the balance

controller. Joint trajectory tracking is enabled by command-

ing desired joint accelerations based on joint angle and

velocity errors as well as feedforward joint accelerations.

The tracking controller then solves an optimization problem

with a quadratic cost function including errors from desired

inputs and joint accelerations.

We demonstrate the balancing and tracking ability of the

proposed controller with a full-body dynamics simulation

that takes into account joint velocity and torque limits. After

showing basic balancing capability, we apply the controller

to tracking motion capture clips of two subjects telling the

same story. The resulting robot motions clearly preserves

the original style of each subject. We also demonstrate

the robustness by perturbing the inertial parameters of the

simulation model.

This paper is organized as follows. In the next section, we

review related prior work in the humanoid control field with

focus on approaches using human motion data as reference.

Section III gives the overview of the controller and basic

equations for its derivation. Two main components, balance

and tracking controller, are described in detail in Sections IV

and V respectively. We present simulation examples in

Section VI, followed by concluding remarks.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 2510

II. RELATED WORK

Most of the current successful humanoid robots are pro-

grammed by first determining a center of pressure (COP,

also known as zero moment point) trajectory based on the

footprint and generating a physically consistent center of

gravity (COG) trajectory using a simplified dynamics model

such as inverted pendulum, and then computing the inverse

kinematics to obtain the joint angles that satisfy the planned

COG trajectory and footprints [1]–[6]. Some work [7], [8]

also uses an inverted pendulum model for balancing. These

frameworks have been successful because the reference mo-

tion is guaranteed to be physically consistent, but are not

generally capable of tracking motion capture data because

adding the reference joint trajectory on top of the planned

trajectory might break the physical consistency.

Although applying human motion capture data to hu-

manoid robots has been a growing area of research recently,

few of these approaches successfully controlled real hard-

ware with a floating base. Most work has focused on map-

ping human motion to humanoid robots with fewer degrees

of freedom [9], [10] and categorizing human motion into

different behaviors for humanoid motion synthesis [11], [12].

Safonova et al. [13] adapted captured upper body motions

to humanoid robots considering the kinematic constraints

such as joint angle and velocity limits. Converting motion

capture data sequences to satisfy the full-body dynamics

constraints of free-floating humanoids has been addressed

in robotics [14], [15] as well as graphics [16], [17], but they

are focused on planning and do not address the issue of

recovering balance under disturbances.

In fact, very few papers successfully controlled humanoid

hardware based on human motion capture data. Nakaoka

et al. [18] realized robot dancing motions by manually

segmenting human motion data into different tasks and

constructing a controller for each task. Sugihara et al. [19]

proposed a method to generate physically consistent motion

by optimizing COG trajectory based on an inverted pendu-

lum model while respecting the reference joint trajectories

during the inverse kinematics computation. However, both

approaches require manual work for designing controllers or

pre-processing captured data.

Some work has realized online tracking of upper-body

motions during double support in full-body simulation [20]

and hardware [21]. However, both approaches use the lower

body specifically for balancing and therefore are not fully

capable of tracking leg motions that may conflict with the

balancing task.

III. OVERVIEW

A. Controller

Figure 2 shows the overview of the controller. The two

main components are a balance controller and a tracking

controller. The balance controller is responsible for keeping

the whole body balanced, usually using a controller designed

for a simplified dynamics model such as LQR for a linear

inverted pendulum model. The output of the balance con-

troller is the desired input to the simplified model such as

tracking

controller

balance

controller

motion clip

simulator / robot

reference state

of the simple model

desired

input

measured output

of the simple model

reference joint angles,

velocities, accelerations

joint

torques

current joint angles,

velocities

Fig. 2. Overview of the controller.

center of pressure and/or torques of representative joints.

The tracking controller is responsible for making every

joint track the desired trajectory. It solves an optimization

problem that respects both joint tracking and desired inputs

to the simplified model and obtains the joint torques to be

commanded to the robot.

B. Motion Capture Data Processing

We assume the use of a commercial optical motion capture

system to obtain the reference motion data, which typically

consist of a set of marker trajectories in the Cartesian space.

The marker data are labeled and cleaned as in the normal

motion capture pipeline. The data is then scaled to fit the

robot’s size and converted to joint angle data for the robot

by an inverse kinematics algorithm [22] taking into account

the joint motion range. Due to the joint limits and the

difference between the kinematics of the subject and robot,

the joint angle data usually have problems such as foot

skating at points of contact. The original motion capture data

are usually cleaned up offline to remove such problems.

In our pre-processing, we assume that both feet are flat

on the floor at the initial frame and estimate the correct

foot position and orientation by projecting those obtained

using the raw marker data onto the floor. We then compute

the inverse kinematics for new foot locations to obtain the

cleaned joint angles and retain the difference from original

joint angles. At each frame during control, we add the

difference to the original data to obtain the cleaned reference

joint angles. Although this correction is extremely simple,

our controller does not require further cleanup.

C. Notations and Basic Equations

We denote the number of actuated joints of the robot by

NJ . The total degrees of freedom (DOF) of the robot is then

NG = NJ + 6 including the 6 DOF of the translation and

rotation of the root joint. The robot configuration is uniquely

defined by the generalized coordinate q ∈ ℜNG whose first

6 components correspond to the root joint. We also denote

the generalized force by τG ∈ ℜNG .

Humanoid robots usually move with some of their links

in contact with the environment. Let NC denote the number

of links in contact. We represent the linear and angular

velocities of the i-th contact link by a 6-dimensional vector

ṙci. The relationship between the generalized velocity q̇ and

ṙci is written as

ṙci = Jciq̇ (1)

2511

regulator

simplified model

observer
estimated

output

estimated state

desired inputreference state

measured output

+

+

-

-

Fig. 3. Overview of the balance controller.

where Jci ∈ ℜ6×NG is the Jacobian matrix of the i-th contact

link’s position and orientation with respect to the generalized

coordinates. Differentiating Eq.(1), we obtain the relationship

of the accelerations:

r̈ci = Jciq̈ + J̇ciq̇. (2)

We define the compound contact Jacobian matrix Jc by

Jc =

Jc1

Jc2

...

JcNC

∈ ℜ6NC×NG . (3)

Because the root joint is not actuated, we can only

control the joint torque vector τ J ∈ ℜNJ . In addi-

tion, each of the NC links in contact with the environ-

ment receives contact force fci and moment around the

link local frame nci (i = 1, 2, . . . , NC). We also de-

fine the compound contact force/moment vector by fc =
(

fT
c1 nT

c1 . . . fT
cNC

nT
cNC

)T

∈ ℜ6NC .

The equation of motion of the robot is written as

Mq̈ + c = NT τ J + JT
c fc (4)

where M ∈ ℜNG×NG is the joint-space inertia matrix and

c ∈ ℜNG is the sum of Coriolis, centrifugal and gravity

forces. Matrix N ∈ ℜNJ×NG is used to map the joint torques

into the generalized forces and has the form

N =
(

0NJ×6 1NJ×NJ

)

(5)

where 0∗ and 1∗ are zero and identity matrices of the sizes

indicated by their subscripts respectively.

IV. BALANCE CONTROLLER

Figure 3 shows the structure of the balance controller.

The controller consists of two main components: a regulator

to compute the input to the simplified model to keep it

balanced, and an observer to estimate the current state based

on measurements. We can use any simplified model as long

as it represents the dynamics of the humanoid robot and a

balance controller can be designed. A typical example is a

linear inverted pendulum, for which a regulator can be easily

designed by pole placement or optimal control.

A. Details

Let us assume that the simplified model is linear and rep-

resented by the following state-space differential equation:

ẋ = Ax + Bu (6)

y = Cx (7)

where x is the state, u is the input, and y is the output of

the simplified model. Also assume that we have designed a

state feedback controller for balancing:

u = K(xref − x) (8)

where K is a constant gain matrix and xref is a reference

state, typically computed from the reference motion.

The observer compares the estimated and actual outputs

to update the state estimate x̂ as

˙̂x = Ax̂ + Bu + F (ŷ − y) (9)

where F is the observer gain and ŷ = Cx̂ is the estimated

output. Because we do not have access to real state, we

replace the state x with its estimate x̂ in Eq.(8):

u = K(xref − x̂). (10)

Using Eqs. (6), (7), (9) and (10), we obtain the following sys-

tem of the estimated state and new input ub =
(

xT
ref yT

)T

:

˙̂x = Abx̂ + Bbub (11)

where

Ab = A − BK − FC

Bb =
(

B −F
)

.

Equation (11) describes how to estimate the current state

of the simplified model based on a reference state and mea-

sured output. The estimated state and input to the simplified

model computed by Eq.(10) will be used as the input to the

tracking controller in Section V.

B. Inverted Pendulum Example

We present an example of a balance controller using a

linear inverted pendulum as the simplified model.

Consider the 3-dimensional inverted pendulum model with

two active linear joints, two unactuated joints and a point

mass, shown in Fig. 4. The location of the linear joints and

the point mass correspond to the COP and COM of the full-

body model respectively. After linearization, the pendulum

can be treated as two independent planar pendulums with

joints (x, θ1) and (y, θ2). We will therefore use the pendulum

with (x, θ1) as an illustrating example.

We define the state, input and output vectors of the linear

inverted pendulum as follows:

x =
(

x θ1 ẋ θ̇1

)T
(12)

u = fx (13)

y =
(

x lθ1

)T
. (14)

Note that we use the x coordinate of the point mass as

output instead of θ1. Although fx is the actual input to the

2512

x

y

fy fx

θ1

θ2

m

l

Fig. 4. Inverted pendulum model for the balance controller.

joint feedback /

feedforward

foot feedback /

feedforward

optimization

desired input

joint torques

desired joint

accelerationsreference joint angles,

velocities, and

accelerations

desired foot

accelerations

current joint angles,

velocities

Fig. 5. Overview of the tracking controller.

inverted pendulum, there is no corresponding input in the

whole-body model. Instead, we use x, which denotes where

the COP of the whole-body model should be, as the desired

input. Other possible forms of desired input include torques

of representative joints if the simplified model contains active

rotational joints such as in double inverted pendulum [8].

The reference state of this inverted pendulum model is

xT
ref = (xrc 0 0 0)

T
where xrc is the x coordinate of the

COM position computed from the reference joint angles. The

measured output y consists of the x coordinates of the actual

COP and COM positions.

We then design a regulator for the inverted pendulum. Here

we apply LQR, which determines the state feedback gain K

such that the following cost function is minimized:

J =

∫

∞

0

(

xT Qx + uT Ru
)

dt (15)

where Q ≥ 0 and R > 0 are symmetric weight matrices.

The weight matrices can be easily determined by observing

the response to disturbances. For example, we can determine

the weights so that the desired COP does not go out of the

contact area when the maximum possible external force is

applied.

V. TRACKING CONTROLLER

Figure 5 shows the structure of the tracking controller. The

controller consists of two local controllers and a joint torque

optimization.

A. Local Controllers

The local controllers compute the desired accelerations of

joint and contact links based on the reference and current

position and velocity as well as the reference accelerations.

In the joint controller, the desired acceleration ˆ̈q is computed

as follows at each joint:

ˆ̈q = q̈ref + kd(q̇ref − q̇) + kp(qref − q) (16)

where q is the current joint position, qref is the reference

joint position in the captured data, and kp and kd are constant

position and velocity gains that may be different for each

joint.

We assume that the position and orientation of the root

joint is available either by accelerometer and gyro sensors

or by computing the kinematics assuming that at least one

of the feet is flat on the ground. We can therefore compute

the desired linear and angular accelerations of the root joint,

and combine them with all desired joint accelerations to

form the desired acceleration vector ˆ̈q ∈ ℜNG . Control

law (16) is the same as the one used in resolved acceleration

control [23] except that the root joint is not actuated and

the desired acceleration may be altered by the optimization

part described later. In order to keep the feet from slipping,

and potentially to realize the desired contact state, we also

compute the desired feet accelerations ˆ̈rc ∈ ℜ6NC using the

same control law.

B. Optimizer

The task of the optimizer is to compute the control inputs

based on the information obtained so far: ˆ̈q, ˆ̈rc and the

desired input to the simplified model obtained by the balance

controller. In most cases, however, these conditions conflict

with each other. We therefore perform an optimization to

compute a set of joint torques that respects all of these

quantities.

The unknowns of the optimization are the joint torques τ J

and contact forces fc. The cost function to be minimized is

Z = Zs + Zq + Zc + Zτ + Zf (17)

and each of the five terms will be described in detail in the

following paragraphs.

The term Zs addresses the error from the desired input

to the simplified model. Because the mapping from the

simplified model to the full-body model can be in any form,

here we consider two examples of such a mapping: center

of pressure (COP) and torque of a representative joint. Cost

function Zs then becomes the sum of the errors associated

with these quantities, i.e.,

Zs = eCOP + eτ . (18)

First consider the case where the desired input includes

the desired location of the COP rp = (rpx rpy 0)T . The

COP error is represented as

eCOP =
1

2
fT

c P T W P Pf c (19)

where P is the matrix that maps f c to the resultant moment

around the desired COP and can be computed as follows: we

first obtain matrix T ∈ ℜ6×6NC that converts the individual

2513

contact forces to total contact force and moment around the

world origin by

T =
(

T 1 T 2 . . . T NC

)

(20)

and

T i =

(

13×3 03×3

[pci×] 13×3

)

(21)

where pci is the position of the i-th contact link and [a×]
is the cross product matrix of a 3-dimensional vector a. The

total force/moment is then converted to resultant moment

around COP by multiplying the following matrix:

C =

(

0 0 rpy 1 0 0
0 0 −rpx 0 1 0

)

(22)

which leads to P = CT .

The case where desired input includes torques of Nr

representative joints, τ̂ r ∈ ℜNr , is trivial. Let R ∈ ℜNr×NC

be the matrix to extract the torques of representative joints

from τ J . The error can be written as

eτ =
1

2
(τ̂ r − RτJ)T W r(τ̂ r − RτJ). (23)

The term Zq denotes the error from the desired joint

accelerations, i.e.,

Zq =
1

2
(ˆ̈q − q̈)T W q(ˆ̈q − q̈). (24)

The term Zc denotes the error from the desired contact

link accelerations, i.e.,

Zc =
1

2
(ˆ̈rc − r̈c)

T W c(ˆ̈rc − r̈c). (25)

The term Zτ is written as

Zτ =
1

2
(τ̂J − τ J)T W τ (τ̂ J − τJ) (26)

where τ̂J is a reference joint torque, which is typically set

to a zero vector and hence Zτ acts as a damping term for

the joint torque.

The term Zf has a similar role for the contact force, i.e.,

Zf =
1

2
(f̂ c − fc)

T W f (f̂c − fc) (27)

where f̂c is a reference contact force, which is also typically

set to the zero vector.

Using Eqs. (2) and (4), the cost function can be converted

to the following quadratic form:

Z =
1

2
yT Ay + yT b + c (28)

where y = (τT
J fT

c)T is the unknown vector.

The optimization problem has an analytical solution

y = −A−1b. (29)

C. Considering Contact Force and Hardware Limits

We have so far assumed that any contact force is available.

In reality, however, frictions and moments around x and y

axes have limitations. Real hardware also has limitations in

joint angles, velocities and torques. We could add inequality

constraints to enforce these constraints, but solving the

optimization problem would take significantly longer than

simply using Eq.(29).

We deal with these limitations by adjusting the parameters

in the optimization instead of adding constraints, hence

without changing the solution (29). The drawback is that

the limitations are not always met, but the expectation is

that the balance controller can compensate for the difference

between approximate and exact solutions.

For the contact force limitations, we set larger values for

elements of W f corresponding to the frictions and moments.

To address the joint torque limit, we utilize the reference joint

torque used in Eq.(26). If any of the joint torques exceeds its

limit at a sampling time, we set the corresponding reference

torque to the limit in the next sampling time and increase

the weight. We can therefore expect that the excess torque

would be relatively small and thus having little effect even

if the torque is saturated by the limit.

VI. SIMULATION RESULTS

A. Simulation Setup

We use a dynamics simulator with rigid-body contact

model developed at University of Tokyo [24], whose preci-

sion has been demonstrated in some simulation settings [25].

We use the model of the humanoid robot developed by Sarcos

and owned by Carnegie Mellon University (Fig. 6). The

robot has 34 joints in total (excluding hands and eye pan/tilt)

and we use 25 of them (fix neck and wrist DOFs) for the

experiments.

The joint kinematics and inertial parameters are derived

from the CAD model. We used experimentally-verified joint

motion range and joint torque limit information as well

as the design specification for the joint velocity limit. The

joint motion range constraint is enforced during the inverse

kinematics computation, but we did not consider the joint

motion range in simulation assuming that the joints track the

reference trajectory well enough. If a joint velocity comes

close to the limit, we add a strong damping torque to reduce

the speed. If the optimized joint torque exceeds the limit, it

is reset to the maximum value before the simulator computes

the joint acceleration.

The weights for LQR cost function (15) are

Q = diag
{

1.0 × 107 1.0 × 108 1.0 × 102 1.0 × 103
}

R = 1.0

which were chosen so that COP does not go out of the

contact area for a large impact. The observer gains are

chosen so that the estimated state converges sufficiently fast

compared to the poles of the closed loop. The feedback gains

for the joint and contact link tracking are kp = 4.0 and

kd = 4.0 except where otherwise noted. All weights for the

cost function were chosen to be diagonal with all elements

2514

Fig. 6. Humanoid robot for the simulation model.

0 1 2 3 4 5 6 7
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

COM control only

proposed controller

C
O
M
 p
o
s
it
io
n
 (
m
)

time (s)

Fig. 7. COM position in the front direction during simple balancing with
the COM control only (blue dashed) and proposed controller (red solid).

being 1 except for W τ and W c. The diagonal elements of

W τ were set to 0 by default and, if a joint torque exceeded

the limit, the corresponding value was changed to 1. The

diagonal elements of W c were set to 1×10−9 and 1×10−7

for vertical forces and other forces, respectively.

B. Simple Balancing with Inverted Pendulum Model

We first demonstrate the basic function of the balance

controller by using a fixed posture as reference. The robot is

hit by a 250 N force at the neck joint from t=1 to 1.1 s while

trying to keep the initial posture. As a reference, we used a

slightly different version of the controller where the balance

controller is replaced by a simple COM position controller

that computes the desired COM acceleration to bring it back

to the original position with the same feedback/feedforward

controller (16) and the same gains. The optimizer then tries

to realize the desired COM acceleration instead of desired

COP position. The two controllers share the same joint and

contact link tracking controllers.

Figure 7 shows the COM position in the forward direction

of the robot resulting from two controllers. The proposed

0.8 1 1.2 1.4 1.6 1.8 2
−0.05

0

0.05

0.1

0.15

0.2

desired

optimized

actual

time (s)

C
O
P
 p
o
s
it
io
n
 (
m
)

Fig. 8. COP position in the front direction during simple balancing with
the proposed controller; blue dotted: desired position by balance controller;
red solid: optimized position by optimizer, and green dashed: actual position
in simulation.

0.8 1 1.2 1.4 1.6 1.8 2
−0.05

0

0.05

0.1

0.15

0.2

desired

optimized

actual

time (s)

C
O
P
 p
o
s
it
io
n
 (
m
)

Fig. 9. COP position in the front direction during simple balancing with
COM control only.

controller successfully brings the robot back to the original

posture. The COM controller version, on the other hand,

can stop the COM even earlier than the proposed controller,

but the robot eventually falls backward. The reason is that,

although the COM controller version can stop the COM

motion that action comes at the cost of moving the upper

body forward rapidly, and it cannot compensate for the upper

body recovery motion. This error can be potentially fixed by

tuning the joint and COM feedback gains.

The COP positions under the proposed controller and its

COM control version are shown in Figs. 8 and 9 respectively

(note that we are using different time scale from Fig. 7 to

highlight the most important part). In Fig. 8, the desired

and optimized COP are almost identical, and the actual COP

is also very close. In Fig. 9 where the desired COP is not

considered, the COP also moves forward to give the COM

negative acceleration, but the movement is so fast that it

eventually has to use more control effort to bring the whole

system to equilibrium.

2515

Fig. 10. Original (left) and simulated (right) motions of “I’m a little teapot,”
subject 1.

C. Tracking Motion Capture Reference

We use a storytelling motion as an example of motion

where joint tracking ability is important. We randomly chose

motion capture clips of two actors performing the nursery

theme “I’m a little teapot” from CMU Motion Capture

Data Library [26]. The comparison of motion capture and

simulated robot motions are shown in Figs. 10 and 11 as

well as in the supplemental movie. The proposed controller

was able to reproduce robot motion that preserves the styles

of the original motions.

D. Disturbance Example: Error in Mass Parameters

Finally, we perturbed the inertial parameters of the simu-

lation model to emulate modeling errors due to using CAD

models that typically ignore small parts such as wires and,

in our hydraulic robot, the significant mass of the oil in the

cylinders and tubes. We increased the mass and inertia of

each link in the simulation model by a random ratio between

5 and 15%. The reference model for control was kept the

same. Because the estimated contact force is always smaller

Fig. 11. Original (left) and simulated (right) motions of “I’m a little teapot,”
subject 2.

than the actual force, the robot cannot keep standing with

the original gain (kp = 4.0, kd = 4.0). However, we could

successfully generate similar motion by increasing the gains

to kp = 16.0, kd = 8.0 as shown in Fig. 12.

VII. CONCLUSION

In this paper, we presented a new framework for allowing

floating-base humanoid robots to simultaneously keep bal-

ance and track motion capture data. The controller combines

a balance controller designed for a simplified dynamics

model of the robot and a tracking controller for individual

joints. The optimizer obtains the joint torques that respect

the outputs of both balance and tracking controllers so that

the robot can maintain balance while tracking the reference

joint trajectory.

As shown in the simulation results, the balance controller

can deal with various types of disturbances including differ-

ences between simplified and full-body dynamics, inertial

parameter errors, joint motions unknown to the balance

controller, and external forces. In general, the inverted pen-

dulum model and simple COM feedback control result in

2516

Fig. 12. “I’m a little teapot,” subject 1 with modified inertial parameters for the simulation (shows the same set of frames as Fig. 10).

qualitatively similar COP positions. However, it is very

difficult to determine optimal feedback gains and a wrong

gain choice would result in undesirable behaviors. We can

design a state-feedback controller for the inverted pendulum

model more intuitively.

Another advantage of using a simplified model for bal-

ancing is that we know where the COP would be. This

feature would potentially allow us to plan the COP ahead of

time to generate stepping motions by extending the methods

proposed in [4], [6].

Motion capture data is prone to error due to the inevitable

mismatch between the subject and humanoid model, and

usually requires pre-processing to make sure that desired

contact state is met throughout the motion. In contrast, our

controller required little pre-processing probably because of

the small feedback gains that allowed the joints to adjust

to minor misalignment of the feet. In addition, the pre-

processing is simple enough to be done in real time.

ACKNOWLEDGEMENTS

The authors would like to thank Justin Macey for capturing

and cleaning motion capture data, Stuart Anderson for his

help in building the simulation model, and Moshe Mahler

for creating the images and movies.

REFERENCES

[1] J. Yamaguchi, A. Takanishi, and I. Kato, “Development of a Biped
Walking Robot Compensating for Three-axis Moment by Trunk Mo-
tion,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robotics and Systems, 1993, pp. 561–566.

[2] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The Development
of Honda Humanoid Robot,” in Proceedings of International Confer-

ence on Robotics and Automation, 1998, pp. 1321–1326.
[3] K. Nagasaka, I. Masayuki, and H. Inoue, “Walking Pattern Generation

for a Humanoid Robot Based on Optimal Gradient Method,” in
Proceedings of IEEE International Conference on Systems, Man, and

Cybernetics, Tokyo, Japan, October 1999, pp. 908–913.
[4] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,

and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in Proceedings of IEEE International

Conference on Robotics and Automation, 2003, pp. 1620–1626.
[5] K. Löffler, M. Gienger, and F. Pfeiffer, “Sensor and control design of a

dynamically stable biped robot,” in Proceedings of IEEE International

Conference on Robotics and Automtation, 2003, pp. 484–490.
[6] T. Sugihara, “Simualted regulator to synthesize zmp manipulation and

foot location for autonomous control of biped robots,” in Proceedings

of IEEE International Conference on Robotics and Automation, 2008,
pp. 1264–1269.

[7] S. Kudoh, T. Kumura, and K. Ikeuchi, “Stepping motion for a
human-like character to maintain balance against large peturbations,”
in Proceedings of IEEE International Conference on Robotics and

Automtation, 2006, pp. 2661–2666.
[8] B. Stephens, “Integral control of humanoid balance,” in Proceedings of

IEEE/RSJ International Conference on intelligent Robots and Systems,
2007, pp. 4020–4027.

[9] A. Ude, C. Man, M. Riley, and C. Atkeson, “Automatic generation of
kinematic models for the conversion of human motion capture data into
humanoid robot motion,” in Proceedings of International Conference

on Humanoid Robots, 2000.
[10] A. Shon, K. Grochow, and R. Rao, “Robotic imitation from human

motion capture using gaussian processes,” in Proceedings of Interna-
tional Conference on Humanoid Robots, 2005, pp. 129–134.

[11] T. Inamura, I. Toshima, H. Tanie, and Y. Nakamura, “Embodied
symbol emergence based on mimesis theory,” International Journal
of Robotics Research, vol. 24, no. 4/5, pp. 363–378, 2004.

[12] O. Jenkins and M. Mataric, “Deriving action and behavior primitives
from human motion data,” in Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2002, pp. 2551–2556.
[13] A. Safonova, N. Pollard, and J. Hodgins, “Optimizing Human Motion

for the Control of a Humanoid Robot,” in 2nd International Symposium

on Adaptive Motion of Animals and Machines, 2003.
[14] A. DasGupta and Y. Nakamura, “Making Feasible Walking Motion of

Humanoid Robots from Human Motion Captured Data,” in Proceed-

ings of International Conference on Robotics and Automation, Detroit,
MI, 1999, pp. 1044–1049.

[15] K. Yamane and Y. Nakamura, “Dynamics Filter—Concept and Imple-
mentation of On-Line Motion Generator for Human Figures,” IEEE

Transactions on Robotics and Automation, vol. 19, no. 3, pp. 421–432,
June 2003.

[16] S. Tak, O. Song, and H. Ko, “Motion balance filtering,” Eurographics

2000, Computer Graphics Forum, vol. 19, no. 3, pp. 437–446, 2000.
[17] A. Safonova, J. Hodgins, and N. Pollard, “Synthesizing physically

realistic human motion in low-dimensional, behavior-specific spaces,”
ACM Transactions on Graphics, vol. 23, no. 3, pp. 514–521, 2004.

[18] S. Nakaoka, A. Nakazawa, K. Yokoi, H. Hirukawa, and K. Ikeuchi,
“Generating whole body motions for a biped robot from captured
human dances,” in Proceedings of the IEEE International Conference

on Robotics and Automation, 2003.
[19] T. Sugihara, W. Takano, K. Yamane, K. Yamamoto, and Y. Nakamura,

“Online dynamical retouch of motion patterns towards animatronic hu-
manoid robots,” in Proceedings of IEEE-RAS International Conference

on Humanoid Robots, 2005, pp. 117–122.
[20] V. Zordan and J. Hodgins, “Motion Capture-Driven Simulations that

Hit and React,” in Proceedings of ACM SIGGRAPH Symposium on

Computer Animation, San Antonio, TX, July 2002, pp. 89–96.
[21] C. Ott, D. Lee, and Y. Nakamura, “Motion capture based human

motion recognition and imitation by direct marker control,” in Pro-

ceedings of IEEE-RAS International Conference on Humanoid Robots,
2008, pp. 399–405.

[22] K. Yamane and Y. Nakamura, “Natural Motion Animation through
Constraining and Deconstraining at Will,” IEEE Transactions on

Visualization and Computer Graphics, vol. 9, no. 3, pp. 352–360, July-
September 2003.

[23] J. Luh, M. Walker, and R. Paul, “Resolved Acceleration Control of
Mechanical Manipulators,” IEEE Transactions on Automatic Control,
vol. 25, no. 3, pp. 468–474, 1980.

[24] K. Yamane and Y. Nakamura, “A Numerically Robust LCP Solver for
Simulating Articulated Rigid Bodies in Contact,” in Robotics: Science

and Systems, 2008.
[25] ——, “Dynamics simulation of humanoid robots: Forward dynamics,

contact, and experiments,” in The 17th CISM-IFToMM Symposium on
Robot Design, Dynamics, and Control, 2008.

[26] “CMU graphics lab motion capture database,”
http://mocap.cs.cmu.edu/.

2517

