

Abstract— This paper presents a sensor-based online
coverage path planning algorithm guaranteeing a complete
coverage of unstructured planar environments by a mobile
robot. The proposed complete coverage algorithm abstracts the
environment as a union of robot-sized cells and then uses a
spiral filling rule. It can be largely classified as an approximate
cellular decomposition approach as defined by Choset. In this
paper, we first propose a special map coordinate assignment
scheme based on active wall-finding using the history of sensor
readings, which can drastically reduce the number of turns on
the generated coverage path. Next, we develop an efficient path
planner to link the simple spiral paths using the constrained
inverse distance transform that we introduced the first time.
This planner selects the next target cell which is at the minimal
path length away from the current cell among the remaining
non-contiguous uncovered cells while at the same time, finding
the path to this target to save both the memory and time which
are important concern in embedded robotics. Experiments on
both simulated and real cleaning robots demonstrate the
practical efficiency and robustness of the proposed algorithm.

I. INTRODUCTION
OST of the existing robot path planning research has
addressed finding a path from a start location to a goal

location. It usually requires minimization of the path length,
journey time, or energy consumption. However, some
applications such as floor cleaning [1], lawn mowing [2],
mine hunting [3], harvesting [4], etc. require other kinds of
path planning which are capable of finding an optimal path
which ensures the complete coverage of an environment. This
problem is called coverage path planning whose goal is to
find paths maximizing coverage as well as minimizing some
cost functions such as the time-to-completion.

Some of the early approaches to coverage path planning
have been based on the behavior based paradigm including
both heuristic and randomized components [5], [6]. These are
amenable to low cost real world applications because they do
not require expensive sensors nor do they consume valuable
computational resources for mapping and localization. As

Y. Choi was with the Electronic and Electrical Engineering Department,

Pohang University of Science and Technology (POSTECH), Pohang,
Kyungbuk, Korea, He is now with the Pohang Institute of Intelligent
Robotics (PIRO), Pohang, Kyungbuk, Korea (corresponding author to
provide phone: +82-54-279-0445; fax: +82-54-279-0429; e-mail:
rockboy@postech.ac.kr) .

T. Lee, S. Baek and S. Oh are with the Electronic and Electrical
Engineering Department, Pohang University of Science and Technology
(POSTECH), Pohang, Kyungbuk, Korea (e-mail: devilee@postech.ac.kr;
tkeb100@postech.ac.kr; syoh@postech.ac.kr).

such, they not only cannot guarantee a complete coverage,
but their performance greatly varies as a function of the
particular algorithm and the surrounding environment.
Recently, complete coverage path planning algorithms have
been proposed generating a path that completely covers the
free space, most of which either implicitly or explicitly adopt
cellular decomposition to achieve a complete coverage. A
cellular decomposition breaks down the target region into
cells such that coverage in each cell is “simple”.

 Choset [7] categorizes the cellular decomposition into
three types: approximate, semi-approximate, and exact.
Approximate decomposition uses a fine-grid based
representation of the free space. Here, the cells are all of the
same size and shape so that the union of the cells only
approximates the target region [8]. The semi-approximate
cellular decomposition relies on a partial discretization of the
space where the cells are fixed in width but their tops and
bottoms can have any shape [9]. The exact cellular
decomposition divides the target environment into a set of
non-intersecting cells, whose union fills the target
environment and each cell is typically covered using simple
back-and-forth motions [10].

Our approach to complete coverage falls under the
approximate cellular decomposition category utilizing the
spiral filling rules. Similar approaches include the
Backtracking Spiral Algorithm (BSA) [11] and the
Spiral-STC [12] algorithm. The BSA is based on the
execution of spiral filling paths and assures completeness
using a backtracking mechanism to link a collection of the
simple spiral paths. It is robust to the robot’s initial
orientation due to the use of a spiral filling path instead of a
zig-zag path which has been more popular in the previous
algorithms. BSA can be implemented using a small set of
rules, which allows it to work with low sensorial and
computational requirements. However, it requires a great deal
of memory space for the stack that stores the backtracking
points as well as additional computational resources to
manage this stack structure. This algorithm, especially when
implemented in embedded systems, may cause a serious
concern in a large target environment. On the other hand,
Spiral-STC incrementally subdivides the planar work area
into disjoint tool-size cells, while following a spanning tree
path of the resulting grid. It generates a coverage path which
has a comparatively less overlap than the other approximate
cellular decomposition methods. However, this algorithm

Online Complete Coverage Path Planning for Mobile Robots
Based on Linked Spiral Paths Using

Constrained Inverse Distance Transform
Young-Ho Choi, Tae-Kyeong Lee, Sang-Hoon Baek, and Se-Young Oh, Senior Member, IEEE

M

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5788

(b) The initial robot orientation is
parallel to the wall

y

x
(a) The initial robot orientation is

not parallel to the wall

: Starting point of a spiral path
: Terminal point of a spiral path

x

y

x

Fig. 1. Variation of the number of required turns according to different map
coordinate assignments.

cannot handle partially occupied cells. All these algorithms
based on approximate cellular decomposition suffer from the
common problem that the algorithm efficiency in view of
time-to-completion is significantly affected by the initial
orientation of the robot because the number of turns can
drastically increase according to the robot’s initial orientation
relative to the wall.

This paper has two main contributions. First, we propose a
simple map coordinate assignment scheme based on the
history of sensor readings to improve the time-to-completion
by reducing the number of turns on the generated path. Next,
we introduce the constrained inverse distance transform
(CIDT) to link the pieces of the simple spiral paths for
complete coverage, which can find the non-contiguous
uncovered cell with the shortest path length away from the
robot’s current footprint as well as simultaneously find the
path leading to it.

The rest of this paper is organized as follows. Section II
briefly reviews the problems of existing cellular
decomposition methods and spiral filling rules. Section III
then describes our approach to complete coverage to solve the
problems. Section IV presents the experimental results with
comparison to a conventional approach.

II. COVERAGE PROBLEM DEFINITION
As mentioned in Section I, efficiency of the generated path

from the algorithm based on approximate cellular
decomposition is affected by the specific scheme of the map
coordinate assignment. This is primarily due to the
constrained mobility where the robot is only allowed to move
to one of the 4 neighborhood cells. This problem, illustrated
in Fig. 1, leads to the fact that the number of turns on the
generated path is significantly affected by the map coordinate
assignment when using the spiral filling rules. The following
reactive rules are typically used for the execution of the
simple spiral path based on the right hand rule:

 IF (No obstacle in the right) Turn right
 ELSE IF (No obstacle in the front) Move forward
 ELSE IF (No obstacle in the left) Turn left
 OTHERWISE Terminate spiral point detection;

Here, the previously covered cells as well as the occupied
cells are considered as obstacles.

Furthermore, approximate cellular decomposition suffers
from the problem of having to fill partially occupied cells due
to the use of coarse resolution in surface representation as
depicted in Fig. 2. These partially occupied cells cannot be
covered with any simple spiral filling rule because they only
apply to the completely free cells. To handle this, Gonzalez
[11] suggested the wall-following procedure as soon as an
obstacle is found. This is a very reasonable solution because
all the partially occupied cells are located nearby the
obstacles including the walls. We also follow this strategy in
our coverage algorithm.

In most of the complete coverage algorithms, they use the
concept of driving the robot towards unvisited areas when
there is no unvisited neighboring area around the robot,
regardless of the filling approach. How to link simple regions
is the key to a complete coverage algorithm using simple
spiral filling rules as described in Fig. 2. It exemplifies that
two simple regions are left unvisited after execution of the
first simple spiral path. To link simple spiral paths, Gonzalez
[11] proposed a backtracking mechanism (BTM) which
consists of three steps: (A) Backtracking points (BP) to which
two or more alternative possible paths exist are stored into a
BP stack, while carrying out the spiral filling path (B) A valid
BP which has at least one free unvisited neighboring cell is
retrieved from the BP stack when the execution of a simple
spiral-filling path is finished and one of these unvisited cells
is selected as an entry point to an unfilled associated region
(C) The shortest return path is generated from a terminal
spiral point Ps to a selected entry point Pd using a region
growing procedure starting in Pd and ending when Ps is
reached. To our knowledge, this mechanism appears to be the
best way to link simple regions in the spiral kind of coverage
path planning algorithm and its feasibility was demonstrated
in several simulated environments. However, it still has some
drawbacks as follows:

1) It must check the criterion for a BP every time before

applying spiral filling rules.
2) A point can be pushed into the BP stack, multiple times.

Consequently, there are redundancies in the BP stack so

: Partially occupied cell

: Unvisited Free Cell
: Covered Free Cell

: Starting point
: Terminal point
: Unvisited simple region

Fig. 2. Coverage map after finishing a simple spiral path.

Pd

Ps

5789

that a BP can yield the entry point of more than one
uncovered region.

3) It requires a supplementary routine to discard an invalid
BP when the free cells nearby a BP have vanished in
order to avoid useless robot motions.

In this paper, we propose a more efficient method to link

simple regions, which reduces the memory usage as well as
the computational cost needed to manage BPs with the BP
stack. The proposed constraint inverse distance transform
(CIDT) yields a unified solution which selects the next target
cell which is at the minimal path length away from the current
cell among the remaining non-contiguous uncovered cells
while at the same time, finding the path to this target. The
details of CIDT are described in the following section.

III. THE PROPOSED COMPLETE COVERAGE ALGORITHM –
LSP-CIDT

The proposed online complete coverage algorithm is based
on linking spiral paths through a constrained inverse distance
transform (LSP-CIDT). It basically covers a simple region
using a spiral filling path and then links these simple regions
using a constrained inverse distance transform (CIDT). Here,
a simple region denotes an area that can be filled by executing
a single spiral path. To this end, the environment is
incrementally modeled by a coarse-grain occupancy grid and
each cell is set to one of the five types: unexplored, covered,
partially covered, occupied, and candidate. Here, we define a
candidate cell as the one which is covered by the range
sensors of a robot but has not been visited by a robot on a map
and then regard it as a cell of interest in the CIDT. The overall
process of the proposed LSP-CIDT coverage algorithm is
shown in Fig. 3. Initially, all the cells are set to an unexplored
state and a wall following procedure is taken with an active
map coordinate assignment process. After wall following is
finished, the spiral filling rules described in Section II are
applied. If an obstacle is detected during spiral filling,
contour following is carried out to sweep around it. When a
simple spiral path is finished, CIDT is executed to select the
next target cell which is at the minimal path length away from
the current cell among the remaining non-contiguous
uncovered cells while at the same time, finding the path to
this target. If a candidate cell is found, the robot moves to that
cell through the generated path and then starts a new spiral
path in the new region; otherwise, the overall process
terminates.

A. Active Map Coordinate Assignment
The proposed LSP-CIDT algorithm is primarily focused on

indoor environments (e.g. home, office, etc.) which have a
rectangular shape consisting of four walls. In this case, we
can drastically reduce the number of required turns by
aligning the x-axis of the map coordinate frame to one of the
walls of the target environment as shown in Fig. 1. To this
end, we develop a special map coordinate assignment scheme

based upon sensor readings as explained in Fig. 4. Here, we
assume that the robot starts from close to the wall and then
approach and follow this wall to start our coverage algorithm.
This procedure is called “wall approach-then-follow”. When
the robot’s orientation is stably aligned to the wall as shown
in the Fig. 4 (c), we then use this robot’s heading as the
x-coordinate of the map reference frame throughout our
algorithm. To check stable alignment in “wall
approach-then-follow”, we monitor an empirical parameter L,
defined as a traveling length over which the robot moves
without significant change of its heading. Experimental
results show that this is a simple but an effective way to
reduce the number of turns in rectilinear environments.

B. Wall and Contour Following
As mentioned in Section II, we adopt the wall and contour

following procedures to cover the partially occupied cells
nearby the walls and obstacles. The wall following procedure
is always invoked at the initial stage of LSP-CIDT whereas
the contour following procedure is called whenever the robot
meets an obstacle during the execution of a spiral filling path.
Each procedure terminates when the robot returns to the cell
from which the procedure started from. These procedures are
conducted in a reactive manner while spiral filling is
performed within the cell. Consequently, while spiral filling
guarantees a complete coverage of a cell since the robot
moves via the centers of the cells, the wall and contour
following procedures do not guarantee a complete coverage
as shown in Fig. 5. It shows that some cells are not completely
covered even when the center of robot goes through the inside
of these cells when the robot follows the wall using a right
hand rule. To handle this problem, these cells are first marked
as partially covered and thus considered as cells of future
interest in applying both the spiral filling rules and CIDT.
These cells are finally revisited for complete coverage. In this
way, we can readily eliminate the possibility of any
uncovered regions at the end.

Fig. 3. Overall process of the proposed LSP-CIDT coverage algorithm.

Perform wall following
& map coordinate assignment

Apply the spiral filling rules

Move to the target cell

Perform CIDT

End

Perform contour
following

Does a neighboring
candidate cell exist?

Is the target cell fully
accessible?

Does a candidate
cell exist?

Yes

Yes

No

Yes

Start

Initialize the map to the unexplored state

No

No

5790

C. Constrained Inverse Distance Transform
Constrained Inverse Distance Transform (CIDT) is a key

component of our coverage algorithm to link simple spiral
paths. In conventional path planning approaches, Distance
Transform was used to find the shortest path from the starting
point to the goal point, given these points. BSA also follows
this strategy to find the shortest path from the current cell to
the entry cell of an unvisited region, found by searching the
recently visited valid backtracking point which has at least
one free unvisited neighboring cell from the BP stack.
However, in this subsection, we develop a unified approach
to find the candidate cell which is at the shortest path away
from the current cell as well as finding the shortest path
between them when only the current cell position as a starting
point is known.

In Distance Transform, region growing starts from the goal
point and ends at the starting point after which the shortest
path from the starting to the goal point is found using gradient
descent. However, we newly introduce the Inverse Distance
Transform (IDT) where region growing starts from a known
current cell (starting point) and terminates when meeting an
unknown candidate cell (goal point) at the shortest path away
from the current cell. Inverse Distance Transform generates
the inverse path from the goal to the starting point, hence the
name. To implement IDT, we adopted the distance transform
algorithm proposed in [13]. In the original algorithm, all the
non-occupied cells among the 8 neighborhood of the cell
being evaluated are first put into a first-in-first-out linked list
buffer (FIFO), and then the next cell to be evaluated, in terms

of the distance propagation cost, is retrieved from the FIFO.
In contrast, we only consider a 4 neighborhood of the cell
being processed as shown in Figs. 6(b) and (c) because an
incorrect path, which the robot cannot follow due to a blocked
cell, may still be generated even though the distance wave can
propagate as shown in Fig 6 (a). We also store the running
count of the distance wave when the transition to the next
distance wave occurs as shown in Fig. 6 (c). When this wave
count is retrieved from the stack, it also indicates the start of
cost evaluation of a further distance wave, when only the
increased wave count is stored in the stack without evaluation
of the distance propagation cost.

Intuitively, it is easy to realize that the first found candidate
cell, while carrying out IDT, is the goal point which lies on
the shortest path from the current cell. However, this is not
always guaranteed because distance wave propagates with an
arbitrary shape in general cluttered environments. Even in the
simple environment, this may happen because the distance
wave propagates with the shape of a square. To illustrate this
point, we show a propagation of distance waves in the simple
environment with no obstacles in Fig. 7. As shown, we cannot
assure that the first found candidate cell is the one which is at
the shortest path until we evaluate the distance propagation
cost of all the candidate cells existing in the circle including
the first found candidate cell. To ensure this, we add a
terminal condition to constrain the propagation of distance
waves in IDT by comparing the minimum distance cost of the
currently evaluated distance wave and the distance cost of the
nearest candidate found so far. The terminating condition of
IDT is checked every time when a transition to the next
distance wave occurs, at which point we can obtain the
minimum distance cost of the current distance wave. The
condition is described as follows:

IF minmin DDc ≥ Terminate IDT ,
OTHERWISE Continue IDT

where minD and
cDmin stand for the distance propagation cost

of the nearest candidate found so far and the minimum
distance propagation cost of the currently evaluated distance
wave, respectively. Here, minD is updated every time a new
candidate cell with a lower distance propagation cost is found.

(c) Map coordinates assignment
after wall alignment

(b) Map coordinate assignment
before wall alignment

Wall alignment
phase

Wall approach
phase

L

(a) Initial stage of wall following

Fig. 4. An active map coordinate assignment scheme.

Fig. 5. Emergence of partially covered cells during wall and contour
following.

: Unexplored cell
: Occupied cell

: Partially covered cell

: Uncovered region
: Covered cell

: Wall

: Candidate cell

(c) FIFO buffer (b) 4-neighborhood case

Data in

Data out

M
2nd

4
3
2
1

1st
x

Fig. 6. Evaluation of the distance propagation cost in Inverse Distance
Transform.

1

4

3

2 x

2 1

3

4 5

7

6

8

(a) 8-neighborhood case

cell blocked by
occupied cells

: Cell being processed
: Covered cell
: Occupied cell

x

kth : Beginning of the kth wave

5791

This terminating condition is very reasonable because the
minimum distance propagation cost is a monotone increasing
function of the wave count, i.e., there cannot exist any cell
which has a lower cost than minD in the further wave than the
wave meeting the terminal condition. Using these rules, we
can efficiently constrain the search boundary of IDT to save
memory and time. Therefore, we call the overall process of
searching the nearest candidate cell Constrained Inverse
Distance Transform (CIDT).

D. Path Generation based on CIDT
Up to this point, we found the nearest candidate point

which is a non-contiguous uncovered cell from the robot.
However, as mentioned previously, the path obtained from
CIDT is an inverse path from the goal to the starting point.
Therefore, we should rebuild the forward path between the
current cell and the target cell from this inverse path. We can
do this in two ways. We can store each way point, a 2D index
of the cell found by a gradient decent search starting from the
target cell, into a first -in-last-out (FILO) linked list buffer as
shown in Figs. 8(a)(b). The robot can move to the target cell
using the way points retrieved in reverse order from this
buffer. Or we can simply put a minus sign to the distance
value of each way point found in the previous sentences as
shown in Fig. 8(c). Using this changed distance map, the
robot can move to the target cell using an additional gradient

descent search starting from the current cell. The first method
requires less computation than the second because it needs to
apply gradient descent search once while the second needs to
apply it twice. However, the first method requires an
additional memory to save the way points.

IV. EXPERIMENTAL RESULTS
We have conducted experiments in both the simulated and

real environments to verify the workings of our approach. Fig.
9 shows the sensor configuration of the robot platform used
as an experimental test bed. It is a differential-drive robot
equipped with seven infrared sensors having a maximum
range of 30 cm. In our experiments, the maximal velocity of
the robot and the size of a cell are set to 25 cm/s and 30 cm,
respectively.

A. Simulation Result
To verify the influence of the proposed active map

coordinate assignment scheme on efficiency of the generated
path, we carried out two simulations with the same initial
robot pose in the same environment depicted in Fig. 10.

In the first simulation, we align the x-axis of the map frame
with the initial robot heading without active map coordinate
assignment. As seen in Fig. 11, the generated path contains
many “zig-zag” sections. However, the path with the
proposed coordinate assignment has much fewer “zig-zag”
sections as shown in Fig. 12. In Figs. 11 and 12, the color of
the cells in the coverage map becomes redder as the robot
sweeps the same cell repeatedly. Table 1 shows that the
number of turns is drastically reduced using active map
coordinate assignment, which leads to a shorter
time-to-completion. However, the coverage itself does not
differ significantly because the overall paths of both
simulation results are almost the same.

TABLE I

COMPARISON OF THE NUMBER OF TURNS IN THE COVERAGE PATH

Case Number of
turns

Time-to-
completion

(minute)

Coverage
(%)

Without active
map coordinate

assignment
88 8.80 91.65

With active
map coordinate

assignment
31 7.34 91.73

Fig. 7. Property of distance wavefront propagation in Inverse Distance
Transform.

: first found candidate cell
: nearer candidate cell
: ideal distance wave

: current cell

: 1st distance wave
: 2nd distance wave

: (n-1)th distance wave
: nth distance wave

18

14

10 7 4

0

21

(a) Gradient descent search from the
target cell to the current cell

(c) Gradient descent search from the
current cell to the target cell after
reversing the sign of the cells on the
path

M

Next way point
(b) FILO stack containing

the way points

Fig. 8. The proposed method to find the path to the next target cell using the
distance map obtained through CIDT.

: Nearest candidate cell
: Current cell

: Cells within the path
: Gradient descent direction

-18

-14

-10 -7 -4

0

-21

Fig. 10. Simulation environment with the initial robot pose marked.

: IR sensor with 5 ~ 30 cm range

Fig. 9. Sensor configuration of our robot platform.

5792

B. Results on Real Cleaning Robots
To show the robustness of our algorithm, we conducted

experiments in four different environments, all with the size
of 4.2 m by 5 m, shown in the first column of Fig. 13. When
applying the LSP-CIDT algorithm to a real environment, the
accuracy of the robot pose estimate is a key factor affecting
the overall performance of the algorithm. Therefore, we built
our own odometry system combining the encoder and gyro
sensor readings to limit the robot’s position error within a
tolerable error boundary defined as the half size of a cell. In
the cleaning robot, the entire algorithm has been embedded
into a DSP F2812 on board while a ceiling camera is used to
extract the ground truth position of the robot. Fig. 13 shows
the results. Here, the coverage is measured based on the
ground truth of the robot position calculated from ceiling
image. The averages of the time-to-completion and coverage
are 8.86 minutes and 94.99 percents, respectively. These
results support that our algorithm is also applicable to various
cluttered indoor environments.

V. CONCLUSION
This paper presents a robust online complete coverage

algorithm based on approximate cellular decomposition and
spiral filling paths. This algorithm drastically reduces the
number of turns on the generated path by devising a
sensor-based map coordinate assignment scheme. In addition,
we introduce a new transform called constrained inverse
distance transform (CIDT) to link the simple spiral paths for
complete coverage. CIDT enables a unified solution which
can select the next target cell which is at a minimal path
length away from the current cell among the remaining
non-contiguous uncovered cells as well as find the path to this
target, simultaneously. Finally, we demonstrate that our
algorithm is applicable to embedded robotic systems with a
robust performance in various complex environments for
robots. However, since our algorithm has been tested in a
single room so far, in the future, it also needs to be tested
against multiple rooms.

REFERENCES
[1] J. Colegrave and A. Branch, “A case study of autonomous household

vacuum cleaner,” in AIAA/NASA CIRFFSS, 1994.
[2] Y. Y. Huang, Z. L. Cao and E. L. Hall, “Region filling operations for

mobile robot using computer graphics,” in Proc. IEEE Int. Conf.
Robotics and Automation, vol. 3, 1986, pp. 1607-1614.

[3] S. Land and H. Choset, “Coverage path planning for landmine
location,” in 3rd Int. Symp. Technology and the Mine Problem,
Monterey, CA, 1998.

[4] M. Ollis and A. Stentz, “First results in vision-based crop line
tracking,” in Proc. IEEE Int. Conf. Robotics and Automation, vol. 1,
1996, pp. 951-956.

[5] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE J. Robotics and Automation, vol. 2, 1986, pp. 14-23.

[6] D. Gage, “Randomized search strategies with imperfect sensors,” in
Proc. SPIE Mobile Robots VIII, Boston, MA, 1993, pp. 270-279.

[7] H. Choset, “Coverage for robotics - A survey of recent results,” in
Annals of Mathematics and Artificial Intelligence, 2001, pp. 113-126.

[8] S. V. Spires and S.Y. Goldsmith, “Exhaustive geographic search with
mobile robots along space-filling curves,” in Proc. of the 1st Int.
Workshop in Collective Robotics, CRW'98, Paris, France, July 1998,
Lecture Notes in Computer Science, vol. 1456, 1998, pp. 1-12.

[9] S. Hert, S. Tiwari and V. Lumelsky, “A terrain-covering algorithm for
an AUV,” Autonomous Robots, vol. 3, 1996, pp. 91-119.

[10] H. Choset, E. Acar, A. Rizzi and J. Luntz, “Exact cellular
decompositions in terms of critical points of Morse functions,” in Proc.
IEEE Int. Conf. Robotics and Automation, vol. 3, 2000, pp. 2270-2277.

[11] E. González, O. Álvarez, Y. Díaz, C. Parra and C. Bustacara, “BSA: A
Complete Coverage Algorithm,” in Proc. IEEE Int. Conf. Robotics and
Automation, 2005, pp. 2040-2044.

[12] Y. Gabriely and E. Rimon, “Spiral-STC: An On-Line Coverage
Algorithm of Grid Environments by a Mobile Robot,” in Proc. IEEE Int.
Conf. Robotics and Automation, vol. 1, 2002, pp. 954-960.

[13] Y. T. Chin, H. Wang, L. P. Tay, H. Wang and W. Y. C. Soh, “Vision
Guided AGV Using Distance Transform,” in Proc. 32nd Int. Symp.
Robotics, April 2001, pp. 19-21.

(b) Overall trajectory (c) Coverage map(a) Resulting Map
Fig. 11. Simulation results without our active map coordinates assignment.

(b) Overall trajectory (c) Coverage map(a) Resulting Map
Fig. 12. Simulation results with our active map coordinate assignment.

: Initial robot position : Final robot position
: Final robot position in the map

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (k) (l)(j)

(m) (n) (o) (p)

Fig. 13. Real-world experiment. The first column shows the four different
environment configurations, the second, the overall trajectories, the third, the
resulting maps, and the last shows the coverage.

5793

