
  

  

Abstract— This paper presents a sensor-based online 
coverage path planning algorithm guaranteeing a complete 
coverage of unstructured planar environments by a mobile 
robot. The proposed complete coverage algorithm abstracts the 
environment as a union of robot-sized cells and then uses a 
spiral filling rule. It can be largely classified as an approximate 
cellular decomposition approach as defined by Choset. In this 
paper, we first propose a special map coordinate assignment 
scheme based on active wall-finding using the history of sensor 
readings, which can drastically reduce the number of turns on 
the generated coverage path. Next, we develop an efficient path 
planner to link the simple spiral paths using the constrained 
inverse distance transform that we introduced the first time. 
This planner selects the next target cell which is at the minimal 
path length away from the current cell among the remaining 
non-contiguous uncovered cells while at the same time, finding 
the path to this target to save both the memory and time which 
are important concern in embedded robotics. Experiments on 
both simulated and real cleaning robots demonstrate the 
practical efficiency and robustness of the proposed algorithm. 

I. INTRODUCTION 
OST of the existing robot path planning research has 
addressed finding a path from a start location to a goal 

location. It usually requires minimization of the path length, 
journey time, or energy consumption. However, some 
applications such as floor cleaning [1], lawn mowing [2], 
mine hunting [3], harvesting [4], etc. require other kinds of 
path planning which are capable of finding an optimal path 
which ensures the complete coverage of an environment. This 
problem is called coverage path planning whose goal is to 
find paths maximizing coverage as well as minimizing some 
cost functions such as the time-to-completion. 

Some of the early approaches to coverage path planning 
have been based on the behavior based paradigm including 
both heuristic and randomized components [5], [6]. These are 
amenable to low cost real world applications because they do 
not require expensive sensors nor do they consume valuable 
computational resources for mapping and localization. As 
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such, they not only cannot guarantee a complete coverage, 
but their performance greatly varies as a function of the 
particular algorithm and the surrounding environment. 
Recently, complete coverage path planning algorithms have 
been proposed generating a path that completely covers the 
free space, most of which either implicitly or explicitly adopt 
cellular decomposition to achieve a complete coverage. A 
cellular decomposition breaks down the target region into 
cells such that coverage in each cell is “simple”.  

 Choset [7] categorizes the cellular decomposition into 
three types: approximate, semi-approximate, and exact. 
Approximate decomposition uses a fine-grid based 
representation of the free space. Here, the cells are all of the 
same size and shape so that the union of the cells only 
approximates the target region [8]. The semi-approximate 
cellular decomposition relies on a partial discretization of the 
space where the cells are fixed in width but their tops and 
bottoms can have any shape [9]. The exact cellular 
decomposition divides the target environment into a set of 
non-intersecting cells, whose union fills the target 
environment and each cell is typically covered using simple 
back-and-forth motions [10].  

Our approach to complete coverage falls under the 
approximate cellular decomposition category utilizing the 
spiral filling rules. Similar approaches include the 
Backtracking Spiral Algorithm (BSA) [11] and the 
Spiral-STC [12] algorithm. The BSA is based on the 
execution of spiral filling paths and assures completeness 
using a backtracking mechanism to link a collection of the 
simple spiral paths. It is robust to the robot’s initial 
orientation due to the use of a spiral filling path instead of a 
zig-zag path which has been more popular in the previous 
algorithms. BSA can be implemented using a small set of 
rules, which allows it to work with low sensorial and 
computational requirements. However, it requires a great deal 
of memory space for the stack that stores the backtracking 
points as well as additional computational resources to 
manage this stack structure. This algorithm, especially when 
implemented in embedded systems, may cause a serious 
concern in a large target environment. On the other hand, 
Spiral-STC incrementally subdivides the planar work area 
into disjoint tool-size cells, while following a spanning tree 
path of the resulting grid. It generates a coverage path which 
has a comparatively less overlap than the other approximate 
cellular decomposition methods. However, this algorithm 
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Fig. 1.  Variation of the number of required turns according to different map 
coordinate assignments.

cannot handle partially occupied cells. All these algorithms 
based on approximate cellular decomposition suffer from the 
common problem that the algorithm efficiency in view of 
time-to-completion is significantly affected by the initial 
orientation of the robot because the number of turns can 
drastically increase according to the robot’s initial orientation 
relative to the wall.  

This paper has two main contributions. First, we propose a 
simple map coordinate assignment scheme based on the 
history of sensor readings to improve the time-to-completion 
by reducing the number of turns on the generated path. Next, 
we introduce the constrained inverse distance transform 
(CIDT) to link the pieces of the simple spiral paths for 
complete coverage, which can find the non-contiguous 
uncovered cell with the shortest path length away from the 
robot’s current footprint as well as simultaneously find the 
path leading to it.  

The rest of this paper is organized as follows. Section II 
briefly reviews the problems of existing cellular 
decomposition methods and spiral filling rules. Section III 
then describes our approach to complete coverage to solve the 
problems. Section IV presents the experimental results with 
comparison to a conventional approach. 

II. COVERAGE PROBLEM DEFINITION 
As mentioned in Section I, efficiency of the generated path 

from the algorithm based on approximate cellular 
decomposition is affected by the specific scheme of the map 
coordinate assignment. This is primarily due to the 
constrained mobility where the robot is only allowed to move 
to one of the 4 neighborhood cells. This problem, illustrated 
in Fig. 1, leads to the fact that the number of turns on the 
generated path is significantly affected by the map coordinate 
assignment when using the spiral filling rules. The following 
reactive rules are typically used for the execution of the 
simple spiral path based on the right hand rule:  
 

 IF (No obstacle in the right)  Turn right 
 ELSE IF (No obstacle in the front)  Move forward  
 ELSE IF (No obstacle in the left)  Turn left   
 OTHERWISE  Terminate spiral point detection; 

 
Here, the previously covered cells as well as the occupied 
cells are considered as obstacles.  

Furthermore, approximate cellular decomposition suffers 
from the problem of having to fill partially occupied cells due 
to the use of coarse resolution in surface representation as 
depicted in Fig. 2. These partially occupied cells cannot be 
covered with any simple spiral filling rule because they only 
apply to the completely free cells. To handle this, Gonzalez 
[11] suggested the wall-following procedure as soon as an 
obstacle is found. This is a very reasonable solution because 
all the partially occupied cells are located nearby the 
obstacles including the walls. We also follow this strategy in 
our coverage algorithm.  

In most of the complete coverage algorithms, they use the 
concept of driving the robot towards unvisited areas when 
there is no unvisited neighboring area around the robot, 
regardless of the filling approach. How to link simple regions 
is the key to a complete coverage algorithm using simple 
spiral filling rules as described in Fig. 2. It exemplifies that 
two simple regions are left unvisited after execution of the 
first simple spiral path. To link simple spiral paths, Gonzalez 
[11] proposed a backtracking mechanism (BTM) which 
consists of three steps: (A) Backtracking points (BP) to which 
two or more alternative possible paths exist are stored into a 
BP stack, while carrying out the spiral filling path  (B) A valid 
BP which has at least one free unvisited neighboring cell is 
retrieved from the BP stack when the execution of a simple 
spiral-filling path is finished and one of these unvisited cells 
is selected as an entry point to an unfilled associated region  
(C) The shortest return path is generated from a terminal 
spiral point Ps to a selected entry point Pd using a region 
growing procedure starting in Pd and ending when Ps is 
reached. To our knowledge, this mechanism appears to be the 
best way to link simple regions in the spiral kind of coverage 
path planning algorithm and its feasibility was demonstrated 
in several simulated environments. However, it still has some 
drawbacks as follows: 

 
1) It must check the criterion for a BP every time before 

applying spiral filling rules.  
2) A point can be pushed into the BP stack, multiple times. 

Consequently, there are redundancies in the BP stack so 
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Fig. 2.  Coverage map after finishing a simple spiral path.
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that a BP can yield the entry point of more than one 
uncovered region. 

3) It requires a supplementary routine to discard an invalid 
BP when the free cells nearby a BP have vanished in 
order to avoid useless robot motions. 

 
In this paper, we propose a more efficient method to link 

simple regions, which reduces the memory usage as well as 
the computational cost needed to manage BPs with the BP 
stack. The proposed constraint inverse distance transform 
(CIDT) yields a unified solution which selects the next target 
cell which is at the minimal path length away from the current 
cell among the remaining non-contiguous uncovered cells 
while at the same time, finding the path to this target. The 
details of CIDT are described in the following section. 

III. THE PROPOSED COMPLETE COVERAGE ALGORITHM – 
LSP-CIDT 

The proposed online complete coverage algorithm is based 
on linking spiral paths through a constrained inverse distance 
transform (LSP-CIDT). It basically covers a simple region 
using a spiral filling path and then links these simple regions 
using a constrained inverse distance transform (CIDT). Here, 
a simple region denotes an area that can be filled by executing 
a single spiral path. To this end, the environment is 
incrementally modeled by a coarse-grain occupancy grid and 
each cell is set to one of the five types: unexplored, covered, 
partially covered, occupied, and candidate. Here, we define a 
candidate cell as the one which is covered by the range 
sensors of a robot but has not been visited by a robot on a map 
and then regard it as a cell of interest in the CIDT. The overall 
process of the proposed LSP-CIDT coverage algorithm is 
shown in Fig. 3. Initially, all the cells are set to an unexplored 
state and a wall following procedure is taken with an active 
map coordinate assignment process. After wall following is 
finished, the spiral filling rules described in Section II are 
applied. If an obstacle is detected during spiral filling, 
contour following is carried out to sweep around it. When a 
simple spiral path is finished, CIDT is executed to select the 
next target cell which is at the minimal path length away from 
the current cell among the remaining non-contiguous 
uncovered cells while at the same time, finding the path to 
this target. If a candidate cell is found, the robot moves to that 
cell through the generated path and then starts a new spiral 
path in the new region; otherwise, the overall process 
terminates.  

A.  Active Map Coordinate Assignment 
The proposed LSP-CIDT algorithm is primarily focused on 

indoor environments (e.g. home, office, etc.) which have a 
rectangular shape consisting of four walls. In this case, we 
can drastically reduce the number of required turns by 
aligning the x-axis of the map coordinate frame to one of the 
walls of the target environment as shown in Fig. 1. To this 
end, we develop a special map coordinate assignment scheme 

based upon sensor readings as explained in Fig. 4. Here, we 
assume that the robot starts from close to the wall and then 
approach and follow this wall to start our coverage algorithm. 
This procedure is called “wall approach-then-follow”. When 
the robot’s orientation is stably aligned to the wall as shown 
in the Fig. 4 (c), we then use this robot’s heading as the 
x-coordinate of the map reference frame throughout our 
algorithm. To check stable alignment in “wall 
approach-then-follow”, we monitor an empirical parameter L, 
defined as a traveling length over which the robot moves 
without significant change of its heading. Experimental 
results show that this is a simple but an effective way to 
reduce the number of turns in rectilinear environments. 

B. Wall and Contour Following 
As mentioned in Section II, we adopt the wall and contour 

following procedures to cover the partially occupied cells 
nearby the walls and obstacles. The wall following procedure 
is always invoked at the initial stage of LSP-CIDT whereas 
the contour following procedure is called whenever the robot 
meets an obstacle during the execution of a spiral filling path. 
Each procedure terminates when the robot returns to the cell 
from which the procedure started from. These procedures are 
conducted in a reactive manner while spiral filling is 
performed within the cell. Consequently, while spiral filling 
guarantees a complete coverage of a cell since the robot 
moves via the centers of the cells, the wall and contour 
following procedures do not guarantee a complete coverage 
as shown in Fig. 5. It shows that some cells are not completely 
covered even when the center of robot goes through the inside 
of these cells when the robot follows the wall using a right 
hand rule. To handle this problem, these cells are first marked 
as partially covered and thus considered as cells of future 
interest in applying both the spiral filling rules and CIDT. 
These cells are finally revisited for complete coverage. In this 
way, we can readily eliminate the possibility of any 
uncovered regions at the end. 

Fig. 3.  Overall process of the proposed LSP-CIDT coverage algorithm. 
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C. Constrained Inverse Distance Transform 
Constrained Inverse Distance Transform (CIDT) is a key 

component of our coverage algorithm to link simple spiral 
paths. In conventional path planning approaches, Distance 
Transform was used to find the shortest path from the starting 
point to the goal point, given these points. BSA also follows 
this strategy to find the shortest path from the current cell to 
the entry cell of an unvisited region, found by searching the 
recently visited valid backtracking point which has at least 
one free unvisited neighboring cell from the BP stack. 
However, in this subsection, we develop a unified approach 
to find the candidate cell which is at the shortest path away 
from the current cell as well as finding the shortest path 
between them when only the current cell position as a starting 
point is known.  

In Distance Transform, region growing starts from the goal 
point and ends at the starting point after which the shortest 
path from the starting to the goal point is found using gradient 
descent. However, we newly introduce the Inverse Distance 
Transform ( IDT ) where region growing starts from a known 
current cell (starting point) and terminates when meeting an 
unknown candidate cell (goal point) at the shortest path away 
from the current cell. Inverse Distance Transform generates 
the inverse path from the goal to the starting point, hence the 
name. To implement IDT, we adopted the distance transform 
algorithm proposed in [13]. In the original algorithm, all the 
non-occupied cells among the 8 neighborhood of the cell 
being evaluated are first put into a first-in-first-out linked list 
buffer (FIFO), and then the next cell to be evaluated, in terms 

of the distance propagation cost, is retrieved from the FIFO. 
In contrast, we only consider a 4 neighborhood of the cell 
being processed as shown in Figs. 6(b) and (c) because an 
incorrect path, which the robot cannot follow due to a blocked 
cell, may still be generated even though the distance wave can 
propagate as shown in Fig 6 (a). We also store the running 
count of the distance wave when the transition to the next 
distance wave occurs as shown in Fig. 6 (c). When this wave 
count is retrieved from the stack, it also indicates the start of 
cost evaluation of a further distance wave, when only the 
increased wave count is stored in the stack without evaluation 
of the distance propagation cost. 

Intuitively, it is easy to realize that the first found candidate 
cell, while carrying out IDT, is the goal point which lies on 
the shortest path from the current cell. However, this is not 
always guaranteed because distance wave propagates with an 
arbitrary shape in general cluttered environments. Even in the 
simple environment, this may happen because the distance 
wave propagates with the shape of a square. To illustrate this 
point, we show a propagation of distance waves in the simple 
environment with no obstacles in Fig. 7. As shown, we cannot 
assure that the first found candidate cell is the one which is at 
the shortest path until we evaluate the distance propagation 
cost of all the candidate cells existing in the circle including 
the first found candidate cell. To ensure this, we add a 
terminal condition to constrain the propagation of distance 
waves in IDT by comparing the minimum distance cost of the 
currently evaluated distance wave and the distance cost of the 
nearest candidate found so far. The terminating condition of 
IDT is checked every time when a transition to the next 
distance wave occurs, at which point we can obtain the 
minimum distance cost of the current distance wave. The 
condition is described as follows: 

IF minmin DDc ≥   Terminate IDT , 
OTHERWISE  Continue IDT 

where minD and 
cDmin  stand for the distance propagation cost 

of the nearest candidate found so far and the minimum 
distance propagation cost of the currently evaluated distance 
wave, respectively. Here, minD is updated every time a new 
candidate cell with a lower distance propagation cost is found. 

(c) Map coordinates assignment 
after wall alignment 

(b) Map coordinate assignment
before wall alignment 

Wall alignment 
phase 

Wall approach 
phase 

L 

(a) Initial stage of wall following 

Fig. 4.  An active map coordinate assignment scheme. 

Fig. 5.  Emergence of partially covered cells during wall and contour
following. 
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This terminating condition is very reasonable because the 
minimum distance propagation cost is a monotone increasing 
function of the wave count, i.e., there cannot exist any cell 
which has a lower cost than minD  in the further wave than the 
wave meeting the terminal condition. Using these rules, we 
can efficiently constrain the search boundary of IDT to save 
memory and time. Therefore, we call the overall process of 
searching the nearest candidate cell Constrained Inverse 
Distance Transform (CIDT). 

D. Path Generation based on CIDT 
Up to this point, we found the nearest candidate point 

which is a non-contiguous uncovered cell from the robot. 
However, as mentioned previously, the path obtained from 
CIDT is an inverse path from the goal to the starting point. 
Therefore, we should rebuild the forward path between the 
current cell and the target cell from this inverse path. We can 
do this in two ways. We can store each way point, a 2D index 
of the cell found by a gradient decent search starting from the 
target cell, into a first -in-last-out (FILO) linked list buffer as 
shown in Figs. 8(a)(b). The robot can move to the target cell 
using the way points retrieved in reverse order from this 
buffer. Or we can simply put a minus sign to the distance 
value of each way point found in the previous sentences as 
shown in Fig. 8(c). Using this changed distance map, the 
robot can move to the target cell using an additional gradient 

descent search starting from the current cell. The first method 
requires less computation than the second because it needs to 
apply gradient descent search once while the second needs to 
apply it twice. However, the first method requires an 
additional memory to save the way points. 

IV. EXPERIMENTAL RESULTS 
We have conducted experiments in both the simulated and 

real environments to verify the workings of our approach. Fig. 
9 shows the sensor configuration of the robot platform used 
as an experimental test bed. It is a differential-drive robot 
equipped with seven infrared sensors having a maximum 
range of 30 cm. In our experiments, the maximal velocity of 
the robot and the size of a cell are set to 25 cm/s and 30 cm, 
respectively. 

A. Simulation Result 
To verify the influence of the proposed active map 

coordinate assignment scheme on efficiency of the generated 
path, we carried out two simulations with the same initial 
robot pose in the same environment depicted in Fig. 10. 

In the first simulation, we align the x-axis of the map frame 
with the initial robot heading without active map coordinate 
assignment. As seen in Fig. 11, the generated path contains 
many “zig-zag” sections. However, the path with the 
proposed coordinate assignment has much fewer “zig-zag” 
sections as shown in Fig. 12. In Figs. 11 and 12, the color of 
the cells in the coverage map becomes redder as the robot 
sweeps the same cell repeatedly. Table 1 shows that the 
number of turns is drastically reduced using active map 
coordinate assignment, which leads to a shorter 
time-to-completion. However, the coverage itself does not 
differ significantly because the overall paths of both 
simulation results are almost the same. 

 
TABLE I 

COMPARISON OF THE NUMBER OF TURNS IN THE COVERAGE PATH 

Case Number of 
turns 

Time-to- 
completion 

(minute) 

Coverage 
(%) 

Without active 
map coordinate 

assignment 
88 8.80 91.65 

With active 
map coordinate 

assignment 
31 7.34 91.73 

Fig. 7.  Property of distance wavefront propagation in Inverse Distance
Transform. 
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Fig. 8.  The proposed method to find the path to the next target cell using the 
distance map obtained through CIDT. 
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Fig. 10.  Simulation environment with the initial robot pose marked.
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Fig. 9.  Sensor configuration of our robot platform. 
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B.  Results on Real Cleaning Robots 
To show the robustness of our algorithm, we conducted 

experiments in four different environments, all with the size 
of 4.2 m by 5 m, shown in the first column of Fig. 13. When 
applying the LSP-CIDT algorithm to a real environment, the 
accuracy of the robot pose estimate is a key factor affecting 
the overall performance of the algorithm. Therefore, we built 
our own odometry system combining the encoder and gyro 
sensor readings to limit the robot’s position error within a 
tolerable error boundary defined as the half size of a cell. In 
the cleaning robot, the entire algorithm has been embedded 
into a DSP F2812 on board while a ceiling camera is used to 
extract the ground truth position of the robot. Fig. 13 shows 
the results. Here, the coverage is measured based on the 
ground truth of the robot position calculated from ceiling 
image. The averages of the time-to-completion and coverage 
are 8.86 minutes and 94.99 percents, respectively. These 
results support that our algorithm is also applicable to various 
cluttered indoor environments. 

V. CONCLUSION 
This paper presents a robust online complete coverage 

algorithm based on approximate cellular decomposition and 
spiral filling paths. This algorithm drastically reduces the 
number of turns on the generated path by devising a 
sensor-based map coordinate assignment scheme. In addition, 
we introduce a new transform called constrained inverse 
distance transform (CIDT) to link the simple spiral paths for 
complete coverage. CIDT enables a unified solution which 
can select the next target cell which is at a minimal path 
length away from the current cell among the remaining 
non-contiguous uncovered cells as well as find the path to this 
target, simultaneously. Finally, we demonstrate that our 
algorithm is applicable to embedded robotic systems with a 
robust performance in various complex environments for 
robots. However, since our algorithm has been tested in a 
single room so far, in the future, it also needs to be tested 
against multiple rooms. 
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(b) Overall trajectory  (c) Coverage map(a) Resulting Map  
Fig. 11.  Simulation results without our active map coordinates assignment.

(b) Overall trajectory  (c) Coverage map(a) Resulting Map  
Fig. 12.  Simulation results with our active map coordinate assignment.
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Fig. 13.  Real-world experiment. The first column shows the four different 
environment configurations, the second, the overall trajectories, the third, the
resulting maps, and the last shows the coverage. 
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