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Abstract— This paper presents an asynchronous particle
filter algorithm for mobile robot position tracking, taking
into account time considerations when integrating observations
being delayed or advanced from the prior estiamate time point.
The interest of that filter lies in cooperative environments and
in fast vehicles. The paper studies the first case, where a sensor
network shares perception data with running robots that receive
accurate obeservations with large delays due to acquisition,
processing and wireless communications. Promising simulated
results comparing a basic particle filter and the proposed one
are shown. The paper also investigates a situation where a robot
is tracking its position, fusing only odometry and observations
from a camera network partially covering the robot path.

I. INTRODUCTION

Position tracking of mobile robots is an active and large

research field, given the key interest of the task [1], [2]. For

autonomous navigation purposes, a mobile robot need to be

robustly localized, either in a local frame or in a global one.

This position tracking need to be done in real-time since

the tracking output usually closes a control loop in charge

of following a path to reach a given goal position. This

role of the position tracking in the autonomous navigation

framework imposes real-time constraints when computing it.

In most of the mobile robots, position tracking is computed

by means of a filter process that integrates observations

coming from different perception subsystems onboard the

robot, and even other observations coming from remote

observers not onboard the robot, when the robot is running

in a cooperatie environment as that described in [3], where

a sensor network shares perception information with a set

of operating robots. Whether these observations are onboard

or not, they have all an observation time stamp, that rarely

coincides with the time that the observation data is available

at the filtering processing unit. Moreover, the filtering process

has to set a time stamp for its output estimation and this time

neither coincides with the observation time stamps.

The above outlined time considerations become more

serious in two cases of interest: cooperative robotics and fast

vehicles. In the first case the observations arriving at filter-

ing process may be done by remote observers (computers)

connected with the tracking computer (usually onboard) by
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means of a wireless network. These observations suffer from

a considerable delay provoked by acquisition, processing

and communications. These delays can reach the order of

hundreds of milliseconds, enough time for a mobile robot to

perform non negligible displacements. In the second case,

little delays, even provoked by latencies of the onboard

sensors, are traduced to large displacements due to the high

speed of the vehicle.

Previous works on considering delayed observations for

position tracking purposes are based on Kalman filter [4],

[5], but adapting particle filters to integrate asynchronous

observations remains a less exploarated topic. In the first

work, the authors proposes a close optimal solution, but

assumes that the observations arrive during the last sampling

interval. In the second case, the authors propose a fixed-lag

Kalman filter that delivers the best estimate with a latency

of p iterations, thus the best estimate is not available at

the current iteration. Moreover these works only focuses on

integration of delayed observations but in real applications,

some observations arrives after prior estimates, thus the

concept of advanced observation arises. This occurs in filters

that integrates multiple observations, spending a while for

each observation integration and, thus new observations can

arrive after prior estimate time.

This paper presents a new framework for particle filter

position tracking that integrates observations taking into

account their time stamps. The filter does not propagate the

particle set once per iteration as classical approaches do. The

proposed algorithm propagates the particle set only when

a new observation arrives with a time stamp greater than

the last propagation. At this moment, the filter propagates

with the kinematic model and the odometric observation and,

then, integrates the observation as a delayed one. In order to

integrate delayed observations, the proposed approach keeps

an historic of the last estimations and backpropagate particles

to compute observation models at positions where particles

were expected to be at the observation time. The paper shows

results of simulated experiments comparing the presented

approach with a classic particle filter, showing clearly the

improvements and potentialities of the new approach.

The paper is organized as follows: section II describes

the implemented basic particle filter, used in this work to

compare the performance of the proposed approach. Sec-

tion III describes the aynchronous particle filter that inte-

grates observations taking into account time considerations.

Simulated results comparing the accuracy of both filters are

presented in section IV. In order to show potentialities of the

proposed algorithm, section V includes promising simulated
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results on tracking the position of a mobile robot using only

odometry and observations coming from a camera network

partially covering the robot path. Finally, the paper outlines

the conclusions of the presented work.

II. BASIC PARTICLE FILTER

A particle filter is a recursive algorithm that estimates a

probability density function of the state of a system given a

set of observations and, optionally, a kinematic or dynamic

model of that system. The representation of the density

function is made by a set of samples as vectors in the state

space, each one having a weight related with the likelihood

that the system state has in that point given the observations.

The pair formed by a sample vector and a weight is called a

particle. Further details on particle filters and its applications

on mobile robotics can be found in [1], [6].

Our implementation of the particle filter for mobile robot

position tracking uses a geometric map, described with

the standard Geographical Information Systems (GIS) for-

mat. The estimated state of the robot is a vector in the

continuous space of positions in the map frame. Let be

Xτ
r = (xτ

r , yτ
r , θτ

r ) the robot true state at time τ . This true

state remains always unknown and is the target variable

to estimate. The output of the tth iteration of the position

tracking process is the position estimate X̂t
r = (x̂t

r , ŷ
t
r, θ̂

τ
r ),

the estimated covariance matrix Ĉt
r and the time stamp of

these estimates τ t. Please note that τ refers to continuous

time and t indicates an iteration index.

Being X the state space, 3-dimensional and continuous,

Xτ
r , X̂t

r ∈ X = {(xmin, xmax), (ymin, ymax), (−π, π]}
(1)

That is, the robot is assumed to be always in the working

area. If we integrate data coming from NB + 1 observers

the approximation made by the sample representation of the

density function at iteration t can be written as:

p(Xτ
r |{o

τ
k}) ∼ P t = {(Xt

i , w
t
i)} (2)

The above expression indicates that the probability density

function is approximated with the set P t formed by NP

particles (i = 1..NP ). The output estimate takes into account

all the observations from the start of the filter execution,

denoted as {oτ
k}, being oτ

k a single observation with time

stamp τ made by the kth observer. An observation oτ
k is

assumed to be inside the kth observation space,

oτ
k ∈ Ok (3)

When an observation is integrated at tth iteration, we

denote it as ot
k. In order to compute a likelihood of the ith

particle given the observation ot
k, we compute:

p(Xt
i |o

t
k) = Lk(ot

k, os
k(Xt

i )) (4)

where the Lk function is a likelihood function between two

observations: the one made by the kth observer, ot
k, and the

expected one, os
k(Xt

i ), computed using the kth observation

model. The likelihood function Lk() is:

Lk : O2
k → R ∈ [0, 1] (5)

thus, we define a likelihood function for each observer

(k = 1..NB) and the outputs of such functions are always

bounded to [0, 1] interval. The k = 0 index is reserved for

the odometric observation which is integrated by means of

a kinematic model instead of a likelihood function.

Algorithm 1 summarizes an iteration of the implemented

basic particle filter. Firstly, the propagate() function propa-

gates the particle set with the last odometric increments and

the kinematic model of th platform f().

Xt
i = f(Xt−1

i , ot
0); ∀i = 1..NP (6)

Algorithm 1 Basic particle filter iteration

INPUT: P t−1, ot
k ∀k

OUTPUT: P t, (X̂t, Ĉt, τ t)

P t=propagate(P t−1, ot
0)

for k = 1..NB do

for i = 1..NP do

p(Xt
i |o

t
k) = Lk(ot

k, os
k(Xt

i ))
wt′

i = wt′

i · p(Xt
i |o

t
k)

end for

end for

(X̂t, Ĉt, τ t) =setEstimate(P t)

X̂t+=propagate(X̂t, ot+

0 )

publish(X̂t+, Ĉt, τ t)

resampling(P t)

After propagation, a correction loop integrates the avail-

able observations without taking into account time consider-

ations. This correction step can be formalized as:

wt′

i =

NB
∏

k=1

p(Xt
i |o

t
k); ∀i = 1..NP , ∀k = 1..NB (7)

The setEstimate() function parametrizes the particle set

as a Gaussian density function. This Gaussian estimation is

computed in order to publish a close result ready to be used

by other real-time processes but the particle set remains the

genuine output of the particle filter. In this function the time

stamp of the tracking process, τ t is also set. To compute the

Gaussian density parameters, a normalization is performed

to assure that the sum of all weights is 1:

wt
i =

wt′

i
∑NP

j=1
wt′

j

; ∀i = 1..NP (8)

The parameters of the Gaussian density function are:

x̂t
r =

NP
∑

i=1

xt
i · w

t
i ; (σ̂t

x)2 =

NP
∑

i=1

(xt
i − x̂t

r)
2 · wt

i (9)

ŷt
r =

NP
∑

i=1

yt
i · w

t
i ; (σ̂t

y)2 =

NP
∑

i=1

(yt
i − ŷt

r)
2 · wt

i (10)

θ̂t
r = atan(

∑NP

i=1
sinθt

i · w
t
i

∑NP

i=1
cosθt

i · w
t
i

) (11)
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(σ̂t
θ)

2 =

NP
∑

k=1

(acos(cos(θt
i − θ̂t

r)))
2 · wt

i (12)

σ̂t
xy =

NP
∑

k=1

(xt
i − x̂t

r) · (y
t
i − ŷt

r) · w
t
i ; σ̂t

xθ = σ̂t
yθ = 0; (13)

To avoid large latency delays due to the processing of the

correction loop, the filter propagates the estimated state just

before publishing it, thus it computes a prior estimate,X̂t+ ,

using the acumulated odometry from the last propagation()

call, ot+

0 . Please note that particles are not affected at this

step. Publishing a prior allow us to compare the basic filter

with the proposed one in a more proper conditions.

The publish() function sends through a TCP port the prior

estimate computed by the filter. Processes requiring real-

time position data, such as navigation or monitoring, should

connect to this port to receive it. Finally, the resampling()

step generates a new particle set resampling the current one

by means of the regularized resampling method [6]. When

an old particle is choosen to be resampled, the new one sets

its weight to 1/NP and draws a new state vector following

a random-normal centered on the old particle state with

standard deviations derived from the platform size.

III. ASYNCHRONOUS PARTICLE FILTER

This section describes the proposed approach to take

into account the moment of the observations when they

are integrated in the particle filter. In order to outline the

proposed algorithm, we introduce some definitions:

• Ωt
k = (ot

k, Ct
k, τ t

k, st
k) is an observation ot

k, with co-

variance matrix Ct
k, arriving to the computing unit at

iteration t, coming from the kth observer, made at

continuous time τ t
k and with status st

k.

• Ωt is the set composed by the last observation from

each of the NB observer. This set changes dynamically

while filtering advances, since data reception is done

concurrently and asynchronously with filtering at the

tracking processing unit.

• Ht = {(X̂t−∆, Ĉt−∆, τ t−∆), . . . , (X̂t−1, Ĉt−1, τ t−1),
(X̃t, C̃t, τ t)} is a set keeping the filter history of the

∆ last posterior estimates and the last prior etimate

made by the filter.

The tth iteration of the proposed asynchronous particle

filter, integrating observations coming from NB observers, is

outlined in the algorithm 2. Figure 1 depicts the case when

j < t, thus the observation ot
k is delayed with respect to the

last prior time stamp τ t. This figure shows how the particle

Xt
i is backpropagated in order to compute observation mod-

els at positions where that particle was expected to be at the

observation time. The other case, evaluated in the algorithm

with the statement IF j == t, appears when the observation

time stamp is advanced with respect the last prior time stamp.

At this case, the filter propagates the particle set with the

current odometric increments, and the advanced observation

becomes a delayd one since the prior time stamp is updated

at setEstimate() calling.

Algorithm 2 Asynchronous particle filter iteration

INPUT: P t−1, Ht−1, Ωt

OUTPUT: P t, (X̂t, Ĉt, τ t), Ht
∆

P t=propagate(P t−1, ot
0)

(X̃t, C̃t, τ t) =setEstimate(P t)

Ht.pushBackCurrentEstimate((X̃t, C̃t, τ t))
for k = 1..NB do

j =max ι ∈ {t − ∆, . . . , t}|τ ι ≤ τ t
k

if j == t then

P t=propagate(P t, ot+

0 )

(X̃t, C̃t, τ t) =setEstimate(P t)

Ht.replaceLastEstimate((X̃t, C̃t, τ t))
j = t − 1

end if

α =
τ j+1

−τ t
k

τ j+1
−τ j

X̂H = αX̂j + (1 − α)X̂j+1

∆X = X̃t − X̂H

for i = 1..NP do

XH,t
i = Xt

i − ∆X
p(XH,t

i |ot
k) = Lk(ot

k, os
k(XH,t

i ))
wt′

i = wt′

i · p(XH,t
i |ot

k)
end for

end for

(X̂t, Ĉt, τ t) =setEstimate(P t)

X̂t+=propagate(X̂t, ot+

0 )

publish(X̂t+, Ĉt, τ t)

Ht.replaceLastEstimate((X̂t, Ĉt, τ t))
resampling(P t)

Fig. 1. Backward propagation of the particle Xt
i when integrating

observation ot
k

.

IV. SIMULATION RESULTS: COMPARISON OF

THE TWO FILTERS

In order to evaluate the performance of the proposed

algorithm, we have executed an expriment consisting of a

simulation of a mobile robot running on an environment of

10.000m2 at speed of about 2m/s, completing a path of

about 300m. The simulated robot is equipped with two laser

scanners, a compass and a GPS (coverage of about 60%

of the path). Moreover, a camera network is deployed on

the environment, covering about the 55% of the path and

providing observations of the robot (x, y) location. Table I
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Fig. 2. Ground truth (black), basic (blue) and asynchronous (red) particle
filter estimates, and odometry (green) on the map. Cameras are drawn as
little black squares. Dotted lines build a 20mx20m grid.

summarizes the rates, the latencies and the mean of the

simulated gaussian noise of each observer. These values were

set taking into account real devices and systems.

TABLE I

RATES AND LATENCIES OF THE OBSERVERS

Observer Rate(Hz) Latency(ms) Mean noise

ot
0

odometry 20 ∼0 5%(δXY ), 10%(δθ)
ot
1

front laser 4 50 5cm (range)
ot
2

back laser 4 50 5cm (range)
ot
3

compass 5 20 1.5o(θ)
ot
4

GPS 1 20 2m (x, y)
ot
5

CameraNet 1 500 0.4m (x, y)

The experimental testbench was composed by two com-

puters. The computer 1 was executing the simulator, the

basic and the asynchronous particle filters. The computer 2

executed the GUI and was saving the frames in order to

produce the attached video. This scenario allows to compare

the two filters in real-time with the same conditions since

they are running on the same simulation execution. Further

details on the software can be found in [7]. For both filters,

the number of particles was set to NP = 100. Figure 2 shows

the map, the ground truth positions in black, the basic filter

estimates in blue, the asynchronous filter estimates in red and

the odometric positions in green. In this figure the cameras

are also drawn as small black squares.

Using this testbench we present two experiments. The

experiment A was switching off the camera network, thus

both filters were integrating only the observations provided

by the onboard sensors. In the experiment B we have

switched on the camera network, thus both filters integrate

also remote observations provided by the camera network.

To evaluate the performance of the filters we evaluate the

following error figures:

ex =
√

(x̂t
r − xτ

r )2; ey =
√

(ŷt
r − yτ

r )2

eθ =

√

(θ̂t
r − θτ

r )2; exy =
√

(x̂t
r − xτ

r )2 + (ŷt
r − yτ

r )2

(14)
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Fig. 3. XY error of both filters when the camera netwok is switched off.

To compute this error we lineary approximate the simu-

lated ground truth (xτ
r , yτ

r , θτ
r ) data at exact times where

estimations are computed. This is done by considering the

ground truth sample just before the estimate and just after

the estimate. The ground truth process was running at 20Hz.

A. Experiment A: Camera Network Off

Figure 3 shows the error exy when the camera network

was switched off. In this case the observers provide data with

low latencies, therefore the asynchronous filter does not take

clearly advantage of its properties. However, the proposed

approach performs slightly better, since the observations are

integrated properly considering their time stamps.

B. Experiment B: Camera Network On

When a camera network is switched on, we put in the

scenario a very accurate observer that, however, provides

observations at low rate and with large latencies. In this

scenario, the proposed asynchronous filter performs much

better than the basic one as figure 4 shows. The asynchronous

filter outperforms the basic one with the exception of a short

passage, where two filters have demonstrated a good recovery

behaviour. This execution is recorded and presented in the

attached video, where the particle sets of each filter can be

seen with the simulated ground truth psition of the robot.

For this second experiment the error for each estimated

variable is presented, each one accompanied with the esti-

mated covariance. The following figures 5, 6, 7 show how

the filter error remains in the most time inside the covariance

bound of 1σ.

C. Discussion

Table II summarizes the mean errors for both filters

and both experiments A & B. As expected, the proposed

approach works much better when an accurate but delayed

observer plays in the scene, as the case when the camera

network is on. We can also see how the θ estimate does not

improve its performance since it depends basically of the
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Fig. 4. exy error of both filters when the camera netwok is switched on.
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Fig. 5. ex and the estimated covariance σ̂x for the asynchronous filter.

odometry and the compass, and these two observers have

high rates and low latencies.

TABLE II

MEAN ERRORS OF A & B EXPERIMENTS

Basic PF Asynchronous PF

CamNet µ(exy)[m] µ(eθ)[rad] µ(exy)[m] µ(eθ)[rad]
OFF 0.36 0.013 0.28 0.012

ON 1.05 0.013 0.26 0.012

On table II the reader can also compare the asynchronous

filter with and without the camera network and discover that

only a little improvement appears in terms of position esti-

mate accuracy, but gains in terms of robustness since another

observer is integrated on the filter. From this point, we want

to evaluate the feasability of tracking the position of a robot

with only the odometry and the camera network, in order to

consider the proposed algorithm as a practical solution to be

onboard of cheap robots running on environments where a
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Fig. 6. ey and the estimated covariance σ̂y for the asynchronous filter.
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Fig. 7. eθ and the estimated covariance σ̂θ for the asynchronous filter.

camera network has been deployed. The following section

presents results on this issue.

V. SIMULATION RESULTS: POSITION TRACKING

WITH ODOMETRY AND CAMERA NETWORK

Once the asynchronous filter has shown good properties

integrating observations with high latencies, we want to

investigate a fusion scheme with only odometry and the cam-

era network. This two observations are very complementary

since odometry has a high rate, a small latency and a good

accuracy in short displacements, while a camera network

provides absolute and accurate (x, y) observtaions with a

large latency, but does not suffer from accumulated drifts as

odometry does. In this experiment we use the same testbench

as the previous ones but we execute only the asynchronous

filter since the basic filter was unable to track the robot

position in a robust way.

Figures 8, 9, 10 depicts the error of this experiment for

the three estimated variables. These figures shows how the
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Fig. 8. ex and the estimated covariance σ̂x for the asynchronous filter
only integrating odometry and camera network observations.
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Fig. 9. ey and the estimated covariance σ̂y for the asynchronous filter
only integrating odometry and camera network observations.

error increments when the robot is out of coverage of the

camera network and redcuces when the robot integrates

remote observations coming from the camera network. Even

if the coverage of the camera network is partial ( 55%
of the path) the proposed approach is able to track the

position of the robot with an acceptable error. Mean errors

for this experiment were µ(exy) = 0.7 m and µ(eθ) =
0.07 rad. They can be compared with those errors of table II

where the filters integrated all observations from all sensory

subsystems. Obviously, the filter integrating all observations

performs better, but the interest of this second result lies in

the fact that cheap robots with only wheel encoders could

track its position taking benefit of observations coming from

a deployed camera network with partial coverage of the

environment.

VI. CONCLUSIONS

This paper presents an asynchronous particle filter al-

gorithm that takes into account time considerations when
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Fig. 10. eθ and the estimated covariance σ̂θ for the asynchronous filter
only integrating odometry and camera network observations.

integrates observations coming from a set of asynchronous

observers (delayed or advanced from the prior estimate).

The paper considers the position tracking task as a real-time

process playing a key role in autonomous navigation systems

and, therefore, the design of the proposed approach wants

to publish the best position estimate without latencies or

delay assumptions as previous approaches do. The proposed

solution is tested in a simulated testbench comparing a

basic particle filter and the asynchronous one, and promising

results are presented and discussed. A practical situation

fusing only odometry an observations coming from a camera

network is also evaluated showing the potentialities of the

proposed approach in cooperative environments where a

camera network shares information with running robots.
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