

Abstract— In this paper, we introduce a high-speed vision
platform, H3 (Hiroshima Hyper Human) Vision, which can
simultaneously process a 1024× 1024 pixel image at 1000 fps
and a 256× 256 pixel image at 10000 fps by implementing image
processing algorithms as hardware logic on a dedicated FPGA
board. Various types of algorithms are actually implemented to
show that H3 Vision can work a high-speed image processing
engine. Experimental results are shown for multi-target color
tracking, feature point tracking, optical flow detection, and
pattern recognition by using high-order local auto-correlation
(HLAC) feature at a frame rate of 1000 fps or more.

I. INTRODUCTION
any conventional robot visions use video signals (e.g.,
NTSC 30 fps) designed according to human eye cha-

racteristics and their processing speeds are limited to ap-
proximately the same level as the human eye. In robots and
various other application fields, such as factory automation
(FA), multimedia, and biomedical fields, there is a growing
demand for high-speed image processing technology capable
of recognizing high-speed phenomena in real time.

For high-speed visions at 1000 fps, vision chips consisting
of sensors and parallel processing circuits integrated on single
chips have been developed [1]-[4]. Because of the currently
limited integration technologies, however, these vision chips
have pixels not more than thousands or tens of thousands and
are difficult to apply to image measurement with high spatial
resolution. Meanwhile, many imagers can operate at high
frame rates because of the region of interest (ROI) function
that selects local image areas. For this ROI function, Ishii et al.
adopted the idea of intellectual pixel selection, where only the
pixels necessary for each frame are selected according to the
result of processing the preceding frame. Thus, personal
computer (PC) based multi target tracking that achieves both
mega-pixel spatial resolution and 1000 fps-level high speed
was realized [5]. Currently, the number of pixels that can be
transmitted at 1000 fps from an image sensor and processed
in a PC is not more than 10000. This limits the simultaneous
capturing of measurement targets distributed in an image.

Recent attempts have been made to implement various
kinds of high-speed image processing with circuits on a
field-programmable gate array (FPGA) and other hardware
after connecting a high-speed camera head and a dedicated
processing board by high-speed serial communication. For
example, parallel coprocessors were mounted for multi-point
target tracking of 256ൈ256 pixel images [6], and a high-speed
Hough transform was implemented on a FPGA [7], and Hi-

I. Ishii, T. Taniguchi, R. Sukenobe, and K. Yamamoto are with Hiroshima
University, Hiroshima 739-8527, Japan (corresponding author (Idaku Ishii)
to provide phone: +81-82-424-7692; fax: +81-82-422-7158; e-mail: iishii@
robotics.hiroshima-u.ac.jp).

roshima Hyper Human Vision (H3 Vision) was realized for
1000 fps real-time image processing on 1024ൈ1024 pixel
images [8]. These implementations have made it possible to
verify the performance of various algorithms on the same
platform at high speed.

Therefore, this paper introduces a configuration of H3 Vi-
sion that the authors have developed as a high-speed vision
platform and verifies its effectiveness with examples of var-
ious hardware-implemented image processing algorithms.

II. THE NECESSITY OF HIGH-SPEED VISION
High-speed vision is a useful real-time sensor for visual

feedback control at hundreds of Hz or more, which derives its
maximum mechanical performance from a robot. The effec-
tiveness of high-speed visual feedback control has been
originally reported in 1ms visual feedback system [9], which
realized 2 DOF high-speed target tracking. Several researches
with high-speed visual feedback control have been also re-
ported; high-speed grasping by a robot hand [10], high-speed
batting manipulation [11], virtual stillness for beating heart
surgery [12], and microscopic microbe tracking [13].

High-speed vision is also capable of capturing high-speed
phenomena as distributed dynamics information, even though
they are difficult to recognize by the human eye. Therefore,
high-speed vision can work as a dynamic sensing tool sig-
nificant for many applications such as human interface, bio-
logical behavior analysis, fluidic analysis, and structural
vibration analysis. Several researches for dynamic sensing
have been already reported; fingertip contact detection for
computer interface [14], quantification of mice’s scratching
behavior for atopic dermatitis drug developments [15], and
eye stiffness sensing for glaucoma diagnosis [16].

In order to have wider range of application for dynamic
sensing as well as robot control, it is important to develop
more intelligent high-speed vision systems for complex real
world sensing, which are not limited with conventional binary
image processing. As a result, we developed a high-speed
vision platform that can implement more complicated image
processing algorithms as hardware logics for high frame rate
color and gray-level images with high spatial resolution.

III. HIGH-SPEED VISION PLATFORM H3 VISION

A. Outline of System
H3 Vision is a high-speed and real-time vision platform for

image processing with high spatial resolution at a high frame
rate. H3 Vision was designed to implement and verify various
image processing algorithms on the same platform. Fig. 1
shows the general configuration.

Development of High-speed and Real-time Vision Platform, H3 Vision

Idaku Ishii, Taku Taniguchi, Ryo Sukenobe, and Kenkichi Yamamoto

M

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3671

This platform consists of a high-speed camera head, a
dedicated FPGA image processing board, and a PC. Images
captured by the high-speed camera head are transferred to the
dedicated FPGA image processing board at high speed. The
dedicated FPGA image processing board executes arbitrary
image processing implemented by the user as hardware to
greatly reduce the volume of transfer data to the PC. The final
processing results are transferred at high speed to the PC
through a PCI-X bus to realize processing with high spatial
resolution at high frame rate.

B. Components
For the high-speed camera head, the camera head for

FASTCAM-1024PCI (Photron), a commercially available
high-speed camera, was adopted [17]. Fig. 2 (left) shows the
camera head and Table 1 gives the specifications. As we can
see from the table, color 10-bit images can be transferred to a
post-stage dedicated FPGA image processing board at 1000
fps for 1024ൈ1024 pixels and 10000 fps for 256ൈ256 pixels.

The FPGA image processing board dedicated to H3 Vision
was designed for high-speed processing of 1024ൈ1024 pixel
images transferred as fast as 1000 fps and 256ൈ256 pixel
images transferred as fast as 10000 fps. Fig. 2 (right) shows
the appearance of the FPGA board, Table 2 gives the speci-
fications, and Fig. 3 is a function block diagram.

This board consists of the FPGA (Xilinx XC2VP100 –
hereafter called FPGA1) for image correction and display

resolution max. 1024 ൈ 1024 pixel
bit depth color 10 bit

frame rate 1000 fps (1024 ൈ 1024 pixel)
10000 fps (256 ൈ 256 pixel)

imager size 17.4 mm ൈ 17.4 mm
pixel size 17 µm ൈ 17 µm
camera mount C mount
interface digital serial 12ch (LVDS)
size (W×D×H) 120 mm ൈ 120 mm ൈ 120 mm

board size 312 mm ൈ 128 mm
camera I/F digital serial 12ch (LVDS)

FPGA Xilinx XC2VP100 ൈ 2
approx. 11million gates, 1164 I/O pins

available
memories

DDR-SDRAM : 640 MByte, DDR266
SDRAM : 512 MByte
SSRAM : 8 MByte
FPGA(internal) : 999 kByte

Bus I/F PCI-X (64 bit, 66 MHz)

processed images, the FPGA (Xilinx XC2VP100 – hereafter
called FPGA2) for hardware implementation of the algo-
rithms by the user, DDR-SDRAM and various other memo-
ries, and such interface circuits as a PCI-X bus and bridge.
The following describes the path for image data to be
processed in the FPGA image processing board.
(1) Converting image data from serial to parallel

Serial image data transferred from the high-speed camera
head is converted into 160-bit parallel data (10 bits/pixel)
with 16 pixels as a block.
(2) Correcting images

For the parallel data of (1), fixed pattern noise removal and
shading correction are conducted by using corrected images
recorded in flash memory.
(3) Writing corrected images into DDR-SDRAM

The corrected image data is transferred once from FPGA1
to FPGA2 through a 160-bit bus and stored in DDR-SDRAM,
which functions as a buffer.
(4) Executing user-specified image processing

Stored images are read from DDR-SDRAM and processed
in a processing block, where arbitrary user-implemented
image processing in FPGA2 is executed.
(5) Transferring processing results to PC

By high-speed transfer using FIFO, the processing result of
(4) is sent to the PCI-X bus through the PCI-I/F and PCI
bridge for data acquisition from the PC.

For H3 Vision, any PC with PCI-X bus can be used if its OS
is Windows XP. The CPU and memory specifications can be
selected according to the purpose. Various API functions

Fig. 1 Configuration of H3 Vision

TABLE 1 SPECIFICATION OF H3 VISION CAMERA HEAD

Fig. 2 H3 Vision

Fig. 3 Block diagram of H3 Vision FPGA board

TABLE 2 SPECIFICATION OF H3 VISION FPGA BOARD High-speed
camera head

+ image capturing

Personal
computer
+ data processing
+ visualization

image features

images

FPGA board
FPGA1 FPGA2+ serial/parallel conversion

+ noise reduction, image revision
+ VGA video output

+ image processing
+ data output to PCI-X bus

Camera Head FPGA Board DDR-SDRAM
(640MByte)

SSRAM
(9MByte)

16 bit x 10

DDR-SDRAM
I/F

User Specific
Function Block

160 bit

160 bit

160 bit

24 bit

PCI I/F

18 bit x 2

SDRAM I/F

16 bit

SDRAM
(512MByte)

16 bit x 8

32bit

CPLD1

CPLD2

CPLD3

Config
ROM

Config
ROM

Clock Synthesizer

VGA Monitor
I/F

DAC

VGA Monitor

Image
Correction

PCI I/F

32 bit

160 bit

32 bit

PCI
Bridge

64 bit

SSRAM
(4.5MByte)

36 bit x 4

Flash Memory
(2MByte)

Serial to Parallel
Convertor 160 bitImage

16 bit

Personal Computer

CMOS
Camera Head

Camera Parameters

SSRAM
(2.25MByte)

36 bit x 2

FPGA1

FPGA2

3672

associated with board control and data access are prepared as
middleware for the development of various application pro-
grams using the C language and other general-purpose pro-
gramming languages. In this study, we used a PC of the spe-
cifications given in Table 3.

This paper introduces examples of implementing various
image processing algorithms on the high-speed vision plat-
form H3 Vision for high-speed image processing.

main board Intel Server Board SE7525GP2
CPU Xeon Dual Core 2.8GHz ൈ 1
memory 2GB（DDR333 1GB ൈ 2）
OS Windows XP Professional SP2
bus I/F PCI-X bus

IV. MULTI-COLOR MARKER TRACKING

A. Outline of Algorithm
Multi-color marker tracking in an image is realized by a)

labeling target areas with color information and b) setting
inter-frame correspondence to the tracking targets. By this
tracking, time-series data containing the position of a tracked
object can be acquired. When 10-bit images of 1024ൈ1024
pixels are processed at 1000 fps, a bandwidth of at least 10
Gbps is necessary for processing requiring full-pixel access.
This is difficult to realize by software that needs to transfer
images to a PC.

In this study, the image size is assumed to be ܰଶ and the
number of tracking objects is assumed to be ܯ . Labeling
processing is integrated as hardware logic for conversion
from dimension ܰଶ to dimension ܯ , and correspondence
processing is PC software-implemented on H3 Vision to set
the correspondence from dimension ܯ to dimension ܯ.

Fig. 4 shows the algorithm flow described as follows.

(1) Color labeling
a) Color extraction (Processing order: ܱሺܰଶሻ)

Based on the color hue information, only specified color
areas are extracted to separate color marker areas from the
background area.
b) Block labeling (Processing order: ܱሺܰଶሻ)

For high-speed processing, an area of 1024ൈ1024 pixels is
divided into 16 blocks and each block is labeled in parallel.
The labeling algorithm completes labeling by a single scan
that requires no image size storage areas and retains only the
zeroth moment ݉ and the first moment ݉௫, ݉௬ of each
labeled area as processing results.

From the zeroth and first moments, the center of gravity
corresponding to a labeled area can be calculated as ൫ܥ௫, ௬൯ ൌܥ ሺ݉௫/݉, ݉௬/݉ሻ to extract each label position.
c) Merging (Processing order: ܱሺܯሻ)

Since labeling is executed on each block in parallel, a target
across a block boundary is divided and different labels are
affixed. To solve this problem, the distance between labels
near a boundary is calculated. If the distance is within a given
threshold, the divided targets are merged as the same target.

(2) Inter-frame correspondence setting (Processing order: ܱ ሺܯሻ)
A label map for exploration is generated with a label

number embedded at the center of gravity of every label in the
one frame before. Then, for each label in the current frame, a
square window around the center of gravity is scanned for the
corresponding label number to set the label correspondence.

Processing of the processing order ܱሺܰଶሻ is implemented
by hardware and processing of the processing order ܱሺܯሻ is
software-executed.

B. Implementation and Operation
Implementing the above algorithm on H3 Vision realized

marker extraction up to 2300 markers (1024ൈ1024 pixels) at
1000 fps and 254 markers (256ൈ256 pixels) at 10000 fps. The
resource consumption of FPGA2 on the FPGA image
processing board was Slice 66% (29233/44096), Slice Reg-
ister 41% (36355/88912), LUT 45% (40077/88192), Block
RAM 66% (297/444), and GCLK 50% (8/16).

A disc with 60 red markers was rotated at 26 rotations per
second (rps) and all markers were measured at 1000 fps. Fig.
5 shows the ݕ-ݔ trajectories, velocity distribution, and acce-
leration distribution of every marker. From the velocity dis-
tribution in the tangential direction proportional to the radius
and from the acceleration distribution in the direction toward
center proportional to the radius, we see that the high-speed
circular motions of markers rotating are tracked correctly.

By marker tracking at 10000 fps on H3 Vision, vibrating
guitar strings were simultaneously measured from the 1st
string to the 6th string. Fig. 6 shows the time-series changes
of the y-coordinate in 0.1 second. The vibration frequencies

TABLE 3 SPECIFICATION OF PERSONAL COMPUTER

Fig. 4 Algorithm flow for multi-color marker tracking

Hardware-Implemented Part
High-speed Camera

FPGA Board

Personal Computer

10

11 13

1 2
3

Block i-1

Block i

1-a) Color Extraction

1-b) Block labeling
(parallel processing in each block)

22

23 24

25

Block i-1

Block i

input
image

Labeled results
in the current frame

Labeled results
in the previous frame

2) Inter-frame
Correspondence

10 bit
color/gray

image

zero-/1st-order
moment

Software-Executed Part

Color
Extracted

Image

1-c) Merging

3673

of the strings become 330, 246, 196, 147, 110, and 82 Hz,
respectively. Here we set markers on the guitar strings to be
tracked. They match the tuning frequencies when the strings
are released. Thus, we see that H3 Vision can measure the
distribution of high velocity rotations and vibrations that
cannot be caught by the human eye.

V. FEATURE POINT TRACKING

A. Outline of Algorithm
Feature point tracking by the Kanade-Lucas-Tomasi

(KLT) Tracker [18] automatically extracts feature points
suitable for tracking in a frame. This is realized by a) image
feature calculation based on the intensity gradient, b) feature
point selection, and c) feature point correspondence between
the preceding and succeeding frames.

In this paper, when the number of feature points is ܯ ,
image feature calculation for conversion from dimension ܰଶ
to dimension ܰଶ and feature point selection for conversion
from dimension ܰଶ to dimension ܯ are implemented by
hardware for feature point tracking. The correspondence

processing is PC software-implemented on H3 Vision to set
the correspondence on dimension ܯ.

The flow of the implemented algorithm is as follows.
(1) Image feature calculation (Processing order: ܱሺܰଶሻ)

By noting that the brightness gradient is in all directions at
corners as well as other feature points using KLT Tracker,
this processing calculates the following image feature for
every element from the brightness gradient ሺݔ, ,ݔᇱሺߣ : ሻݕ ሻݕ ൌ det ܥ Trܥ , ,ݔሺܥ ሻݕ ൌ ቆ ௫ଶܫ ௬ܫ௫ܫ௬ܫ௫ܫ ௬ଶܫ ቇሺ௫,௬ሻאேሺ௫,௬ሻ , ሺ1ሻ

where detሺሻ is the determinant, Trሺሻ is matrix trace, ܰሺݔ, ሻݕ
is the 3ൈ3 pixel adjacent area of pixel ሺݔ, ,௫ܫ ሻ, andݕ ݔ ௬ areܫ
and ݕ differentials of the input image .
(2) Feature point selection (Processing order: ܱሺܰଶሻ)

KLT Tracker used feature points selection by sorting.
Sorting, however, is not necessarily suitable for hardware
integration because its memory consumption grows during
processing. In this paper, based on the assumption that there
are no other feature points near a feature point, the 1024ൈ
1024 pixel image is divided into 16384 blocks of 8ൈ8 pixels,
and the maximum values of ߣᇱሺݔ, ሻ is chosen within eachݕ
block to avoid sorting the entire image. This suppresses
memory consumption in feature point selection and enables
parallel processing to increase processing speed.

A feature point satisfying the following conditions of i)
image feature greater than the threshold and ii) a certain dis-
tance away from adjacent feature points, is ultimately se-
lected from candidate feature points for each block. Fig. 7
shows the feature point selection flow.

(3) Feature point tracking (Processing order: ܱሺܯሻ)

Based on the assumption that the displacement of a feature
point between frames is small, only the 8ൈ8 pixel local area,
where a feature point belongs in the current frame, is searched
with its adjacent local areas to set correspondence between
the preceding and succeeding frames for tracking.

Therefore, processing of the order ܱሺܰଶሻ implemented as
hardware logic and processing of the processing order ܱሺܯሻ
is executed by software.

B. Implementation and Operation
To deal with the parallel input of 10-bit contrast images in

units of 16 pixels for H3 Vision, the feature point selection
circuit shown in Fig. 8 was implemented to parallelize the
processing of image feature calculation and feature point
selection of the above algorithm on 16 pixels.

Fig. 6 Vibrating guitar strings

Fig. 7 Feature points selection

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
0

64

128

192

256

320

384

448

512

576

640

704

768

832

896

960

1024

x-coordinate [pixel]

y
-
c
o
o
r
d
i
n
a
t
e

[
p
i
x
e
l
]

0 1024512 x [pixel]

512

1024

y
[p

ix
el

]

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
0

64

128

192

256

320

384

448

512

576

640

704

768

832

896

960

1024

x-coordinate [pixel]

y
-
c
o
o
r
d
i
n
a
t
e

[
p
i
x
e
l
]

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
0

64

128

192

256

320

384

448

512

576

640

704

768

832

896

960

1024

x-coordinate [pixel]

y
-
c
o
o
r
d
i
n
a
t
e

[
p
i
x
e
l
]

0 1024512 x [pixel]

512

1024

y
[p

ix
el

]

26rps

60 red markers

x-y trajectories

velocity

0 512 x [pixel]

512

1024

y
[p

ix
el

]

1024

acceleration

Fig. 5 Rotating disc with 60 red markers

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 2

2

),(
yyx

yxx

III
III

yxC

CCyx Tr / det),(=λ

1) Calculate features
based on gradients

2) Select feature points
in divided block regions

Search
maximum value

Threshold
features

3) Corresponding
between frames

input image Track feature points

Detect appearance
/disappearance

0 10 20 30 40 50 60 70 80 90 100
48

50

52

54

56

58

time [msec]

y-
co

or
di

n
at

e
[p

ix
el

]

0 10 20 30 40 50 60 70 80 90 10072

74

76

78

80

82

time [msec]

y-
co

or
di

na
te

 [p
ix

e
l]

0 10 20 30 40 50 60 70 80 90 100101

103

105

107

109

111

time [msec]

y-
co

or
di

na
te

 [p
ix

el
]

0 10 20 30 40 50 60 70 80 90 100
131

133

135

137

139

141

time [msec]

y-
co

or
di

na
te

 [p
ix

el
]

0 10 20 30 40 50 60 70 80 90 100160

162

164

166

168

170

time [msec]

y-
co

or
di

na
te

 [p
ix

el
]

0 10 20 30 40 50 60 70 80 90 100
180

182

184

186

188

190

time [msec]

y-
co

or
di

na
te

 [p
ixe

l]

180

190 y [pixel]

t ime [ms]
0 50

1st string (330Hz)

100

170 y [pixel]

t ime [ms]
0 50

2nd string (246Hz)

160
100

131

141 y [pixel]

t ime [ms]
0 50

3rd string (196Hz)

100

111 y [pixel]

t ime [ms]
0 50

4th string (147Hz)

100
101

72

82 y [pixel]

t ime [ms]0 50

5th string (110Hz)

100
48

58 y [pixel]

t ime [ms]0 50

6th string (82Hz)

100

3674

This circuit, working on 16 pixels in parallel, realized

high-speed processing through parallel pipeline processing
carried out in the following order: calculation of brightness
gradient matrix and its trace and determinant, calculation of
the image feature, and a maximum value search.

As the result of circuit implementation, the resource con-
sumption of FPGA2 on the FPGA image processing board for
H3 Vision was Slice 77% (34243), Slice Register 69%
(61204), LUT 26% (23350), Block RAM 31% (138), and
MULT10X18 50% (224). Processing of 1024ൈ1024 pixel
images at 1000 fps was also confirmed.

Feature point tracking at 1000 fps was also conducted on a
star-shaped object rotating at 6 rps. Fig. 9 (a) shows the
captured object and positions of tracked feature points and (b)
shows the changes in the coordinates of five feature points
tracked for 0.2 second. The lower half of Fig. 10 shows the
feature points when a soccer ball undergoing parallel trans-

port was tracked. Thus, we could verify the automatic detec-
tion of convex vertices on a star-shaped object, the automatic
tracking of feature points on an object rotating at a high ve-
locity, and automatic tracking of feature points for movement
of a soccer ball in the natural environment.

VI. OPTICAL FLOW PROCESSING

A. Outline of Algorithm
Optical flow processing is used to measure velocity dis-

tribution in a moving image based on the time-space diffe-
rential value of the image. The time-series differential method,
represented by the Lucas-Kanade method [19], is based on
the assumption that brightness ܫሺݔ, ,ݕ ሻ does not vary withݐ
time and local velocity ሺݒ௫, ௬ሻ is also uniform. This methodݒ
enables to measure velocity distribution even without feature
points in an image by solving ሺݒ௫, -௬ሻ in the following siݒ
multaneous equations with the sum product of differential
values in a certain area, ܵకఎሺݐሻ ൌ ∑ ௫ݒఎ, ൜ ܵ௫௫ܫకܫ ܵ௫௬ݒ௬ܵ௫௧ ൌ 0 ܵ௫௬ݒ௬ ܵ௬௬ݒ௬ܵ௬௧ ൌ 0 . ሺ2ሻ

The time-space differential method allows sub-pixel
analysis but its estimation accuracy decreases as the velocity
increases. This is caused by great image deviations between
frames. The solution to this problem is operation at a high
frame rate. The accuracy of analysis by high-speed vision,
however, becomes low for an object moving at a low velocity
because image deviations between frames become fine.

Therefore, we adopt a technique of automatically adjusting
the frame rate in a pseudo way by adding a time-space dif-
ferential value in the time direction according to the motion of
an object. This technique uses the characteristic that the
changes of a space differential image between frames become
fine if an object moving at low velocity is captured at a high
frame rate. To calculate the sum product of differential values,
the frame rate is changed to 1/݊ times by the following ap-
proximation: ܵ௫௧ ሺݐሻ ൌ 1݊ ܵ௫௧ሺݐ ݅ሻ,ିଵ

ୀ ܵ௬௧ ሺݐሻ ൌ 1݊ ܵ௬௧ሺݐ ݅ሻିଵ
ୀ . ሺ3ሻ

The cumulative count ݊ ൌ ݊ሺݔ, ሻ is determined by theݕ
distribution of brightness changes in an image. In this paper,
the frame rate was adjusted automatically in the above men-
tioned pseudo way until the sum product of differential values
exceeds a threshold.

B. Implementation and Operation
For H3 Vision, optical flow processing at 1000 fps is rea-

lized by dividing a 10-bit contrast image of 1024ൈ1024 pixels
into 1024 areas of 32ൈ32 pixels. The sum product of the
differential values is calculated for each area by hardware,
and postprocessing is done by software. The postprocessing
includes the final flow calculation for each of 1024 areas and
the removal of error vectors.

Fig. 11 is a block diagram of a differential sum-product

Fig. 8 Feature points selection circuit

Fig. 9 Tracked feature points (star-shaped object)

Fig. 10 Tracked feature points (soccer ball)

t=0.00s t=0.33s t=0.66s

t=0.00s t=0.33s t=0.66s

(a) extracted feature points

(b) tracking results (x-t, y-t)

ID 1
ID 2
ID 4

ID 6
ID 5

y[pixel]

x[pixel]

0

200

400

0

200

400

0 20 40 60 80 100 120 140 t[ms]

max
search

in
blocks

Noise
Reduction

3x1
median
filter

16 parallel

mul
&

sum

Gradient
Matrix C

10x16
bit

16 parallel

25 bit

6 bit

Feature

2 parallel

trace
&

det

∑ 2
xI

∑ 2
yI

∑ yx II

Tr C
det C

16 parallel

24x3
X16 bit

Feature

div

CTr

Cdet

¬(x,y)

16 parallel

49x16
bit

25x16
bit

¬(x,y)

25x16
bit

1) Calculation of features based
on brightness gradients

2-a) Maximum value
search in each block

160 bit
(10bit x16pixels)

),,(tyxI

Input
Image

Location

Feature Point
Candidates

3675

circuit that processes 16 pixels in parallel. A 10-bit contrast
image is entered by parallel input in units of 16 pixels. By
subtracting the image data at the same position in the pre-
ceding frame from the image data of the one line higher stored
temporarily in memory, the upper stage of the circuit calcu-
lates the space and time differential values and also integrates
them in parallel (48-parallel subtraction and 80-parallel in-
tegration). The lower stage of the circuit adds the integration
results for 32ൈ32 pixels to calculate the sum product of the
differential values. This circuit uses parallel pipeline
processing to increase the speed.

As the result of implementing the sum product of the dif-

ferential value calculation circuit and other as hardware, the
resource consumption of FPGA2 on the FPGA image
processing board for H3 Vision was Slice 31% (13865), Slice
Register 29% (25671), LUT 10% (9355), Block RAM 6%
(28), and MULT10X18 16% (75). Processing of 1024ൈ1024
pixel images at 1000 fps was confirmed.

Fig. 12 shows examples of optical flow analysis at 1000 fps
where the cumulative count of the sum product of differential
values was set to 1. Fig. 12 (a) is a hand-waving motion and
(b) is a running motion. Optical flow calculation is realized
even for quick human motion.

Fig. 13 shows an example of optical flow analysis for a
rotating object. In this example, the lower limit of flow ve-
locity was set to 400 pixels/s and the maximum cumulative
count of the sum product of differential values was set to ݊=8.
From Fig. 13 (c), showing the cumulative count distribution
of the sum product of differential values corresponding to the
amplitude of flow velocity, we see that the cumulative count
is set large in a low-velocity area and small in a high-velocity
area. The cumulative count of the sum product of differential
values is thus adjusted automatically to the velocity. Even
where high-velocity and low-velocity motions are mixed,
adaptive optical flow calculation is realized.

VII. PATTERN RECOGNITION USING HLAC FEATURES

A. Outline of Algorithm
High-order local auto-correlation (HLAC) features [20] are

calculated by using a reference pixel and its adjacent pixels
from the following higher-order auto-correlation function: න ࢘ሺܫሻ࢘ሺܫ ࢘ሺܫଵሻࢇ ଶሻࢇ ڮ ሺ4ሻ . ࢘݀

The features are applied to face recognition and error de-
tection as image features effective for shape recognition. Here, ܦ is the target image area, ࢘ is the reference pixel position, ܫሺ࢘ሻ is the brightness value of reference pixel ࢘ , and ࢇ ሺ݊ ൌ 1,2, ڮ ሻ is the distance between the reference and ad-
jacent pixels.

This paper discusses the secondary auto-correlation feature
available from the reference pixel and eight adjacent pixels.
As a pixel pattern used for fea-
ture calculations, an image area
of 1024ൈ1024 pixels is calcu-
lated at a frame rate of 1000 fps
for the 25 patterns of HLAC
features shown in Fig. 14. To
satisfy the specifications, HLAC
features calculation is speeded
up by the hardware, and final

Fig. 11 Differential sum-product circuit for optical flow detection

Fig. 14 Pattern of HLAC

Fig. 13 Optical flow detection for a rotating object

Fig. 12 Optical flow detection for human motion

high speed

n

1

low speed
8

t =0.80s

t =1.00s

t =0.80s t =1.00s

(a) experimental environment (b) N(x,y) map

(c) estimated optical flow

10 bit
1 bit

6 bit

10 bit

1 bit

10bit x 16pixel

48 parallels
(16 x 3 parallels)

current pixel data

previous pixel data

X-address

Y-address

data enable

tyx III ,,

tytx

yyyxxx

IIII
IIIIII

,
,,

xyS

xtS yyS

ytS

xxS

(32x32pix)(1x16pix)

Gradient
Calc.

10bit x 16pixel

11bit x 16pixel x 3

80 parallels
(16 x 5 parallels)

6 bit

10 bit

1 bit

6 bit

10 bit

1 bit

6 bit

10 bit

1 bit

22bit x 16pixel x 5

5 parallels 5 parallels

26 bit x 5

Multiplication
Calc.

Addition
Calc.

Addition
Calc.

32 bit
32 bit
32 bit
32 bit
32 bit

data enable
block no.

3676

recognition processing, such as nearest neighborhood method,
is realized by software.

As Equation (4) shows, HLAC features are calculated by
multiplication and addition only. To maintain integration and
high speed, it is important to suppress the multiplication
count that affects the circuit scale and calculation time. The
primary feature calculation in Equation (5) is generally the
multiplications of adjacent pixels and the calculation results
can be used for the secondary feature calculation in Equation
(6). In this paper, these calculations are used to suppress the
multiplication count in calculating HLAC features. ߝଵሺࢇଵሻ ൌ ࢘ሺܫሻ࢘ሺܫ ,ଵࢇଶሺߝ ଵሻ , ሺ5ሻࢇ ଶሻࢇ ൌ ࢘ሺܫሻ࢘ሺܫ ࢘ሺܫଵሻࢇ ଶሻ ൌࢇ ࢘ሺܫଵሻࢇଵሺߝ ଶሻ. ሺ6ሻࢇ

If the secondary features are calculated without using the
primary feature multiplication results, the multiplication
count per pixel will be 44 in total - four times that for primary
feature calculation and 40 times that for secondary feature
calculation. If the primary feature multiplication results are
used, the multiplications in the primary feature calculation
can be used for 17 of the 20 types of multiplications in the
secondary feature calculation. This reduces the necessary
multiplication count in the secondary feature calculation to 23,
which represents a decrease of 17 per pixel.

B. Implementation and Operation
For image recognition by HLAC features, a high-degree

local correlation feature calculation circuit was implemented
in H3 Vision for the following processing:
1) Using the high-order 8 bits of a 10-bit brightness value
2) Completely parallelizing the multiplications in Equations

(5) and (6) corresponding to the 25 patterns of features
(requiring 26 multipliers)

3) Adding the multiplication results of the 25 patterns for 16
pixels after preparing 16 units of the above multiplication
circuit to deal with 16-pixel parallel image input

4) Making incremental additions of the integral sum feature
quantity for 16 pixels until the image scan finishes

For nearest neighborhood method using the 25 patterns of
features and recognition processing based on the analysis,
processes were performed by using software on a PC.

As the result of implementing the sum product of the dif-
ferential value calculation circuit and other as hardware logic,
the resource consumption of FPGA2 on the FPGA processing
board for H3 Vision was Slice 51% (22808), Slice Register
43% (38321), LUT 18% (16405), Block RAM 30% (137),
and MULT10X18 93% (416). Processing of 1024 ൈ 1024
pixel images at 1000 fps was also confirmed.

To confirm real-time image recognition based on HLAC
features, we conducted an experiment on recognizing image
patterns projected from a digital micro-mirror device (DMD)
projector at high speed under the experimental environment
shown in Fig. 15. For the experimental image patterns, two
sets of image patterns; a) a total of 10 numbers from 0 to 9 in
Fig. 16 number recognition, b) a total of 10 face images of

8-level brightness for gray-level pattern recognition. Here we
picked up ten face images of H1-H10 in Fig. 17 from the face
image database provided by AT&T Laboratories Cambridge
[21]. The pattern projection speed of the DMD projector was
set to a maximum of 500 fps.

For number recognition, 10 sets of the 25 HLAC features
extracted from 0 to 9 were acquired off-line and image pat-
terns were recognized as numbers by the nearest neighbor
method based on learning data for 100 sets. For noise removal,
thresholding by half-binarization was conducted. The frame
rate of H3 Vision was set to 1000 fps.

Fig. 18 shows the results of number recognition when
image patterns were projected repeatedly in the order of 0 to 9
and again from 0. The pattern projection speed is 100 fps in
(a) and 500 fps in (b). At pattern switching, there is a recog-
nition failure time because the camera and projector are
asynchronous. For both pattern projection speeds of 100 and
500 fps, however, number recognition results matched the
patterns in the order of 0 to 9.

Fig. 15 Experimental environment for HLAC recognition

Fig. 17 Face images for experiment

Fig. 16 Number patterns for experiment

Screen

DMD projector
(500fps)

H3 Vision
Camera Head
(1000 fps)

Projected Patterns
* numbers
* face images

3677

For face image pattern recognition, 100 sets of the 25
HLAC features extracted from the ten face images were ac-
quired and were recognized as face numbers of H1-H10 by
the nearest neighborhood based on learning data for 1000 sets
in the same way as the number recognition experiment.

Fig. 19 shows the result of face image recognition when
image patterns were projected repeatedly in the order of H1 to
H10 of face images and again from H1. The pattern projection
speed was 250 fps, and the frame rate of H3 Vision was set to
500 fps in this experiment. Face image recognition results
matched the patterns in the order of H1 to H10.

These experimental results indicate that real-time shape
recognition was realized by using HLAC features for image
pattern switching at high speeds.

VIII. CONCLUSION
This paper introduced a high-speed vision platform H3

Vision capable of processing 1024ൈ1024 pixel images at
1000 fps and 256ൈ256 pixel images at 10000 fps in real time.
By conducting experiments, we presented examples of suc-

cessful implementation of various image processing algo-
rithms for color marker tracking, feature point tracking, opt-
ical flow, and high-order local auto-correlation feature cal-
culation. Based on these results in developing the high-speed
vision platform, we will further extend the system application
in the robot control, factory automation, multimedia, and
biomedical fields and make high-speed vision systems more
functional, less costly, and more compact.

REFERENCES
[1] T.M. Bernard et al, “A Programmable Artificial Retina,” IEEE J.

Solid-State Circuits, Vol. 28, No. 7, pp. 789-797, 1993.
[2] J. Eklund, et al, “VLSI Implementation of a Focal Plane Image Pro-

cessor - A Realization of the Near-sensor Image Processing Concept,”
IEEE Trans. VLSI Systems, Vol. 4, No. 3, pp. 322-335, 1996.

[3] T. Komuro et al, “A Dynamically Reconfigurable SIMD Processor for
a Vision Chip,” IEEE J. Solid-State Circuits, Vol. 39, No. 1, pp.
265-268, 2004.

[4] I. Ishii et al, “Higher Order Autocorrelation Vision Chip,” IEEE Trans.
Electron Devices, Vol.53, No.8, pp.1797-1804, 2006.

[5] K.Tajima et al, “Development of a High-resolution, High-speed vision
System using CMOS Image Sensor Technology Enhanced by Intelligent
Pixel Selection Technique,” Proc. SPIE, Vol. 5603, pp. 215--224, 2004.

[6] Y. Watanabe et al, “955-Fps Real-Time Shape Measurement of a
Moving/Deforming Object Using High-Speed Vision for Numerous
-Point Analysis,” Proc. IEEE Int. Conf. Robotics and Automation,
pp.3192-3197, 2007.

[7] S. Hirai et al, “Realtime FPGA-Based Vision System," J. Robotics and
Mechatronics, Vol.17, No.4, pp.401-409, 2005.

[8] I. Ishii et al, “Ultrafast Hyper Human Vision and Its Application,” J.
Institute of Electronics, Information, and Communication Engineers,
Vol.90, No.10, pp. 838-841, 2007. (in Japanese)

[9] I. Ishii et al, “Target Tracking Algorithm for 1ms Visual Feedback
System Using Massively Parallel Processing,” Proc. IEEE Int. Conf.
Robotics and Automation, pp.2309-2314, 1996.

[10] A. Namiki et al, “Development of a High-speed Multifingered Hand
System and Its Application to Catching,” Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, pp.2666-2671, 2003.

[11] T. Senoo et al, “High-Speed Batting Using a Multi-Jointed Manipula-
tor,” Proc. IEEE Int. Conf. Robotics and Automation, pp.1191-1196,
2004.

[12] Y. Nakamura et al, “Heartbeat Synchronization for Robotic Cardiac
Surgery,” Proc. IEEE Int. Conf. Robotics and Automation, pp.2014-
2019, 2001.

[13] H. Oku et al, “Tracking a Protozoon Using High-Speed Visual Feed-
back,” Proc. Annu. Int. IEEE-EMBS Special Topic Conf, Microtech-
nologies in Medicine & Biology, pp.156-159, 2001.

[14] K. Yamamoto et al, “A Real-time Finger-tapping Interface Using High-
speed Vision System,” Proc. IEEE Int. Conf. Systems, Man, and Cy-
bernetics, pp.296-303, 2006.

[15] I. Ishii et al, “Automatic Scratching Pattern Detection for Laboratory
Mice using High-speed Video Images,” IEEE Trans. Automation
Science and Engineering, Vol.5, No.1, pp.176-182, 2008.

[16] M. Kaneko et al, “Dynamic Sensing of Human Eye,” Proc. IEEE Int.
Conf. Robotics and Automation, pp.2882-2887, 2005.

[17] Photron Ltd, http://www.photron.co.jp
[18] J. Shi et al, “Good Features to Track,” Proc. IEEE Int. Conf. Computer

Vision and Pattern Recognition, pp.593-600, 1994.
[19] B.D. Lucas et al, “An Iterative Image Registration Technique with an

Application to Stereo Vision,” Proc. Imaging Understanding Work-
shop, pp 121-130, 1981.

[20] N. Otsu et al, “A New Scheme for Practical, Flexible and Intelligent
Vision Systems,” Proc. IAPR Workshop Computer Vision, pp.431-435,
1988.

[21] F.S. Samaria et al, “Parameterisation of a stochastic model for human
faceidentification,” Proc. IEEE Workshop on Applications of Computer
Vision, pp.138-142, 1994.

Fig. 19 Face image recognition using HLAC features

Fig. 18 Number recognition using HLAC features

"9"
"8"
"7"
"6"
"5"
"4"
"3"
"2"
"1"
"0"

unknown

0 5 10 15 20 25 30 35 40
time[ms]

Number recognition (500 fps)

N=0
N=1

N=2
N=3

N=4
N=5

N=6
N=7

N=8
N=9

"9"
"8"
"7"
"6"
"5"
"4"
"3"
"2"
"1"
"0"

unknown

0 20 40 60 80 100

Recognized
number

time[ms]

Number recognition (100 fps)

N=0
N=1

N=2
N=3

N=4
N=5

N=6
N=7

N=8
N=9

(a) projection speed 100 fps

(b) projection speed 500 fps

Recognized
number

H10
H9
H8
H7
H6
H5
H4
H3
H2
H1

unknown

0 10 20 30 40 50 60
time[ms]

Face Recognition (projection 250 fps)

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

3678

