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Abstract—The “iCub” is a robotic platform that was developed 
within the RobotCub European project to provide the 
cognition research community with an open “child-like” 
humanoid platform for understanding and development of 
cognitive systems [1]. In this paper we present the mechanical 
realization of the new lower body developed for the “iCub” 
child humanoid robot in order to keep up with the latest 
technology and solve mechatronic problems found in the 
previous version. The new lower body assembly demonstrates 
significant improvements over the old prototype including 
higher modularity, full joint state sensing and improved range 
of motion and torque capabilities. In particular the new leg and 
waist mechanisms to match the size and physical abilities of a 
3½ year old human child are introduced.  

I. INTRODUCTION 

nthropomorphic design, natural and adaptive 
locomotion and human like  behavior and performance 
are some of the intrinsic features that have driven the 

rapid growth  of humanoid robots during the past decade.  
The development of such a humanoid platform that has the 
physical capacity of a human being poses many challenges 
from the mechatronic point of view. These must be 
addressed in a methodical and concurrent manner in order to 
co-ordinate and integrate the various components that form 
the complete mechatronic platform. There is clearly a 
requirement for many iterations of the design process before 
reaching the final prototype. These are usually guided by the 
experience gained from previous prototypes, as well as the 
advances in actuation, materials, sensor technologies, the 
increasing computational power and other supporting 
technologies such as electronics and ICT.  
 The first humanoid developed back in 1973 [2] formed 
the basis for all subsequent designs with all current 
successful humanoids being produced as part of a process of 
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continuous improvement from their predecessors. Hence, the 
current ASIMO humanoid developed from E0 (1986), E1-
E2-E3 (1987-1991), E4-E5-E6 (1991-1993), P1-P2-P3 
(1993-1997), through to the original ASIMO (2000) and the 
new Asimo (2005) [3, 4]. The Humanoid Robot Platform 
(HRP) started with an adapted Honda P3 and subsequently 
HRP-2L, HRP-2P, HRP-2, HRP-3 were released [5]. Soon 
HRP-4 will be introduced which reportedly looks like a 
woman with a realistic geometry. QRIO was originally 
named Sony Dream Robot or SDR with prototype models 
SDR-3 and SDR-4X [6], while the TUM humanoid LOLA is 
an enhancement over Johnnie [7]. Similarly KAIST built 
KHR-1, KHR-2 and KHR-3 (Hubo) [8]. Waseda built 
different models from their first humanoid ever in 1973 to 
Wabian-2R [9].   

The RobotCub project [10] is a research initiative 
dedicated to the realization of embodied cognitive systems 
and the creation of an advanced robotic platform for 
neuroscientific study. The two main goals of this project are: 

 
i) Creation of an OPEN hardware/software humanoid 

robotic platform for research in embodied cognition. This is 
the “iCub”. 

ii) Advancing our neural understanding of cognitive 
systems by exploiting this platform in the study of the 
development of cognitive capabilities in humanoid robots. 

 
 The “iCub” platform has as its aim the replication of the 
physical and cognitive abilities of a 3½ year old child. This 
“child” robot will act in a cognitive scenario, performing the 
tasks useful to learning, and interacting with the 
environment and humans. The OPEN approach of the 
“iCub” combined with the small size (104cm tall), low 
weight (<23kg) and very compact structure (fitting within 
the volume of a child) and high number (53) of degrees of 
freedom form fundamental differences with the many 
excellent humanoids already developed. It is evident that the 
OPEN nature of the “iCub” platform induces high needs for 
robustness and easy maintenance. This paper reports on the 
design of the new lower body modules for the “iCub”. The 
new lower body assembly was designed and built based on 
the knowledge gained from the first successful prototype. It 
demonstrates significant improvements over the old 
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prototype including higher modularity, reduced complexity, 
better quality full joint state sensing, and improved range of 
motion and torque capabilities. 
 The paper is organized as follows: Section II gives the 
specifications of the new lower body. Sections III and IV 
introduce the enhancements/modifications done on the 
mechanical design, the actuation and the sensing of the 
lower body. Section V presents experimental results from 
joint tracking performance experiments and characteristic 
measures of the new design in terms of joint range of 
motion, and output torque.  These are compared with those 
of the original prototype. Finally, section VI addresses the 
conclusions. 

II. LOWER BODY SPECIFICATIONS  

 An extensive description of the first prototype of the 
lower body design of “iCub” is provided in [11]. The size of 
the “iCub” approximates the dimensions of a 3½ year old 
child.  In the new lower body design the total length and 
mechanical interface mechanism with the upper body 
remained unchanged so the new legs can be added to the 
current upper body without any modifications. The number 
of degrees of freedom in the lower body also remained 
unchanged.  
 The initial functional specification for the “iCub” legs 
was to have a capacity to sit, squat and crawl. These actions 
were rigorously simulated and it was determined that a 5 
D.O.F leg could achieve these goals. However, subsequent 
study suggested that standing and childlike walking would 
be appropriate further goals and an additional D.O.F at the 
ankle to support standing (supported and unsupported) and 
walking formed a new upgraded specification.  Therefore, 
each leg consists of 6 D.O.F: 3 D.O.F at the hip, 1 D.O.F at 
the knee level and 2 D.O.F at the level of the ankle and 
equals the design approach chosen in many other bipedal 
robots. 
 For the waist most humanoids usually have a relatively 
simple 2 D.O.F. mechanism, however humanoids trying to 
replicate the functionally of the human spine have also been 
developed [12]. For the “iCub” a 3 D.O.F waist was 
considered as this implementation offers greater motion 
flexibility than that of the conventional 2 D.O.F waist 
mechanisms. This extra functionality is needed as very 
young children typically reach for objects from a seated 
position and flexibility at the waist increases their 
workspace. At the same time the complexity is kept low in 
line with the requirements of the OPEN platform for 
robustness, easy maintenance and manufacturing. Based on 
above, the “iCub” waist provides pitch, roll and yaw 
motions for the upper body.  
 The range of motion for the joints of the lower body was 
defined considering human ergonomic data, data from other 
successful humanoid platforms and simulation studies. The 
range of motion of a “standard” human was used as a 
starting point. Table 1 depicts the range of motion of the 
“standard” human [13] and the “iCub” and it can be seen 
that in some joints the robot joint range specifications 
exceed those of the “standard” human. Wherever possible 
this greater range was deliberate to enhance the motion 
capability of the robot.    

In particular, the range of the waist joint has been 
extended/modified to increase the manipulation workspace 
of the child-like robot. The range of the waist yaw and roll 
has been increased while the range of the pitch motion was 
modified to increase the upper body forward tilting. This 
effectively improves the workspace for the iCub’s arms 
while the robot is in a sitting position.  
  In some joints the specified range of motion of robot is 
smaller compared to that of the “standard” human, 
Simulation studies have confirmed that for these joints the 
range of motions provided in the specification is sufficient 
to ensure that the “iCub” can perform the basic exploratory 
and manipulation procedures required for the “child”.  
 

TABLE  I 
SPECIFICATIONS FOR THE RANGE OF MOTION OF THE LOWER BODY  JOINTS. 

 Human [13] iCub 

LEG Range of motion (°) 

Hip Flexion/Extension +45, -147 +45,-120 
Hip Abduction/Adduction      +45,  -40 +45,-31 
Hip Rotation     +45.5, -43.5 +31,-91 
Knee +127.5, 0        +130,-5 
Ankle Flexion/Extension +34, -51.5 +30,-40 
Ankle Abduction/Adduction      +58, -44.5 +25,-25 
Ankle Twist +36.5,-34 Not Implemented 

WAIST   

Waist roll +35, -35 +60,-60 
Waist pitch +70, -30 +90,-10 
Waist yaw +40, -40 +60,-60 

 
The torque requirements used were identical to those 
specified for the first prototype. These torque requirements, 
Table II, were obtained from  crawling simulations using 
Webots [14] at different gait speeds (0.5Hz cycles and 1Hz 
cycles) and with transitions from sitting to crawling pose 
and vice versa [11].  Ankle abduction/adduction does not 
contribute much during crawling motions and was omitted 
in these simulations.  
 

TABLE  II 
SPECIFICATIONS OF THE PEAK TORQUES OF THE LOWER BODY JOINTS. 

JOINT 
Peak Torque 

(Nm) at 0.5 Hz 
Peak Torque 
(Nm) at 1 Hz 

Hip Flexion/Extension 38.5 46.3 

Hip Abduction/Adduction 15.1 37.1 

Hip Rotation 23.2 36.8 

Knee 28.0 27.4 

Ankle Flexion/Extension 11.3          12.4 

Waist Roll 26.5 27.2 
Waist Pitch 34.3 45.8 
Waist Yaw 13.7 30.1 

 

III. ENHANCEMENTS OF THE NEW LOWER BODY  

 The new lower body assembly was designed and built 
based on the knowledge and experience gained from the 
design and testing of the first successful prototype. To 
improve the performance of the original system a number of 
modifications and/or enhancements were incorporated. 
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TABLE  III 
CHARACTERISTIC  MEASURES OF THE  ICUB COMPARED TO THOSE OF THE ORIGINAL PROTOTYPE. 

 

 
Leg 

Range of motion (°) Torque (Nm) New Lower body Joint Drives 

Original 
Prototype 

New 
Prototype 

Original 
Prototype 

New 
Prototype 

Motor Type Gear Reduction 

Hip Flex/Ext +50, -100 +45, -134 Sum of the differential 
drive  torques = 84Nm 

60Nm RBE1211 (200W) CSD17-100:1 + 1.5:1 cable stage 

Hip Abd/Add +17, -35 +18, -120 40Nm RBE1211 (200W) CSD17-100:1 

Hip Rotation +65, -35 +80,    -80 40Nm 40Nm RBE1211 (200W) CSD17-100:1 

Knee +115, -10 +126, -24 30Nm 40Nm RBE1211 (200W) CSD17-100:1 

Ankle Flex/Ex +70, -50 +43,  -22 24Nm 30Nm RBE1210 (140W) CSD14-100:1 + 1.5:1 cable stage 

Ankle Abd/Add +25, -25 +25,  -25 11Nm 20Nm RBE1211 (200W) CSD17-100:1 

Waist       

Roll +70, -70 +70, -70 30Nm 30Nm RBE1210 (140W) CSD14-100:1 + 1.5:1 cable stage 

Pitch +90, -15 +90, -15 
Sum of the differential 
drive  torques = 80Nm 

Sum of the differential 
drive  torques = 80Nm 

RBE1211 (200W) CSD17-100:1 + 1:1 cable stage 

Yaw +45, -45 +45, -45 
RBE1211 (200W) CSD17-100:1 + 1:1 cable stage 

  
   Comparing the achieved joint ranges and torques with 
the specifications given in Table I and II it can be seen that 
in most of the joints the achieved joint specifications satisfy 
the requirements. Some small deviations were due to the 
hard mechanical constrains raised from the child size of the 
robot.  

VI. CONCLUSIONS 

Humanoids robots are high complexity mechatronic 
machines build on a process of test and revision. Therefore, 
there is clearly a necessity for many iterations of the design 
process before reaching a final prototype.  
 This paper presented the structure of the new lower body 
of the “iCub” child humanoid robot. Built from the 
knowledge obtained by the first prototype an improved 
version of the lower body was designed, fabricated and fully 
assembled. Specific deficiencies of the first design were 
addressed resulting in the realization of the new lower body 
platform that exhibits significant improvements over the old 
prototype including higher modularity, highly integrated 
actuator modules with full joint state (improved resolution 
and torque) sensing, improved joint range and torque 
capabilities, simpler construction, easier assembly and 
maintenance and improved joint trajectory tracking. 
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