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Abstract— Reactive control and planning are complementary
methods in robot motion control. The advantage of planning
is the ability to find difficult solutions, optimize trajectories
globally and not getting stuck in local minima but at higher
computational cost. On the other hand, reactive control can
handle dynamic or uncertain environments at low computa-
tional cost, but may get stuck in local minima.

In this paper, we propose a new approach to integrate both
reactive control and planning using a short time prediction.
The system is mainly composed of a predictor, a planner and a
reactive controller. The system uses the planner to modify the
target for the reactive controller. The predictor simulates the
robot future states and evaluates the reactive motion to trigger
the planner in advance.

The latency due to the high computational costs for planning
is compensated since the motion is already simulated, therefore,
the resulting motion is smoother than without the predictor.

When the system’s environment becomes more uncertain and
dynamic, the system works reactively and iterates faster so that
the system adapts to the environment automatically.

We tested the scheme in a simulator and realized it on our
humanoid robot ASIMO.

I. INTRODUCTION

Traditionally, robots have been working in static and
well-known environments. Planning methods which optimize
trajectories globally are appropriate for these environments.

Nowadays, some kinds of robots, for example, humanoid
robots are expected to work in human environments which
are uncertain and dynamic. Using planning methods in these
environments is not always suitable because computational
costs and thus latencies are much higher compared to the
sampling time of the robots’ control loop.

In order to reduce the computational costs in high dimen-
sional space, many planners have been proposed. One of the
most popular methods for planning on humanoid robots is the
Rapidly exploring Random Trees (RRT) method [1]. Based
on this method, some researchers tried to reduce the cost
for planning further. Yoshida proposed multi-level degrees
of freedom (DOFs) exploitation [2] which reduces the di-
mensionality of exploration depending on the environmental
constraints. Vahrenkamp et.al. proposed a method to reduce
joint space dimensionality [3] and they also proposed a fast
collision checking with a coarse collision model [4].

These approaches work quite well in static and semi-
dynamic environments, however, in highly dynamic envi-
ronments which change every sampling time, they may not
always be able to react in time to changes in the environment
and dimensionality cannot always be reduced.
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To integrate reactive control and planning is another
approach to handle dynamic environments. Layered or hi-
erarchical architectures are commonly used for this [5], [6].
Gat proposed a three-layer architecture which comprises a
controller, a sequencer and a deliberator [7]. There are some
controllers in the control layer which are selected by the
sequencer at a given time.

Ranganathan proposed a system which can switch between
reactive control and planning in a three layer architecture
[8]. When the robot takes longer than a given time to
track the given trajectory with the reactive controller, the
system switches to the planner. If the angle deviation between
motion directions drops below a certain threshold, the system
switches back to the reactive controller.

These layered approaches work nicely for dynamic envi-
ronments. They were tested on mobile robots which have
multiple DOFs and the criterion for switching between
reactive and planning is computed based on the resulting
trajectories the robot has already executed without prediction.

There are some search techniques in discrete space which
are applied to real time planning in dynamic environments.
For example, Koenig proposed the Real Time A* (RTA*) [9]
and Stentz proposed the Dynamic A* (D*) [10] which are
an extension of the A* [11] search algorithm for real time
search in dynamic environments.

These work fine in a low dimensional space but in a higher
dimensional space, the computational cost to discretize the
space into many grids is much higher.

Our target is to realize a system that can be used in
complex, uncertain and dynamic environments with smooth
trajectories. Our proposal integrates reactive control and
planning, and it works on robots with many DOFs at low
computational cost.

We propose the instant prediction scheme which is mainly
composed of a predictor, a planner and a reactive controller.
If the predictor anticipates a difficult situation, the robot can
escape the situation in advance. Since the planner is able
to start planning from the state the predictor has already
predicted, the latency due to the higher computation cost for
planning is compensated. The system automatically changes
the influence of planning for the overall resulting motion
depending on its environment. If the environment is more
uncertain or highly dynamic, the planning time is reduced
and the system will work reactively. If the environment is
relatively static, then the system allows the planner to use
sufficient time for planning and the resulting motion is more
optimal.

We apply this scheme to our humanoid robot ASIMO and
realize motions that do not get stuck in local minima.
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Fig. 1. The instant prediction scheme

This paper is organized as follows. In the next section
we describe the instant prediction scheme. The predictor,
the planner, the reactive controller and other functions are
described here. Section III presents how the system works
adaptively in its environment and Section IV shows how
the system is implemented. In Section V we demonstrate
the capabilities of the scheme in some scenarios on the
simulator and on the robot. Finally we discuss and conclude
in Section VI.

II. INSTANT PREDICTION SCHEME

The overall scheme of the instant prediction is described
in Fig. 1. The system uses a reactive controller to generate
motion commands which are sent to the robot. The predictor
simulates the future robot state using its internal model,
the so-called internal predictor model [12]. If the fitness of
the motions of the model µreact is insufficient, the planner
is triggered. If the fitness of another motion generated by
the planner µplan is sufficient, the motion is given to the
reactive controller as the actual target ract through the target
arbitrator.

The elements of the scheme are described below along
Fig. 1. In the following sections, T∗ represents the overall
computation time for each internal model during N∗ iteration
cycles, ∆T∗ represents the computation time for each internal
model during one iteration and ∆t∗ represents the sampling
time for each internal model, respectively. The suffix ∗ is
predict, react, plan or trig.

A. Target Arbitrator

The target arbitrator is activated when a new target rorg

or an intermediate target rint is given. When it receives the
intermediate target, it stores the original given target rorg and
sends rint to both the reactive controller and the predictor
with time intervals of ract. When it receives a new given
target rorg , the stored data is discarded and it sends the new
given target of ract.

B. Reactive Controller

The reactive controller receives ract and computes the
motion for the next sampling time based on the robot
model, the so-called internal reactive model. The resulting
motion commands are sent to the robot. Usually the reactive
controller comprises some controllers such as a motion
controller, a joint limit avoidance controller, a collision
avoidance controller and so on [13].

C. Predictor

The predictor simulates the robot’s future state by iterating
the robot model, the so-called internal predictor model. The
model can differ from the internal reactive model so that
the predictor iterates the model faster and predicts further
into the future. For example, using fewer DOFs than the real
robot or using a longer sampling time interval ∆tpredict than
the internal reactive model’s sampling time ∆treact.

In contrast, the coarseness of the internal predictor model
causes inaccuracy of the prediction. A finer model can be
used in these cases:

• when µreact becomes smaller.
• when the system predicts the near future.
• when the system predicts close to the given target rorg

[3].
The predictor computes the fitness µreact based on the

model. This is a quality measure for the reactive mo-
tion which is simulated with the internal predictor model.
The fitness µreact represents the complexity of the robot’s
environment regarding the reactive motion. For example,
when the internal predictor model moves closer to physical
obstacles and the model reaches a dead-lock, then µreact is
reduced. The predictor stops predicting until the planning is
finished in order not to re-trigger the planner during planning.

D. “Start planning” Criteria

The “start planning” criteria determines whether to start
planning or not according to the fitness µreact and the
available resources such as computer resources if these
are limited. For example, if µreact drops below a certain
threshold and the system has sufficient resources, then it
starts planning.

E. Planner

The planner generates solutions (usually trajectories)
which are locally or globally optimized. Any kinds of plan-
ners can be used here, however, faster planners or planners
which give a minimal solution even if they are interrupted
during the computations are especially suitable since the time
for the planning is restricted.

F. Intermediate Target Generator

The intermediate target generator converts the solution
from the planner to the intermediate targets rint so that the
fitnesses for both the reactive motion and the planned motion
can be compared and the target arbitrator can deal with it.
For example, in case the planner uses configuration space and
the given target rorg uses task space, the intermediate target
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generator converts the configuration space to task space.
Based on rint it computes the fitness µplan and sends it
to the “use plan” criteria.

G. “Use plan” Criteria
The “Use plan” criteria compares the fitnesses µplan and

µreact which represent quality measures of the planned
motion and the reactive motion respectively. The motion
which has the larger fitness is chosen and its intermediate
targets are used for ract.

III. ADAPTIVE PLANNING

The predictor is able to predict up to the robot future state
at the time tpredict which is the prediction depth.

Let the computation time for the reactive controller be
Treact, for the predictor be Tpredict and for the planner
be Tplan, respectively. For the latency compensation, the
following condition is necessary.

tpredict ≥ Tplan + Tpredict. (1)

Let the prediction iteration cycle for tpredict be Npredict

and the computation time for one cycle be ∆Tpredict. We
obtain,

tpredict = Npredict∆tpredict, (2)

Tpredict = Npredict∆Tpredict. (3)

Under these conditions, Eq. (1) becomes

Tplan ≤ Npredict(∆tpredict −∆Tpredict). (4)

If ∆tpredict −∆Tpredict is constant, Npredict restricts the
computation time for the planning Tplan.

In static or certain environments, Npredict can be suffi-
ciently large for planning. However, if the environments are
dynamic or uncertain, the predictor does not always predict
the robot’s future state up to tpredict because the planner can
be triggered before tpredict. The time ttrig between the start
of the predictor and the triggering of the planner is

ttrig ≤ tpredict, (5)

ttrig = Ntrig∆tpredict. (6)

where Ntrig is the prediction interaction cycle for ttrig .
Eq. (4) can be formulated as

Tplan ≤ Ntrig(∆tpredict −∆Tpredict). (7)

The planner should generate trajectories in the more
restricted time ttrig . At the same time, the overall system
loop time is reduced.

In other words, the system works more reactive when the
environment becomes more dynamic or uncertain. The time
chart is visualized in Fig. 2.

If Npredict = 0, the system is equivalent to the reactive
control. If the planner does not satisfy Eq. (7), the system
works equivalent to a planner without the prediction.

For the dynamic environment, tpredict should be short
so that the predictor updates µreact, which represents the
environment, frequently.

IV. IMPLEMENTATION

We applied the instant prediction scheme to our humanoid
robot. The elements which are explained in the previous
section are implemented as follows.

A. Target Arbitrator

The target arbitrator receives intermediate targets rint with
their timing and then they are sent to the reactive controller
and the predictor. We use attractor points [14] as rint.

B. Reactive Controller

The reactive controller comprises the whole body motion
controller [15] and the collision avoidance controller [13].
The two controllers are dynamically blended depending on
a danger measure. The computation time of the reactive
controller changes depending on the environment.

1) Whole Body Motion Controller: The whole body mo-
tion controller is based on a redundant control with null
space criteria. It includes the joint limit avoidance and the
singularity robustness in its task space or null space.

2) Collision Avoidance Controller: The collision avoid-
ance controller effects the robot’s two closest segments based
on the distance computation. The distance computation uses
a coarse model which is composed of sphere swept lines
and spheres instead of finer models such as polygon models.
This drastically reduces computation time. Based on the
result of the distance computation, the collision avoidance
generates virtual repulsive forces in order to separate two
close segments. These forces are inversely proportional to the
distance between segments if the distance becomes smaller
than a certain threshold [13].

C. Predictor

The fitness in the internal predictor model uses the virtual
forces computed in the collision avoidance controller. It rep-
resents the robot’s physical environment. The fitness µreact

is computed as follows,

µreact = mat · αFvirtual, (8)

Fvirtual =
n−1∑
i=0

fi, (9)

where mat is a unit vector from the current robot state to
the actual target state ract, α is a coefficient and Fvirtual

is the overall virtual force vector which the robot receives
composed of virtual force vectors f0,f1, ...,fn−1. The each
virtual force vector fi is computed as follows,

fi =

{
k(da − di)ei if di < da,
0 otherwise,

(10)

where k is a positive constant, di is a distance between clos-
est points, da defines the threshold distance which generates
the virtual force and ei is the unit vector for the avoidance
direction.
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Fig. 2. The time chart of the system. Treact is the computation time for the reactive controller which is within ∆treact. tpredict is the future prediction
depth. The predictor predicts the robot’s future state until the time tpredict, but it can predict until ttrig when the planner is triggered. Ttrig is the
necessary computation time for ttrig .

D. “Start planning” criteria

The predictor triggers the planner if µreact drops below
the threshold Mreact. The available resources are not taken
into account in our implementation.

E. Planner

The planner generates one attractor point for each trajec-
tory randomly. Then, the planner simulates with the robot
model whether the trajectory with the generated attractor
point reaches the given target or not. If the planner finds
the trajectory which reaches the target, the planner shifts the
attractor point in order to minimize the overall path length.

Since the attractor point is already the intermediate target,
the intermediate target generator is not used here.

F. “Use plan” Criteria

If the generated trajectory reaches the actual target, then
it is always used.

V. SIMULATION AND EXPERIMENTAL RESULTS

Experiments have been carried out on the humanoid robot
ASIMO. It has 26 DOFs of which we control 14 DOFs in
our experiments: 4 DOFs per arm and 6 DOFs to describe
the virtual link between heel and upper body. ASIMO and
its coordinate systems are illustrated in Fig. 3. The height
of the robot is about 120cm and its weight is about 50kg.
The sampling time of the control loop ∆trobot is 5msec. The
reactive controller works on ASIMO’s embedded computer
and the other computations are executed on a remote com-
puter with Intel Xeon 3.06GHz and 4GB memory.

Fig. 3. ASIMO and its coordinate systems

A. Parameters

The sampling time for the internal reactive model ∆treact

is 5msec, as same as ∆trobot. For the internal predictor
model ∆tpredict is 20msec. The iteration cycle Npredict is
20 times, i.e., the predictor predicts up to 400msec into the
future. The coefficient α is 1/|Fvirtual| and the threshold
Mreact is −0.98. The threshold for the virtual forces da

is 4cm and if Fvirtual is 0, the planner is not triggered.
The computation time for the prediction Tpredict dynamically
changes depending on the environment but it is at most
30msec at Npredict = 20.

B. Simulation

In simulation the robot avoids an obstacle in front of it
while standing. The robot moves from the initial state in
Fig. 4a to the target state in Fig. 4b.
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(a) Initial states (b) Target states

Fig. 4. Initial and target states of the simulations. The position of the
obstacle varies depending on the simulation in order to highlight the effects
of the system.

1) Latency compensation: We test the system both with
the latency compensation and without the latency compen-
sation. The result is described in Fig. 5. Without the latency
compensation an attractor point is generated as an optimal 3D
position when the planner starts. The planner calculates an
attractor point that is optimal with respect to the given start
position. If there is no latency compensation, at the time the
planner is finished, this attractor point is not optimal anymore
with respect to the current position. The latency compensa-
tion however allows to start the planner approximately with
the starting position which will be current when the planner
is finished.

2) Adaptive planning: We also tested the system with
different prediction iteration cycles Ntrig .

The result is depicted in Fig. 6. If Ntrig is 20, the resulting
trajectory is more optimal than Ntrig is 10. If Ntrig is 0, the
system works as same as the reactive controller and the robot
gets stuck in a local minimum. As Ntrig becomes small, the
resulting trajectory becomes less optimal.

C. Real time Experiment on Robot

We tested the system on ASIMO with the typical situation
that the robot is stuck in a dead lock that it can not escape
from with the reactive controller alone. If the fitness becomes
smaller, the planner generates attractor points for each arm.
Then both arms finally reach the targets. The resulting
pictures are shown in Fig. 7.

VI. DISCUSSION AND CONCLUSION

We proposed a new scheme for integrating reactive control
and planning. The scheme compensates the latency resulting
from the high computational costs for planning.

Our scheme is able to handle complex environments by in-
tegrating the reactive controller and the planner. If a difficult
situation is detected by the predictor, the planner generates
an appropriate trajectory beforehand. The robot can track the
planned trajectory without reaching a difficult situation. The
scheme avoids the shortcomings of pure reactive control and
also handles dynamic environments which are difficult for
planning, in particular on humanoid robots. Depending on
how dynamic the environment is, the system will adjust the

(a) The resulting trajectory of the left hand without (top) and with
(bottom) the latency compensation. The solid line, the dashed line and
the dashed-dotted line are X, Y and Z with respect to the heel frame
coordinate system, respectively. Without the latency compensation, it
takes longer to reach the target and the movement is less smooth than
with the latency compensation.

(b) The resulting trajectory of the left hand without (dashed line) and
with (solid line) the latency compensation on the Y-Z plane with respect
to the heel flame coordinate system which is the robot’s coronal plane.
The arm moves from the top to the bottom of the graph. Without the
compensation, the planner generates an attractor point (open circle) i.e.
closer to the target than the point with the compensation (filled circle).
But it does not reach the target and then the planner generates a second
attractor point which is closer to the target. With the compensation, the
trajectory is smoother with only one attractor point. Both trajectories are
not as smooth as the optimized trajectory generated by a planner only.
Because the reactive controller is active even when moving to a planned
attractor point, it avoids obstacles and other limitations reactively.

Fig. 5. Latency compensation

planning time so that the overall resulting motion is more
reactive and less optimized globally.

Our scheme is different from other common layered
architectures in which upper layers dominate lower layers.
Most of these architectures always execute the planning
(upper layer) first even if the reactive controller (lower layer)
is able to handle the situation without planning, and then
the reactive controller modifies or superposes the planned
motions. On the other hand, our scheme uses planning only
if the reactive motion simulated in the predictor becomes
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Fig. 6. The resulting trajectory of the left hand on the Y-Z plane with
respect to the heel flame coordinate system. The solid line, the dotted-dashed
line and the dashed line represent Ntrig = 0, Ntrig = 10 and Ntrig = 20,
respectively. If Ntrig is 0, the system works without prediction, the robot
cannot avoid the obstacle which is in front of it. If Ntrig is 10, the robot
is able to avoid the obstacle but the trajectory with Ntrig = 20, is more
optimized.

(a) (b)

(c) (d)

Fig. 7. Fig. 7a to Fig. 7d show the sequence of the movement: In the
initial state (Fig. 7a) the left arm is above the right arm. In the target state
(Fig. 7d) the right arm is above the left arm.

insufficient because environments may change during plan-
ning. The planner and the reactive controller in the predictor
are tightly coupled in the same loop.

Ranganathan’s architecture [8] also integrates planning
and reactive navigation in a similar manner to our scheme,
however, our scheme includes the predictor which simulates
faster and enables the robot to avoid difficult situations.

We tested our scheme on the simulator and realized it on
our many-DOF humanoid robot.

We are now developing the system for more complex and
dynamic environments with a longer prediction depth.
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