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Abstract— In this paper we present a framework for 3D
geometric shape segmentation for close-range scenes used in
mobile manipulation and grasping, out of sensed point cloud
data. Our proposed approach proposes a robust geometric
mapping pipeline for large input datasets that extracts relevant
objects useful for a personal robotic assistant to perform manip-
ulation tasks. The objects are segmented out from partial views
and a reconstructed model is computed by fitting geometric
primitive classes such as planes, spheres, cylinders, and cones.
The geometric shape coefficients are then used to reconstruct
missing data. Residual points are resampled and triangulated,
to create smooth decoupled surfaces that can be manipulated.
The resulted map is represented as a hybrid concept and is
comprised of 3D shape coefficients and triangular meshes used
for collision avoidance in manipulation routines.

I. INTRODUCTION

Small, fast tilting and rotating laser scanners are becom-
ing an interesting alternative to provide robots with dense
3D range images that can achieve an accuracy needed for
many object manipulation tasks. To be of effective use for
manipulation control we must equip the robots with scene
interpretation mechanisms operating on 3D range images.
In this context, a key computational problem is the fast and
reliable segmentation of the point cloud maps and an accurate
geometric reconstruction of selected object hypotheses of
those objects that the robot intends to manipulate.

Fig. 1. A segmentation of a table scene and the object clusters found to
lie on it from an unorganized point cloud dataset.

In this paper we tackle the problem of scene interpretation,
including object reconstruction for everyday manipulation
activities in domestic human living environments, in par-
ticular kitchens, out of point cloud data extracted from the
range images acquired using laser scanners. Our proposed
framework takes raw point cloud datasets as input, and
segments horizontal planar areas that support objects used
in manipulation scenarios (see Figure 1). Our mobile manip-
ulation platform is described in detail in [1].

Our method estimates sets of hybrid geometric object
models that consist of shape as well as surface models.
The use of these hybrid models allows us to synergetically
combine the strengths of shape representations and those of
surface models (in particular, meshes). As Figure 2 illustrates
shape models enable the system to add surface information
for parts of the object that were not covered by sensor data.
Also, shape models are parameterized representations for
which grasps can be determined in advance and be reparam-
eterized on demand. In addition, exploiting the knowledge
about the shape enables the robot to eliminate inaccuracies
caused by sensor noise as it determines the best shape
fit for the sensor data. However, the use of shape models
assumes that objects have strong regularities, which is often
but certainly not always satisfied by the objects of daily use
in domestic human environments. Thus, the remaining parts
of the object cluster are reconstructed through meshes that
can approximate arbitrary shapes but have the disadvantages
that they are not compact, not generalizable and yield higher
inaccuracies.

Fig. 2. The basic shape and surface model estimation step and the
reconstruction of the hybrid shape-surface object model.

Thus our method first tries to explain parts of the point
cloud through simple geometric shape models by fitting 3D
geometric primitives such as spheres, cylinders, cones, and
planes. It then reconstructs the remaining parts of the point
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cloud cluster using meshes using our surface reconstruction
techniques [2] and combines the partial models of the point
cloud cluster into a hierarchically structured hybrid model.
An example of this reconstruction is presented in Figure 2.

The key contributions of this paper are: (1) a computa-
tional model for close scene segmentation and reconstruc-
tion; and (2) a novel approach that uses a combination of
robust shape primitive models with triangular meshes to
create a hybrid shape-surface representation useful for object
grasping. The term close-range here refers to parts of the
world reachable by the robot arms (i.e., working space) from
the current position of the robot base.

The remainder of the paper is organized as follows.
We address our system architecture in the next section,
followed by the description of its two major components
in Sections IV and V. We present experimental results for
the segmentation of different table settings in Section VI and
conclude in Section VII.

II. RELATED WORK

Due to the unavailability of good sensing devices that
could be installed on robotic platforms, the problem of
perceiving and building complete 3D models for mobile
manipulation and grasping has always been difficult. Some of
the solutions adopted consist in creating complete 3D models
offline and finding feature spaces to match the partial views
online with models in the database [3], or using computer
vision and machine learning models to train classifiers that
can predict the grasping points in 2D and then triangulate
their position with stereo cameras for example to find the
3D grasp points [4]. The latter can deal with novel objects
(ones where a 3D model is not available) to some extent,
but in principle both approaches are sensitive and work
reliably only up to the training data used for learning the
classifier. A different approach is presented in [5], where
a highly accurate line laser works in combination with a
camera to build models and create grasping points online,
for novel objects. The results are very encouraging, however
the authors test their system on just 2 different objects, so
the problem of scalability is not addressed.

A vision-based grasping system which segments objects
on a table and constructs triangular meshes for them is
presented in [6]. While the presented method is general
and works for many objects, it creates complicated mod-
els for certain objects, which could be simplified through
the usage of geometric primitives. A simplification of the
modeling problem is presented in [7], where the authors
use geometric shape primitives and model each object as a
sphere, cylinder, cone or box. A similar model decomposition
approach is presented in [8], where the authors present a
sample consensus approach to fit similar primitive models
to noisy point clouds. In our case, we only model parts of
the objects with geometric primitives, and reconstruct the
geometry of the remaining parts using triangular meshes,
thus obtaining a more precise object model. In [9], the au-
thors use geons (geometric icons) to develop generic category
descriptions using geometric primitives, but also additional

category knowledge, for the purpose of building libraries
of grasp models for a variety of objects. The recognition
part is performed by looking at an object from different
views, creating a volumetric approach, and then fitting a
geon to the resultant volume. The most critical aspect of
this approach is the performance of the object reconstruction
algorithm (as the authors mention it themselves), which
is highly sensitive to gripper positioning errors, and the
evaluation takes a very long time to compute. The model
fitting problem is extended to the use of superquadrics as
geometric primitives in [10], [11], where complex objects
decomposed a priori into superquadric parts can be fit to a
point cloud dataset in a sample consensus approach. Though
the results are interesting, this approach requires additional
knowledge about the individual parts of an object, which is
often hard to get.

III. SYSTEM ARCHITECTURE

The architecture of our mapping system is presented in
Figure 3. Our methods take an unorganized 3D point cloud
P as input and produce a set of shape coefficients S and
a set of surface models O as output. We identify two main
modules, namely the Scene Interpreter which extracts the
supporting planes and segments the object clusters, and the
Object Modeler, which creates the shape and surface models
for each segmented object cluster. To process the data faster,
a world coordinate frame with the Z-axis pointing upwards
is defined, and P is transformed into this frame.

Fig. 3. The architecture of our mapping system. The input is comprised of
unorganized 3D point cloud datasets, and the output is a set of reconstructed
surface models O and a set of shape coefficients S.

The mapping pipeline can be briefly described using the
following computational steps:
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1) for every 3D point pi ∈ P , if no ni surface normal
information is already present, an estimate of the
normal to the best least-squares plane fit locally to the
k-nearest neighbors of pi is taken;

2) point normals ni that are approximatively parallel
with the world Z-axis, are grouped into a set T =
{t1 · · · tn} of Euclidean table candidate clusters;

3) for every cluster ti ∈ T , a sample consensus robust
estimator is used to find the best planar model;

4) for every set of point inliers Pi corresponding to the
planar model for ti found, a bounding polygon is
computed as the table bounds;

5) all Euclidean point clusters Ci = {ci
1 · · · ci

n} supported
by the table model (i.e. sitting on the table, and within
the polygonal bounds) are extracted;

6) for every cluster ci
j ∈ Ci a robust search for the best

set of primitive shapes Si is conducted;
7) a set of surface models Oi that takes Si into account

is built;
8) finally the resultant hybrid shape-model M is built by

concatenating the shape model with the surface model.
In the following sections we will discuss each of the

above mentioned steps separately and give insight on their
implementation details.

IV. SCENE INTERPRETER: PLANAR DECOMPOSITION
AND OBJECT SEGMENTATION

In general the segmentation of planar areas out of sensed
point cloud data representing indoor environments can be
done in a bruteforce manner (as presented in [12] for
example) by simply picking 3 random points, estimating
the parameters of a plane from them, and then scoring
points to this model using a distance threshold, in a sample
consensus framework. While this approach needs no a-priori
data processing and works in a straightforward manner on
simple datasets, it might fail on more complex environments,
where a resultant model might contain points from various
different parts of a room, for example, located on different
objects. Furthermore, a model could count as inliers points
which do not respect the plane equation, that is, the estimated
surface normal ni at an inlier candidate point pi is not
parallel to the plane’s normal n.

To account for such complex environments, but also to
considerably speed up the planar segmentation results, we
proceed as follows. For a given point cloud dataset P , we
construct a downsampled version of it, Pd, where pj ∈ Pd

represents the centroid of a set of points Pj = {pi ∈ P}
obtained using a fixed spatial decomposition of the data
(e.g. kD-tree). Furthermore, we estimate a normal nj to the
underlying surface represented by Pd by fitting a local plane
to the set of points Pj , and approximating nj as the normal
n of the plane.

Then, in general, we use similar sample consensus tech-
niques as [12], but impose an additional constraint on the
sample selection step, that is, for every two pair of points
pi, pj (with their estimated surface normals ni, nj) in the
three required chosen samples: ni · nj ≈ 0.

Fig. 4. Removing object candidates which fall within the convex polygon
but do not intersect with the table. The table’s boundary points are shown
in blue, the convex hull lines with cyan, octree leaves with green, and the
accepted object candidates in red.

In our research scenario however, we are mostly interested
in the segmentation of tables as horizontal planes which
can support objects on them. Therefore, we proceed at
introducing another optimization in our planar decomposition
approach, that is we look at the entire set of points pi ∈ Pd,
and only select those with their estimated surface normals
ni approximatively parallel with the world Z-axis. After
that, we perform a fast clustering of the selected points in
an Euclidean sense and construct a set T = {t1 · · · tn} of
table candidate clusters. This has the advantage that since the
clusters are independent with respect to each other, we can
perform the subsequent planar segmentation step in parallel
for more than one cluster, thus decreasing the computational
requirements of this step considerably.

The next major step in our geometric processing pipeline
is the object segmentation step. Given a set of validated ti
models, a search for sets Ci object candidates which are
supported by these models is performed. These objects are
said to be movable, in the sense that we are expecting the
robot to be able to manipulate them. In a kitchen scenario
they usually fall into the category of small kitchen utensils,
dishware, food products, and so on.

To segment the set of objects, the ti inliers are taken
and a bounding 2D polygon is created for each candidate.
Then, we look at the points whose projection on the ti model
falls inside the polygon. Because we treat the bounding as
a convex problem, there are situations where the resulted
shape includes additional points which do not lie on the table
surface, as shown in Figure 4. To solve this, we break all
the point candidates into regions in an Euclidean sense using
an octree connectivity criterion (i.e. occupied neighboring
leaves belong to one region), and then impose an additional
constraint: each region’s projection onto the ti table has to
have a minimum footprint. More specifically, we project the
octree leaves of each point region onto the octree leaves
of the table candidate, and then count the intersections. If
the footprint area is too small, the point region will not be
considered, as it might simply be sensor noise. The result
of these processing steps is a set of Euclidean point clusters
Ci = {ci

1 · · · ci
n}.

The right part of Figure 5 presents the remaining point
clusters Ci after the previously mentioned segmentation steps
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Fig. 5. Left: A snapshot of our kitchen lab dataset, comprising roughly
15 millions of points. Right: Point clusters supported by tables or shelves
(shown in yellow) which constitute candidates for movable object clusters
(shown in random colors).

for a given table from the kitchen dataset shown in the left
part of the same figure.

V. OBJECT MODELER: MODEL FITTING AND SURFACE
RECONSTRUCTION

In each segmented point cluster ci we perform a RM-
SAC [13] (Randomized M-Estimator Sample Consensus)
based search for 3D primitive geometric surfaces with a focus
on 3D primitive geometric shapes such as planes, cylinders,
spheres and cones.

We maintain a list of all models Si = {si
1 · · · si

n} that have
been generated in the course of the search and score each
of them based on their number of inliers. This list has the
advantage that if a model is good enough to be accepted,
the rest of the models get rescored quickly by subtracting
the inliers of the extracted model from their inlier lists. This
way, the remaining models will be found much faster, since
we may have sampled them already. The implementations of
these different models to be fitted share a common interface,
so they can be easily enabled and disabled for different
scenarios and new models can easily be added.

To achieve fast results, we use an octree for a localized
sampling strategy [8] and optimized inlier calculations by
hierarchically pruning octree leaves that cannot contain inlier
points to the current model. This is done by traversing
the octree, starting at the root node, and intersecting the
bounding boxes of the current leaf’s children with the shape.
We don’t descend into a child branch if its box is further
away from the shape than the inlier threshold. For this reason,
we implemented several box-shape intersection routines for
all the primitives given above.

The box - plane intersection test can be performed by
computing the distance of the box center to the plane
and comparing that with the dimensions of the box in the
direction towards the plane.

The key principle behind the box - cylinder intersection
test is to reduce the problem to a two dimensional one by
orthogonally projecting the box vertices along the cylinder
axis, which forms an irregular hexagon. The cylinder will
be projected onto a circle, and most cases can be decided
if one of the hexagon edges forms a separating axis [14].
However, if no edge fulfills this property, there could still be
the case that the separating line is present but not parallel
to any hexagon edge. This requires more expensive checks,
but in order to keep the intersection test simple and fast,

this is not implemented in our framework. This can result in
false positives, but that does not impact the correctness of
the resulting inliers, since the boxes merely contain potential
inliers.

Deciding whether a sphere intersects a box is an instance
of the more general problem of intersecting a hypersphere
with a hyperbox as described in [15].

The box - cone intersection test is performed in four steps,
as follows:

• The simplest case is when the cone apex a is inside the
box, which is trivial to check since the octree boxes are
axis aligned.

• Next, if any of the box vertices is inside the cone, the
box is regarded as possibly containing inliers. Note that
a box that is completely inside the cone can result in a
false positive.

• Even if no box vertex is inside the cone, an edge could
penetrate the cone. This can be tested by perspectively
projecting the cone and the box such that the cone
becomes a circle. Then, one can look at every box edge
in the projection and perform a two dimensional line -
circle intersection test.

• At this point, the only possibility left that the box
intersects the cone is if the apex is outside the box,
all box vertices are outside the cone, and no box edge
penetrates the cone surface, but the cone axis intersects
with one of the box sides. The axis - box intersection is
performed using Kay and Kayjia’s ”slab” method [16].

The result of these intersection tests are the points con-
tained in intersecting octree leaves, which can now be tested
against the shapes for inlier selection. Since a large number
of boxes will be checked against the same shape, it is helpful
to precompute values that do not change for different boxes
before traversing the octree.

During inlier selection, we discard points with normals
contradicting those of the underlying model, and we enforce
a connectivity criterion, i.e. we select the biggest connected
component among the inlier candidates.

Fig. 6. A synthetic scene demonstrating the different estimated primitive
shape models.

When a model si has been found, we perform a non-linear
optimization of the shape parameters using the Levenberg-
Marquard algorithm. For some shapes, like cones, it proved
beneficial to use a more restrictive distance threshold in the
first inlier selection stage, and adjust this threshold to the
expected noise level during the final inlier search. While
this reduces the number of false positives and increases the
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number of false negatives, the refitting step is optimizing
the shape parameters based on better positive points and
converges to a better solution.

After extracting a shape, we perform a search for possible
object handles by inspecting the vicinity of the model for
fairly large clusters of points that can be grown from the
current shape surface. These points get marked as handles
to the current shape and are disregarded in the remaining
model candidate list. We found this model-less approach
to work more reliable than trying to fit specific geometric
shapes like torii, since handle geometry can vary greatly.
An example is given in Figure 6 where we show results
for a synthetic scene. Note that only the point positions are
synthetically generated, as normals are estimated, and no
information on the original shape parameters is available to
the object detection.

Fig. 7. Cylindrical (blue) and planar (red) shape candidates detected on
tables. All remaining points are shown in gray.

Figure 7 presents the results of cylinder and plane fitting
on the point clusters from Figure 5. We noticed that these
two models appear the most often in our kitchen datasets.
The different cylinders are marked with different shades of
blue, and the planes with shades of red. Notice that we
did not constrain the cylinder radius to a specific range,
and therefore several small edges appear as cylinders due to
the properties of our normal estimation algorithm. However,
since the model parameters are known, these shapes can be
grouped together and removed if necessary.

Fig. 8. Example of triangulated surface models for the kitchen counter
point clusters (see Figures 5 and 7), shown in intensity (red shades).

Our triangulation method [2] propagates an advancing
front of triangles, adding new triangles at each vertex by
a local projection of the nearby points onto a supporting
plane and creating a mesh out of them. Figure 8 presents
an example of surface models created for the objects in
Figure 7. The hybrid model is then created by triangulating

the remaining outliers from the model fitting step, and adding
it to the shape coefficients model: M = S ∪ O.

VI. DISCUSSIONS AND EXPERIMENTAL RESULTS

We ran our modeling pipeline on multiple datasets repre-
senting table setting scenes, acquired in our kitchen labora-
tory. Each of the computational steps described in Section III
was ran on every scene, and the results were inspected
by comparing the estimated shape models with real world
measurements. In Table I we present the results obtained for
4 different datasets. From top to bottom, the table presents:
i) the table and object cluster segmentation from a raw point
cloud dataset; ii) the shape model segmentation; iii) the
surface models obtained by triangulating the points; and
finally iv) the hybrid shape-surface models.

Even though the above results were obtained by applying
our segmentation and model fitting methods on individual
point clusters, the algorithms work directly for cluttered
scenes where clustering is not possible due to all object
surfaces being connected. Figure 9 shows the shape clas-
sification results for a cluttered table scene. Most shapes are
reliably detected even if partially occluded.

Fig. 9. Shape classification and fitting results for a cluttered scene without
a priori object clustering: cylinders in blue, planes in red, and the remaining
points in gray.

Figure 10 presents an important limitation of our mapping
approach. Due to the fact that our sensing devices cannot
return any measurements from shiny black surfaces such as
the stove cooktop or the kitchen sink, it is impossible to
determine the fact that there are any planar areas which could
support objects there. Therefore, the horizontal table planar
support is incomplete (as seen in Figure 10), and some points
which could be part of some objects will be left out, as their
footprint (support) on the table is very small or inexistent.
We are currently investigating ways of fusing multiple sensor
modalities together to improve the results.

Fig. 10. Object clustering based on octree connectivity segmentation on
a planar horizontal surface (i.e. table). Only points in red are selected as
object candidates, as the rest does not fulfill the object footprint criterion.
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TABLE I
MODEL FITTING RESULTS FOR 4 DIFFERENT TABLE SETTING SCENES. FROM TOP TO BOTTOM: TABLE AND OBJECT CLUSTER SEGMENTATION, SHAPE

MODELS, SURFACE MODELS, AND FINALLY THE HYBRID SHAPE-SURFACE MODELS.
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VII. CONCLUSIONS

In this paper we presented a comprehensive system for
the acquisition of 3D hybrid shape-surface geometric models
in close-range scenes useful for mobile manipulation and
grasping [1]. The models are acquired out of sensed point
cloud data using robust shape segmentation and surface
triangulation methods. By fitting primitive geometric shapes
to the data, our framework is able to reconstruct and infer
missing data, and thus improve the resultant models for
grasping. Furthermore, by splitting the object data into clus-
ters, we create a decoupled triangular mesh map, which needs
fewer computational updates in the presence of environment
dynamics.
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