
  

  

Abstract— Passive Radio Frequency Identification (RFID) is 
being increasingly used in mobile robotics applications, as it 
provides inexpensive and effective solutions to data association 
issues in basic navigation tasks. Nonetheless, problems related 
to sensitivity of the signal to interference and reflections, and 
missing tag range and bearing information are open. In this 
paper, we propose a novel approach to passive RFID, which 
tackles those issues using fuzzy reasoning. Specifically, first, we 
present a fuzzy antenna model. Then, based on this model, we 
describe two fuzzy logic methods for tag localization. One 
allows us to accurately localize passive tags in the environment 
and to generate what we call an RFID-augmented map; the 
other is suited for estimating the bearing of a tag relative to the 
robot. The general use of both methods is in object localization, 
map building, environment monitoring, and robot pose 
estimation. Results of experimental tests demonstrate that 
fuzzy logic is appropriate to operate under uncertainty in RFID 
systems, and allows for accurate tag localization. 

I. INTRODUCTION 
N the last years, Radio Frequency Identification (RFID) 
has received great attention, since it supplies an 

inexpensive and effective technology for object 
identification and tracking with a wide range of applications. 
Examples include inventory management, industry 
automation, ID badges and access control, equipment and 
personnel tracking.  

RFID systems typically consist of radio frequency (RF) 
tags, a reader with one or more antennas, and a software to 
process the tag readings. The reader interrogates the tags, 
receiving their ID code and other information stored in their 
memory. Compared to conventional identification systems, 
such as barcodes, RFID tags offer several advantages, since 
they do not require direct line-of-sight; moreover, multiple 
tags can be detected simultaneously [1]. 

Recently, RFID has appeared on the scene of mobile 
robotics, promising to contribute solutions to data 
association problems in navigation tasks, such as 
localization and mapping [2], [3]. Nevertheless, in order for 
RFID sensors to be effectively used in mobile robotics 
applications, some issues have to be tackled. First, due to 
low cost and low power constraints, RFID devices are 
sensitive to interference and reflections from other objects. 
Therefore, RFID readings are generally affected by high 
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uncertainty. Moreover, at least in the case of passive tags, an 
RFID reader can only determine whether a tag is present or 
not in its reading range, while it is not able to provide 
information about the position of the tag [4], [5]. These 
issues may be partially solved using active RFID [6]-[8]; 
however, active transponders are more costly than passive 
ones, and have a limited lifetime.  

Methods to localize passive RFID tags and integrate them 
in mobile robotics systems have been developed by a few 
authors. For instance, in [9] Hähnel et al. suggest a particle 
filtering method for localizing passive tags in a previously 
built map of the environment, using a mobile robot equipped 
with an RFID device and a laser rangefinder. Specifically, 
while the robot moves in the environment, the location of a 
tag is estimated starting from a set of particles, whose 
weights are updated at each successful detection of the tag, 
using the Bayes rule and a probabilistic model of the 
antenna.  

Bayesian solutions for tag localization are also adopted in 
[4], [10], [11]. In [4], two RFID tag-positioning algorithms 
are developed, namely an online approach and an offline 
approach. The offline method is equivalent to the one 
proposed in [9]. The online algorithm is based on a 
simplified antenna model that defines a high probability 
region, instead of describing the probability at each location, 
in order to achieve computational efficiency. In [10], RFID 
tags are used for obstacle detection and avoidance. The 
Bayes rule is applied to estimate tag positions. Tags are also 
used as landmarks for robot localization based on visual 
input from a stereovision device. In [11], the tag localization 
algorithm is formalized as a non-linear stochastic inversion 
problem. Several readers, equipped with rotating antennas, 
take observations. The reading units are connected in a local 
network with a server, which gathers the data and executes 
the localization task.  

In this paper, we propose an alternative approach to 
passive RFID. As in [9], we use a mobile robot equipped 
with an RFID device, and refer to a model of the antenna 
reading range for tag localization. However, our approach is 
unique in that it uses fuzzy reasoning to both learn a model 
of the RFID system and localize the tags. Specifically we 
present two fuzzy logic-based tag localization approaches. 
The general use of both methods is in object identification 
and localization, map building, environment monitoring, and 
robot pose estimation.  

The first one, named Fuzzy Tag Localization (FTL), aims 
at localizing accurately passive tags in the environment, in 
order to generate what we refer to as an RFID-augmented 
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map, i.e. a map of the environment enriched with RFID tags. 
Such a map can serve as a support for a variety of service 
robot tasks, like detecting items, obtaining information about 
the robot position, getting instructions to reach a given goal.  

The second method is called Fuzzy Tag Bearing 
Estimation (FTBE). It allows one to estimate the bearing of 
a tag with respect to the mobile robot. The approach is 
suited when only the tag bearing relative to the robot is 
needed, like in some landmark-based self-localization 
algorithms [12], [13], or when an approximate knowledge of 
the tag location is sufficient.  

Experimental verification of the proposed techniques has 
been performed in the ISSIA CNR Mobile Robotics 
Laboratory, using the multisensor platform shown in Fig. 1. 
It consists of a commercial mobile robot, which we 
equipped with two RF antennas and an RF reader. The 
platform is also provided with a laser rangefinder that was 
used to construct a metric map of the environment in which 
RFID tag locations were estimated using the FTL approach. 
In addition, a theodolite station was employed to get ground-
truth basis about tag positions in the environment. The 
obtained results show that the proposed methods are 
efficient in tag localization, with the additional advantage of 
relying on fuzzy rules, easily understandable by humans for 
direct examination and modification. 

The remainder of the paper is organized as follows. 
Section II presents the fuzzy antenna model and the two tag 
localization methods. Experimental results are reported in 
Section III. Conclusions are drawn in Section IV. 

II. TAG LOCALIZATION USING FUZZY LOGIC 
Passive tags are not able to directly provide their location 

relative to the antenna or a distance measure. Only positive 
or negative responses whether a tag is present or not in the 
reading range are generated. Yet, positive readings can be 
used to estimate the tag position. As a matter of fact, a 
positive response reduces the potential locations of the tag to 
those that lie in the reading region of the device. Further 

improvement in tag position estimate can be achieved by 
considering that, whenever a tag is present in the reading 
range, the reader will detect it with a certain likelihood. 
Specifically, it has been shown that a tag closer to the 
centroid of the reading range is detected more frequently 
than a tag located at the boundary [4].  

In summary, a successful detection provides a region that 
is likely to contain the tag and also allows the association of 
a detection rate to each point of the region. This region is 
usually referred to as the coverage map of the RFID device, 
and constitutes the observation or sensor model in 
probabilistic approaches.  

Constructing an observation model for passive RFID 
systems is not a trivial task. RFID are sensitive to 
interference and reflections from the surroundings. The 
position of the tag relative to the receiver also influences the 
result of the detection process, since the absorbed energy 
varies accordingly and may become too low to power the 
chip inside the tag, causing the tag to not respond. These 
undesirable effects produce a number of false negative and 
false positive readings that lead to an incorrect idea about 
the tag location and, eventually, could compromise the 
overall performance of the system [9], [14]. 

It is not feasible to explicitly account for all these factors, 
separately. Instead, a widely used approach to generate a 
model of the RFID device is that of mapping the probability 
of detecting a tag at different offsets from the reader by 
counting the detection frequencies over a 2D or a 3D grid of 
the environment. That leads to the construction of likelihood 
histograms, which are, then, typically, conservatively 
approximated with discrete models, consisting of two or, at 
most, three likelihood regions [4], [9], [10]. 

In this work, we propose a fuzzy logic solution to build a 
better approximation of the antenna detection field, though 
preserving computational simplicity. Then, based on this 
model, we develop two algorithms for estimating the 
position of passive tags using fuzzy reasoning: the Fuzzy 
Tag Localization (FTL) algorithm and the Fuzzy Tag 
Bearing Estimation (FTBE) algorithm.  

Fuzzy logic has been widely recognized for its 
effectiveness and for the simplicity to define and understand 
the knowledge representation. It is especially useful when 
the process under analysis is complex, when the available 
source of information is inexact or uncertain, or for 
intelligent sensor integration and fusion. Our work shows 

 
Fig. 1.  The mobile robotic platform equipped with RFID reader and 
antennas, and a laser rangefinder. 

 
Fig. 2.  Representation of bearing and range of a tag relative to the antenna. 
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TABLE I  
FUZZY RULES FOR MODELLING THE RFID READING RANGE. 

Rule # 
Input 1: 

Tag Range 
(d) 

Input 2: 
Tag Bearing 

(Δθ) 

Output: 
Frequency of Det. 

(f) 
1 High High Very Low 
2 High Low Low 
3 Low High Medium 
4 Low Low High 

that fuzzy logic is appropriate to deal with uncertainty in 
RFID systems.  

In the rest of this section, first, we describe the fuzzy 
antenna model, then, we present the FTL and FTBE 
methods. 

A. Fuzzy Antenna Modeling 
As a first step for RFID modeling, similarly to [9], we 

generated a statistic histogram for our RFID system. 
Specifically, we rotated the robot in front of a tag, at 
different distances, several times, and we counted the 
number of successful detections for each pose in a discrete 
2D grid. It was found that for our system (see Section III for 
specifications) the coverage map of each antenna has 
approximately the shape of a sector with a radius of about 
2.5m and an angular aperture of about 120°. Moreover, it 
was observed that detection rates tend to decrease smoothly 
at the boundaries of the coverage map.  

This result can be easily expressed by using fuzzy logic. 
Specifically, we employ a zero-order Sugeno fuzzy 
inference system [15] with two inputs and one output. With 
reference to the notation of Fig. 2, the inputs are the range d 
and the bearing Δθ of the tag relative to the antenna. The 
output f is an index defined in [0, 1] expressing the expected 
occurrence of detection, which we refer to as the frequency 
of detection of the tag. Two functions are defined for each 
input, labeled Low and High, respectively. The output, 
instead, consists of four constant values, labeled Very Low 
(VL), Low (L), Medium (M), and High (H). The parameters 
for such functions were tuned based on experimental data. 
The output f is given by the weighted average of all rule 
outputs. The if-then rules for fuzzy inference are reported in 
Table I. They consist of heuristic rules, such as 

 
IF Range (d) IS “Low” AND Bearing (Δθ) IS “Low” THEN 

Frequency (f) IS “High” 
 

The input-output surface of the fuzzy logic system, using 
the rules in Table I, is shown in Fig. 3, with darker grey 
representing higher frequencies of detection.  

B. Fuzzy Tag Localization (FTL) 
In this section, we describe our approach to localize 

passive tags relative to the robot and also in a map of the 

environment.  
The main idea underlying the proposed method is that of 

estimating the position of a tag as the most likely location 
among a set of potential locations. Specifically, as a tag is 
detected, a set of points Pj, for j = 1, 2,…, M, is generated in 
a circular area around the current robot position. The robot, 
then, moves around, performing multiple tag detections from 
different positions. It is assumed that the robot displacement 
from one position to another is known. At each new 
detection, a confidence value is assigned to every point Pj, 
expressing the likelihood that Pj corresponds to the actual 
tag location.  

Our hypothesis in confidence estimation is that the higher 
is the detection frequency associated to a point according to 
the fuzzy antenna model, the higher is the possibility for that 
point of being the actual tag position. Furthermore, we 
assume that a point is more likely to correspond to the actual 
tag location if it belongs to the intersection region of the 
coverage maps drawn for the various robot poses during the 
localization procedure.  

In order to express these hypotheses, we adopt fuzzy 
logic. The triangular membership functions used are shown 
in Fig. 4 (a)-(b) and Fig. 4 (c), for input and output 
variables, respectively. The inputs are the detection 
frequency fj

i associated to the point Pj at the i-th detection, 
which depends on the position of the point relative to the 
antenna, and the parameter vj

i, expressing the number of 
times the point has been found to lie in the antenna detection 
area. The output is the confidence level ρj

i associated to the 
point Pj at the i-th iteration. The if–then rules for fuzzy 
inference are reported in Table II. 

Eventually, to reduce the set of potential tag locations, 
each point Pj is assigned an average confidence level. This is 
computed as the mean value of the confidence levels 
calculated for the same point in all the previous steps. Only 
the points whose average confidence value is greater than a 
threshold are retained. This process allows us to 
progressively remove, from the set of potential tag locations, 
those points which have low possibility of being the actual 
tag position, thus refining the estimate. 

It is worth to note that if a map of the environment is 
available and the robot pose in the map is known from some 
global positioning system, then the described procedure 
allows us to localize the tags in the map. That leads to what 
we call an RFID-augmented map. Such a map may provide 
useful information about the environment in a simple form, 
since RFID tags can store data either to describe interest 

 
Fig. 3.  Input-output surface of the fuzzy antenna model (see Table I for the 
fuzzy rules): darker grey denotes higher frequency of detection. 
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objects and regions, or to support mobile robot navigation 
tasks [16]. 

C. Fuzzy Tag Bearing Estimation (FTBE) 
As a variation of the FTL method, we propose an 

algorithm to estimate only the bearing of a tag relative to the 
mobile robot, disregarding the range. This method is 
referred to as Fuzzy Tag Bearing Estimation (FTBE).  

The strategy adopted is similar to the one used in the FTL 
approach. The main difference is that, since only the bearing 
of the tag has to be estimated, the points Pj representing the 
potential locations of the tag can be generated at a unique 
radial distance from the robot, arbitrarily chosen inside the 
antenna detection field, rather than in a predefined area 

around the vehicle. That leads to higher computational 
efficiency, making it more feasible an on line 
implementation of the approach. In addition, once the tag 
has been detected for the first time, the robot is not required 
to move around to perform multiple detections of the tag, 
but it has just to turn in place. Alternatively, a rotating 
antenna may be used. 

With reference to the notation of Fig. 5, let us indicate 
with Pj, for j = 1, 2,…, M, the points generated at the first 
detection of the tag, distributed at regular angular intervals 
and fixed radial distance r from the current robot position. 
Each point allows us to define a vector RPj whose angle φj 
relative to the Xr- axis of a reference frame (R, Xr, Yr) 
attached to the robot, represents a potential value for the tag 
bearing.  

Once the point set has been generated, the robot (or the 
antenna) starts to turn in place, while the reader continues to 
interrogate the tag. Every time a positive response is 
received, for each point Pj that falls in the antenna detection 
area, a frequency value fj

i is computed, based on the antenna 
model. Since we only have to manage a limited number of 
points (e.g. 180 points for a set of points generated at 
angular interval of 2°), we do not need to discard points at 
each novel reading. Instead, frequency values fj

i are stored in 
a vector  

]......[ 21 jN
j

i
jjj ffff  (1) 

so that, at the end of the acquisition phase, for each point, 
we can calculate an average frequency value  

∑
=

=
jN

i

i
j

j
j f

N
f

1

1  (2) 

Furthermore, we can compute a parameter vj 
NNv jj =  (3) 

where we have denoted with Nj the dimension of the 
frequency vector for RPj, which also represents the number 
of times the point Pj has fallen inside the antenna detection 
field, and with N the total number of detections. Then, 
similarly to what is done in the FTL module, fuzzy 
reasoning is used for confidence level computation. A two 
inputs-one output fuzzy inference system is employed. In 
order to eliminate the dependency of the frequency values 
from the chosen radius r, we normalize the average 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.  Fuzzy inference system for tag localization: (a)-(b) membership 
functions for input variables, i.e. frequency of detection and number of 
views; (c) membership functions for the output variable, i.e. confidence. 

TABLE II   
FUZZY LOGIC RULES FOR TAG LOCALIZATION 

Rule # 
Input 1: 

Frequency  
(f) 

Input 2: 
Num. of views  

(v) 

Output: 
Confidence  

(ρ) 
1 High High High 
2 High Low Medium 
3 Low High Medium 
4 Low Low Low 

 
Fig. 5.  Potential directions φj for estimating the bearing of a tag with respect 
to the robot reference frame (R, Xr, Yr). 
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frequencies with respect to their maximum value max
jf . 

Then, we compute the inputs to the fuzzy inference system 
for a point Pj which are max

jj ff  and vj. The output is the 

confidence level ρj. The membership functions and the if-
then rules are formally similar to those shown for the FTL 
module in Fig. 4 and Table II, respectively. Only the bearing 
values with an associated confidence level higher than a 
threshold are retained. Finally, the median of these values is 
calculated and is chosen as the tag bearing measure.  

III. EXPERIMENTAL RESULTS 
The described methods were implemented and tested on a 

PeopleBot mobile robot by MobileRobots Inc., equipped 
with a SICK LMS 200 laser range finder and an Alien 
Technology’s ALR-8780 reader with two external circularly 
polarized ALR 8610-C antennas (see Fig. 1).  

The RFID device is a UHF system working at 866MHz 
with passive Alien’s Class 1 Gen 1 128-bit NanoBlock tags. 
They consist of rectangular targets with long side of about 
10cm, containing, internally, an antenna for communication 
with the reader, and a microchip, which stores the ID code. 
Communication between the reader and the tags is 
performed through backscatter modulation.  

Two processing units are employed: the robot embedded 
PC, and an additional laptop for RFID data acquisition and 
storage and application control. The connection between the 
laptop and the RFID reader is via RS232 serial cable. ARNL 
C++ libraries by MobileRobots Inc. are used for laser 
mapping. The Java libraries provided by Alien Technology 
are employed for RFID data acquisition and storage.  

Experiments were performed in the ISSIA CNR Mobile 
Robotics Laboratory of Bari, Italy.  

In the rest of this section, first, we show the results of 
tests concerning the FTL approach and the related RFID-
augmented mapping, then, we present the tests carried out to 
verify the accuracy of the FTBE approach.  

A. Fuzzy Tag Localization for RFID-Augmented Mapping 
Ten tags were distributed in the environment, along an L-

shaped corridor with a total length of about 40m and an 
average width of about 2m. Then, the robot was guided on a 

tour of the environment, acquiring laser and RFID data. 
Both the geometric map of the environment and the robot 
trajectory were reconstructed using a laser-based SLAM 
routine. At the end of the acquisition phase, for each tag, a 
set of robot poses was available for tag location estimate 
using the FTL approach. Note that information concerning 
different tags could be kept separate since a tag is univocally 
identified by its own code. Measurements of the tag 
positions were also performed with a theodolite station and 
were regarded as the ground truth.  

Fig. 6 shows the localization procedure using the FTL 
method for one of the tags. Whenever the tag is detected for 
the first time, a set of potential locations is generated in a 
circular area around the current robot position. As a new 
observation occurs, only those points whose confidence is 
greater than a threshold are retained. Then, at each step, the 
tag position is estimated as the weighted average of the 
residual points. In order to reduce the risk of eliminating 
valid points, at least ten robot poses are considered for the 
computation of average confidence levels before points are 
discarded for the first time. Fig. 6(a) shows the sample set 
after 5 detections, while Fig. 6(b) and Fig. 6(c) display the 
distribution of the possible locations after 15 and 50 
detections, respectively, showing how the estimate 
converges toward the actual tag position.  

Fig. 7 shows the map of the environment reconstructed by 
SLAM with overlaid the locations of the tag estimated by 
the FTL method and those measured using the theodolite 
station. We used, for each tag, 200 detections. The algorithm 
was initialized with 1500 samples and was run several times. 
The average discrepancy between the tag positions estimated 
by the FTL algorithm and those measured using the 
theodolite was less than 35cm, and it was less than 50cm for 
the worst-case measurement. 

These results show that the FTL method is accurate in 
localizing tags deployed at generic locations of an indoor 
environment, with the additional advantage of relying on 
simple fuzzy rules defined in the universe of discourse.  

B. Fuzzy Tag Bearing Estimation 
In order to verify the accuracy of the FTBE approach, an 

experimental session was carried out attaching a tag to a 

 
(a) 

 
(b) 

 
(c) 

Fig. 6.  Tag localization after (a) 5, (b) 15, and (c) 50 iterations using the FTL approach. In (a), (b), (c): a black circle represents the robot pose in the map; 
the actual tag position is indicated by a square; potential tag locations are shown as small circles whose radius is proportional to confidence levels. 
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wall of the laboratory and running the algorithm from 30 
different robot configurations around the tag.  

Tag range and bearing relative to the robot were 
comprised between 50cm÷170cm and -90°÷90°, 
respectively. In all tests, an angular interval of 2° was used 
for both data acquisition and point set generation. The 
results were compared with ground-truth measures obtained 
using a theodolite station. Fig. 8 reports a graph of the 
bearing error eb computed as the absolute difference 
between actual φa and estimated φe tag bearing, i.e. 

eabe ϕϕ −=  (4) 

The average error is of 5.4°. An error less than 13.0° was 
computed in the worst case. Similar results were obtained in 
successive tests, performed using other tags wherever 
located in the environment, thus proving the effectiveness of 
the proposed approach. 

IV. CONCLUSION 
We introduced two novel methods to estimate the location 

of passive RFID tags using a mobile robot equipped with RF 
reader and antennas. Both approaches are based on fuzzy 
logic and use a fuzzy model of the RFID system.  

The first method, referred to as Fuzzy Tag Localization 
(FTL), allows us to accurately localize tags with respect to 
the robot. The positions of the tags in a map of the 
environment are also estimated, using a laser-based SLAM 
approach to globally localize the robot in the environment. 
That leads to what is called an RFID-augmented map. The 
second method, named Fuzzy Tag Bearing Estimation 
(FTBE), aims at estimating the bearing of a tag relative to 
the mobile robot. It can be used when an approximate 
knowledge about the tag location is sufficient, or only the 
bearing information is required, such as in some robot 
localization methods.  

Experimental results performed in a real indoor 
environment were presented to demonstrate the accuracy of 
both approaches. It was shown that fuzzy logic is 

appropriate in knowledge representation under uncertainty 
in RFID systems for mobile robotics applications. 
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Fig. 7.  Map of the environment with the tag locations estimated using the 
FTL module and those measured by a theodolite station.  

 
Fig. 8.  Tag bearing error, estimated starting from 30 different robot poses 
around a tag. 
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