
Decentralized Planning for Dynamic Motion Generation of Multi-link

Robotic Systems

Yuichi Tazaki, Hisashi Sugiura, Herbert Janssen and Christian Goerick

Abstract— This paper presents a decentralized planning
method for generating dynamic whole body motions of multi-
link robots including humanoids. First, a robotic system will
be modeled as a general multi-body dynamical system. The
planning problem of a multi-body system will then be formu-
lated as a constraint resolution problem. The problem will be
solved by means of an extended Gauss-Seidel method, which is
capable of handling multiple constraint groups with different
priorities. The method will be demonstrated in whole-body
motion generation tasks of a humanoid, both in numerical
simulations and in experiments using a real humanoid robot.

I. INTRODUCTION

Complex multi-link robots such as humanoid robots have a

potential for performing multiple tasks simultaneously under

various constraint conditions by making use of its large

degrees of freedom. However, to design a controller that

exploits this feature is extremely challenging. To date, several

methods have been proposed: Kuffner et al [1] proposed a

method that consists of two phases, in which a statically

stable and collision free trajectory is generated using a

randomized planner [2] in the first phase, and it is shaped

to be dynamically consistent using a filtering module in the

second phase. Two-phase approaches has also been taken by

Yamane et al [3] for creating computer animation of human

figures doing manipulation tasks, and by Yoshida et al [5],

Harada et al [4] for dynamic motion planning of humanoid

robots.

On the other hand, Sentis and Khatib [6] proposed a

framework based on task prioritization. They first categorize

the objectives of humanoid motion planning into three levels:

constraints, movements in operational spaces, and postures.

Each objective is expressed by means of a Jacobian matrix,

which decomposes a whole configuration space into a task-

space and a null-space, which are orthogonal to each other.

Motions of lower priority are then projected onto the null

space of higher priority objectives, so that they will never

interfere with the motions of higher priority.

Although the existing methods have been successful to a

certain extent, they seem to have limitations as well: First, the

task-prioritization-based method is purely reactive; it makes

no prediction into the future. There certainly are a class of

tasks that requires planning; such tasks include generation of

gait patterns, minimization of long-term energy consumption

and many others. On the other hand, randomized search

methods seem to suffer from a fundamental difficulty in

Y. Tazaki is with the Department of Mechanical Science and Engineering,
Nagoya University, Nagoya, Japan. tazaki@nuem.nagoya-u.ac.jp

H. Sugiura, H. Janssen and C. Goerick are with Honda Research Institute
Europe, Offenbach, Germany.

sampling from the set of feasible configurations of the robot.

In many cases, the volume of feasible configuration space is

much smaller than that of the whole configuration space,

making the sampling of feasible configurations inefficient.

Currently, this problem is handled by introducing a low-

dimensional parametrization of the feasible region, which is

highly problem-dependent.

Motivated by the above backgrounds, this paper presents a

decentralized planning method for robots with high degrees

of freedom that is based on constrained optimization. The

key idea underlying our method is that planning process

should make use of gradient-based techniques as much as

possible, and randomized techniques should be used to assist

the gradient-based method to avoid local optimal solutions.

In the proposed method, the robot is modeled as a collection

of rigid bodies connected by holonomic constraints. Unlike

conventional techniques that define decision variables in

joint coordinate space, all state variables of the multi-body

system (position and velocity of rigid bodies, constraint

forces and so forth) are directly used for planning. The

motion generation problem is then formulated as a large-

scale constrained optimization problem. A feasible gradient

descent direction subject to the constraints is obtained by

computing Lagrange multipliers using an extended Gauss-

Seidel method. Making use of the sparsity of the graph

structure, the computational complexity of one iteration of

the Gauss-Seidel method is linear with respect to the number

of rigid bodies and that of joints. One advantage of this

graph-based formulation is that it explicitly computes the

constraint forces and thus it is especially suitable for tasks

that involve interactions between different parts of the body

such as dynamic balancing. This feature will be demonstrated

in the body moment generation task of a humanoid robot,

in which the robot is required to generate a desired counter

moment on its body by swinging its arms. Moreover, the

proposed method is applicable not only to humanoids but in

principle to any type of multi-linked robotic systems.

The rest of this paper is organized as follows: Section II

gives a brief explanation to the mathematical model of multi-

body systems. Next, in Section III, the decentralized planning

technique is explained in detail. In Section IV, numerical

simulations and demonstrations using a real humanoid robot

are shown. Finally, Section V summarizes this paper with

comments on further extensions.

II. MULTI-BODY SYSTEMS

In this section, we introduce a multi-body system, which is

composed of a collection of multiple rigid bodies connected

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1582

TABLE I

LIST OF VARIABLES

States of rigid body i at time t:
pi,t ∈ R

3 : position qi,t ∈ Q : orientation

vi,t ∈ R
3 : velocity ωi,t ∈ R

3 : angular velocity

fi,t ∈ R
3 : force τi,t ∈ R

3 : moment

States of joint (i, j) at time t:
θi,j,t ∈ R : joint angle

fi,j,t ∈ R
3 : constraint force

τi,j,t ∈ R
3 : constraint moment

together by holonomic constraints. Table I lists all the vari-

ables use for modeling the time-evolution of a multi-body

system. The symbol Q denotes the set of unit quaternions.

All the above variables are expressed with respect to the

global coordinate frame. The kinematics and dynamics of

the i-th rigid body are described by the following rules:

pi,t+1 = pi,t + h vi,t, (1)

qi,t+1 = q(hωi,t) qi,t, (2)

mi vi,t+1 = mi vi,t + h fi,t, (3)

Ii,t+1 ωi,t+1 = Ii,t ωi,t + h τi,t. (4)

Here, h ∈ R denotes the step size of the Euler stepping. The

function q(ω) returns a quaternion representing a rotation

along the vector ω/‖ω‖ with the rotation angle ‖ω‖. See

Appendix for a concrete definition. Moreover, mi and Ii,t

denote the mass and the inertia matrix of the i-th rigid

body, respectively. All variables related to rigid bodies are

expressed with respect to the global coordinate frame.

Now, let us denote by Θ a set of pairs of indices indicating

which pair of rigid bodies are connected by a joint. Here we

assume for any (i, j) ∈ Θ, i < j. Let pJ
i,j , qJ

i,j (pJ
j,i, qJ

j,i) be

the displacement and the orientation of the joint expressed in

the local coordinate frame of the i-th (j-th) rigid body. Then

the holonomic constraint expressing the joint (i, j) ∈ Θ is

expressed as follows:

pi,t + qi,t pJ
i,j = pj,t + qj,t pJ

j,i,

(qi,t qJ
i,j)

−1(qj,t qJ
j,i) = q(ez θi,j,t)

(5)

where ez = [0, 0, 1]T is a unit vector which determines

the joint axis direction. Here we assume that joints are

of revolutive type, but other various joint types including

prismatic joints and spherical joints can be expressed in

similar forms.

On the other hand, the total force(moment) applied to the

i-th rigid body is the sum of all constraint forces(moments)

and external forces(moments), thus the following hold:

fi,t = f ext
i,t +

∑

j : (i,j)∈Θ

qJ
i,j,t fi,j,t −

∑

j : (j,i)∈Θ

qJ
i,j,t fi,j,t,

(6)

τi,t = τ ext
i,t +

∑

j : (i,j)∈Θ

(pJ
i,j,t × (qJ

i,j,t fi,j,t) + qJ
i,j,t τi,j,t)

−
∑

j : (j,i)∈Θ

(pJ
i,j,t × (qJ

i,j,t fi,j,t) + qJ
i,j,t τi,j,t)

(7)

where pJ
i,j,t = qi,t pJ

i,j and qJ
i,j,t = qi,t qJ

i,j . The symbols

f ext
i and τ ext

i denote the external force and moment; the sum

of forces acting on the rigid body except constraint forces,

which usually includes the gravity force.

In physics simulation, which is a typical application of

multi-body systems, we calculate the time-evolution of rigid

bodies in a single time step; that is, given states (postures and

velocities) of rigid bodies at time t, we calculate constraint

forces with which the state of rigid bodies at time t + 1,

determined by (1)-(4) and (6)(7), satisfy (5). On the other

hand, in the planning method described in the next section,

the goal is to compute a sequence of postures, velocities

and constraint forces in a prediction horizon with multiple

time steps satisfying (1)-(7) with some additional constraints

encapsulating joint limits and desired values.

III. DECENTRALIZED PLANNING

A. Overview of the proposed method

In this section, the proposed decentralized planning frame-

work will be explained in detail. At first, we discuss a

general constraint resolution problem. The core of solving

this problem is the computation of Lagrange multipliers. For

this purpose, we employ the projected Gauss-Seidel method.

Next, a planning method for robotic systems will be derived

from this general framework. From a conceptual point of

view, the proposed method is decentralized in the sense that

there is no single, high-level decision making element in the

planner. Instead, at first a task objective will be imposed by

means of a constraint on a task-relevant variable. Then this

constraint information will in some sense be propagated to

other variables by the Gauss-Seidel iteration. After a certain

number of iterations, a motion that achieves the objective

making use of all the variables in the kinematic graph will

be produced. In this sense, each variable in the graph can be

seen as a single agent and the whole graph can be seen as a

multi-agent system, in which the agents negotiate each other

through Gauss-Seidel iterations.

B. General constrained optimization problems

In this subsection, we formulate a general constraint

resolution problem. Let x ∈ R
n and let c : R

n 7→ R
m

be a smooth function. Moreover, let y = c(x). The variable

y is constrained in the following manner:

yi = 0 if 1 ≤ i ≤ neq,

y
i
≤ yi ≤ yi otherwise.

(8)

The first neq elements of y are subject to equality constraints,

and other elements are subject to range constraints. This

defines a constraint manifold in R
n; M := {x | y =

c(x) satisfies (8)}. Our purpose is to find a value of x that

lies in M. To this aim, we first choose an initial value of x;

1583

x0. Next, we generate a sequence of points that converges

to the constraint manifold M by the following formula:

xτ+1 = xτ +J(xτ)Tλτ . Here, the subscript τ is the index of

points in the sequence. Moreover, J(x) is the Jacobian matrix

of c(x); J(x) = ∂c/∂x(x) and λτ ∈ R
m is the Lagrange

multiplier. The multiplier λτ should be chosen in such a

way that x moves towards the constraint manifold at every

iteration. Such a multiplier is obtained in the following way:

Let x be a point in the sequence and let λ be a multiplier

(subscripts are omitted). The change of x in one step is given

by δx = J(x)Tλ. Moreover, by linear approximation, the

change of y is expressed as δy ≈ J(x)δx = J(x)J(x)Tλ.

Here we impose the following constraints on δy and λ: for

1 ≤ i ≤ neq, δyi = −µyi, and for neq < i ≤ m,

δyi ≥ −µ(yi − y
i
), λi ≥ 0, (δyi + µ(yi − y

i
))λi = 0

if yi < yi,

δyi ≤ −µ(yi − yi), λi ≤ 0, (δyi + µ(yi − yi))λi = 0

if yi > yi,

λi = 0 otherwise.
(9)

Here 0 < µ < 1. Notice that with a λ satisfying these

conditions, the amount of constraint violation will be reduced

with the rate (1 − µ). Thus the sequence will exponentially

converge to the constraint manifold M. The rate of con-

vergence is determined by the constant µ. The problem of

finding λ satisfying the conditions given in (9) is a class of

so-called linear complementarity problems (LCP in short).

Today, the projected Gauss-Seidel method is known as a

powerful iterative method for solving large-scale LCP. The

reader is referred to [7] for theoretical background of LCP

and introduction of projected Gauss-Seidel method. In the

following, we present a specialized projected Gauss-Seidel

method for constraint resolution problems.

Algorithm compute multiplier

Inputs

x constrained variable

λ0 initial value of Lagrange multiplier

Outputs

δx change of constrained variable

λ Lagrange multiplier

Initialization

y := c(x), λ := λ0, δx := J(x)Tλ.

for i = 1 to m
if i ≤ neq

ri := −µyi

else

ri := −µ(yi − y
i
) if yi < y

i

ri := −µ(yi − yi) if yi > yi

ri := 0 otherwise

end

Ai,i := i-th diagonal element of J(x)J(x)T

end

r := r − J(x)δx

Iteration

loop

if convergence condition is satisfied, terminate.

for i = 1 to m

λ̂i := λi + ri/Ai,i

if i > neq

λ̂i := max(0, λ̂i) if yi < y
i

λ̂i := min(0, λ̂i) if yi > yi

end

δλi := λ̂i − λi

λi := λ̂i

δδx := J(x)rowi
T
δλi

δx := δx + δδx
r := r − J(x)δδx

end

end

In this algorithm, at first, the Lagrange multiplier λ is initial-

ized as λ0, and then the constraint residual r is calculated. In

each iteration, for each i-th element starting from i = 1 up to

m, a new value of λi, λ̂i, is calculated using the residual ri

and the i-th diagonal element of A = J(x)J(x)T, which can

be precomputed. If the i-th constraint is an range constraint,

then λ̂i is projected to 0 according to the state of constraint

violation (whether the variable is hitting the upper limit or

the lower limit) and the sign of λ̂i. Since A is symmetric

positive definite, this projection ensures that the i-th linear

complementarity condition is preserved. Finally, the change

of variable δx and the residual r is updated accordingly. The

symbol J(x)rowi denotes the i-th row vector of J(x).

Using the above algorithm as a sub-routine, the next

algorithm generates a sequence of points that converges to

the constraint manifold M.

Algorithm execute planning

Inputs

x0 initial value of constrained variable

Outputs

{xτ} sequence of constrained variable

λ := 0

for τ = 0, 1, . . .
if convergence condition is satisfied, terminate.

(δxτ , λ) := compute multiplier(xτ , kλ)
xτ+1 := xτ + δxτ

end

Remark: Each time compute multiplier is called in

execute planning, the previous value of the Lagrange

multiplier multiplied by a constant k is passed as an

initial value. This is because in most case the value of

Lagrange multiplier changes continuously, meaning that

the value computed in the previous iteration serves as a

good initial guess for the next iteration. The constant k
is normally chosen from [0, 1]. However, setting k as 1
sometimes causes a long-period oscillatory behavior. A

good compromise between speed and stability should be

found by tuning.

1584

(a) target in front (b) target behind

Fig. 1. Target reaching task

C. Constraints with priorities

Robotic planning is in general multi-objective. In multi-

objective planning, it is not always possible to accomplish

all objectives at the same time. One practical solution is

to introduce priorities; if not all objective are achievable,

those with lower priorities are neglected or only partially

achieved. We will show in this subsection that a slight

modification to the conventional projected Gauss-Seidel

method enables us to handle multiple constraint groups with

different priorities. Let us consider L different constraint

groups, in which groups with larger indices are assigned

higher priorities. The basic idea is that when we calculate

the Lagrange multiplier of the l-th constraint group, we take

into account the effect of the multipliers of lower priorities

(1st up to (l− 1)-th constraint groups), while ignoring those

of higher priority groups ((l + 1)-th up to L-th). The actual

modification needed to implement this prioritization is quite

simple; we split the whole Gauss-Seidel loop into multiple

loops according to the constraint groups, and execute these

loops in the ascending order with respect to the constraint

priority. The modified algorithm is shown below:

Algorithm execute planning with priority

λl := 0 for l ∈ [1, L]
for τ = 0, 1, . . .

if convergence condition is satisfied, terminate.

x̂τ := xτ

for l = 1 to L
(δxτ

l , λl) := compute multiplier group(l, x̂τ , kλl)
x̂τ := x̂τ + δxτ

l

end

xτ+1 := x̂τ

end

The algorithm compute multiplier group is almost

the same as compute multiplier except that compute

multiplier group only treats a constraint group with an

index specified by the input l.

D. Constraint resolution for robotic planning

In this subsection, we will specialize the general constraint

resolution framework described in the previous subsections

for robotic planning problems. All variables listed in Table I

in Section II are directly used as planning variables. First,

we will formulate the kinematic and physical laws described

in Section II as constraints. The constraint variable and its

amount of change for the position update law (1) are written

as

yp
i,t = pi,t+1 − pi,t − h vi,t,

δyp
i,t = δpi,t+1 − δpi,t − h δvi,t.

(10)

For the orientation update law (2), we cannot simply define

the change of orientation in the same domain as orientation

itself, since orientation is defined in the domain of unit

quaternions. Instead, we express the change of orientation by

means of a vector in R
3. Let Ωi,t ∈ R

3 be a rotation vector

expressing the change of qi,t. The orientation after rotation

is given by q(Ωi,t)qi,t. Using this formulation, a constraint

expressing the orientation update law is derived as

yq
i,t = q(hωi,t) qi,t Ω(q−1

i,t q(hωi,t)
−1 qi,t+1),

δyq
i,t = Ωi,t+1 − q(hωi,t)Ωi,t − h δωi,t.

(11)

The proof is omitted. See Appendix for the definition of the

function Ω(·). For the velocity update law (3), we have

yv
i,t = mi vi,t+1 − mi vi,t − h fi,t,

δyv
i,t = mi δvi,t+1 − mi δvi,t − h δfi,t.

(12)

For the angular velocity update law (4), although the inertia

matrix Ii,t is a function of the orientation qi,t, it is difficult to

take this dependency into account. Here, we simply ignore

this dependency and regard (4) as a constraint on angular

velocities and moments:

yω
i,t = Ii,t+1 ωi,t+1 − Ii,t ωi,t − h τi,t,

δyω
i,t = Ii,t+1 δωi,t+1 − Ii,t δωi,t − h δτi,t.

(13)

For joint constraints (5), we have

yp
i,j,t = pi,t + pJ

i,j,t − pj,t − pJ
j,i,t,

δyp
i,j,t = δpi,t + Ωi,t × pJ

i,j,t − δpj,t − Ωj,t × pJ
j,i,t,

(14)

yq
i,j,t = (qJ

i,j,t)
−1 (qJ

j,i,t)Ω(qJ
j,i,t

−1
qJ
i,j,t) q(ez θi,j,t),

δyq
i,j,t = ez δθi,j,t + qJ

i,j,t

−1
Ωi,t − qJ

i,j,t

−1
Ωj,t.

(15)

These are derived based on a discussion similar to the case

of (11). Finally, for force and moment constraints, we obtain

yf
i,t = fi,t − f ext

i,t

−
∑

j : (i,j)∈Θ

qJ
i,j,t fi,j,t +

∑

j : (j,i)∈Θ

qJ
i,j,t fi,j,t,

δyf
i,t = δfi,t −

∑

j : (i,j)∈Θ

qJ
i,j,t δfi,j,t +

∑

j : (j,i)∈Θ

qJ
i,j,t δfi,j,t,

(16)

yτ
i,t = τi,t − τ ext

i,t −
∑

j : (i,j)∈Θ

(pJ
i,j,t × qJ

i,j,t fi,j,t + qJ
i,j,t τi,j,t)

+
∑

j : (j,i)∈Θ

(pJ
i,j,t × qJ

i,j,t fi,j,t + qJ
i,j,t τi,j,t),

δyτ
i,t = δτi,t −

∑

j : (i,j)∈Θ

(pJ
i,j,t × qJ

i,j,t δfi,j,t + qJ
i,j,t δτi,j,t)

+
∑

j : (j,i)∈Θ

(pJ
i,j,t × qJ

i,j,t δfi,j,t + qJ
i,j,t δτi,j,t).

(17)

1585

1 2

3 4

Fig. 2. Moment generation along x-axis

1 2

3 4

Fig. 3. Moment generation along z-axis

Here, we again ignore the dependency of orientations on

these constraints. Using the above relations, we can construct

the function c(x) and its Jacobian J(x). Moreover, the

Jacobian J(x) is highly sparse; by an appropriate imple-

mentation, the computational complexity of a single iteration

in compute multiplier[group] becomes proportional to the

number of constraints. Furthermore, although not described

here, various limits (joint movable ranges, velocity limits,

torque limits) can be expressed as range constraints. More-

over, desired values of variables can be encapsulated as con-

straints as well. However, it is clear that if we treat desired

value constraints equally with other constraints, it will lead

to over-constrained situation and consequently no feasible

solution will be produced (for an example, specifying an

unreachable hand position may violate joint constraints). To

cope with this problem, we assign lower priorities to the

desired value constraints than those of other constraints. By

doing this, the planner will produce a solution that tries to

accomplish the desired values as much as possible, while

fulfilling the kinematic / physical constraints precisely.

(a) x-moment (b) z-moment

Fig. 4. Desired and generated moments

IV. EXPERIMENTS

A. Implementation of the method for humanoid upper body

We have implemented the proposed method to the upper

body control of the humanoid robot ASIMO. The upper body

of the robot is fixed to the global coordinate frame. Here, x-

axis points to the front, y-axis upward and z-axis to the right

with respect to the robot. Each hand is regarded as a single

rigid body. Moreover, the head movement is not considered.

Therefore, the whole upper body is modeled as a multi-body

system composed of 11 rigid bodies and 10 hinge joints. In

the following experiments, we set the step size h as 0.1[s]

and the prediction step length N as 25. The planning method

is implemented in C++ programming language and executed

in a computing environment composed of 2.4GHz CPU and

2GB memory. The simulation environment is constructed

using Springhead physics simulation library [8].

B. Target reaching task

We first consider a simple target reaching task, in which

the robot moves its hand position towards a specified target

position. To specify this objective, we impose a desired-

position constraint on the right hand. Fig. 1(a)(b) show

simulation results with two different target positions, one in

front of the robot and one behind. Planned trajectories are

visualized with small dots depicting the centers of mass of

rigid bodies connected by solid lines. A relatively large dot

depicts the target position. The robot in each figure is in the

posture after executing the plan. Thanks to the prioritization

mechanism, even when a target is specified in an unreachable

position, the hand is moved to the nearest possible position

to the target while not violating the kinematic constraints.

C. Body moment generation task

Next, we consider a body moment generation task, in

which the robot should move its whole body to generate

a specified amount of counter moment on its body in a

specified direction. To implement this objective, we impose

a desired-moment constraint on the robot’s body during the

latter half (t ∈ [N/2, N)) of the prediction horizon. Let us

emphasize that this task is much more difficult than the target

reaching task, because the rigid body to which a desired-

moment constraint is imposed on (the body) and those whose

motions actually generate a desired moment are different.

This means that the effect of the desired-moment constraint

should be transmitted from the center to the tip of the

1586

kinematic tree, in order to generate an appropriate motion.

Fig. 2 and Fig. 3 show the simulation results. We can observe

that each motion is basically composed of three distinct

phases; i) the robot moves its arms to a good starting posture

(preparation), ii) the robot accelerates the arms in a certain

direction (forward acceleration), and then iii) accelerates

them in the opposite direction (backward acceleration). Note

that the planner is not given any a priori knowledge about

how it should swing the arms in order to generate a desired

counter moment. Fig. 4 shows the comparison between the

desired moment and the actually generated moment. Desired

moments are drawn in dashed lines while genereted moments

are drawn in solid lines.

Next we show the results obtained using real humanoid

robot ASIMO (Fig. 5). In this case, the robot consecutively

plans and executes moment generation motions for three

different directions (x, z, and y axes). A key difference

between the previous example is that the whole motion is

required to be continuous; the robot should use the terminal

state of the previous motion as the initial state of the next

motion. To efficiently generate body-moments under this

condition, the planner effectively makes use of the former

half of the prediction horizon, on which no desired moment

constraint is imposed, to generate a preparation motion for

the next moment generation.

V. CONCLUSION

In the current implementation, the convergence speed of

the Gauss-Seidel iteration is not fast enough, making the

method unable to be executed in real-time. In the future,

further speed-up of the method, analytical study of computa-

tional complexity as well as comparison with other existing

planning methods are required. One of the interesting ex-

tensions would be to incorporate contact constraints, which

enables more complex and various motions such as walking,

object manipulation and so forth. We believe such complex

motions involving discontinuity and non-convexity can still

be treated in a decentralized framework. However, the current

gradient descent formalism is obviously not enough; we

will need to incorporate more sophisticated mechanism for

communication among planning agents in order to generate

globally optimal motions.

VI. ACKNOWLEDGMENTS

This research has been funded by Japan Society for the

Promotion of Science.

APPENDIX

Quaternion is a convenient mathematical tool for repre-

senting rotation in 3D space. A unit quaternion q is a vector

with four elements: q = [w vT]T = [w [x y z]]T, ‖q‖ =
1. A quaternion representing a rotation along a unit vector η
with a rotation angle θ is given as

q(η, θ) =

[

cos(θ/2)
sin(θ/2)η

]

.

Further, we define q(ω) = q(ω/‖ω‖, ‖ω‖). Conversely, the

function Ω(q) returns a vector that represents a rotation

(a) x-axis moment

(b) z-axis moment

(c) y-axis moment

Fig. 5. Motion replay on the real humanoid

equivalent to a given quaternion q; for q = q(η, θ), Ω(q) =
θη. A product of two quaternions is defined as

q1 · q2 =

[

s1s2 − vT
1 v2

s1v2 + s2v1 + v1 × v2

]

,

and it represents a rotation equivalent to the composition of

two rotations. The inverse of a quaternion q = [w vT]T is

given by q−1 = [w − vT]T. A rotation transformation of a

vector v ∈ R
3 is defined as

qv := v̂,

[

∗
v̂

]

= q ·

[

∗
v

]

q−1

where ∗ indicates the value does not matter.

REFERENCES

[1] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba and H. Inoue;
Dynamically-stable Motion Planning for Humanoid Robots, Au-
tonomous Robots, vol.12, no.1, pp.105-118, 2002.

[2] J. J. Kuffner and S.M. LaValle, RRT-connect: An efficient approach
to single-query path planning, Proceedings of IEEE International
Conference on Robotics and Automation, 2000.

[3] K. Yamane, J. Kuffner and J.K. Hodgins; Synthesizing Animations of
Human Manipulation Tasks, ACM International Conference on Com-
puter Graphics and Interactive Techniques (Siggraph 2004), pp.532-
539, 2004.

[4] K. Harada, M. Morisawa, K. Miura, S. Nakaoka, K. Fujiwara,
K. Kaneko and S. Kajita; Kinodynamic Gait Planning for Full-Body
Humanoid Robots, IEEE/RSJ International Conference on Intelligent
Robots and Systems, Nice, France, Sept. 22-26, 2008.

[5] E. Yoshida, I. Belousov, C. Esteves and J.P. Laumond; Humanoid Mo-
tion Planning for Dynamic Tasks, IEEE-RAS International Conference
on Humanoid Robots, Tsukuba, Japan, 2005.

[6] L. Sentis and O. Khatib; A Whole-Body Control Framework for
Humanoids Operating in Human Environments, Proceedings of the
IEEE International Conference in Robotics and Automation, Orlando,
USA, May, 2006.

[7] R. W. Cottle, J. Pang, R. E. Stone; The Linear Complementarity
Problem, Academic Press, 1992.

[8] Springhead physics simulation engine,
http://springhead.info

1587

