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Abstract— Snake robots have many degrees of freedom,
which makes them both extremely versatile and complex to
control. In this paper, we address this complexity by intro-
ducing two algorithms. Annealed chain fitting efficiently maps
a continuous backbone curve to a set of joint angles for a
snake robot. Keyframe wave extraction takes joint angles fit to
a sequence of backbone curves, and identifies parameterized
periodic functions which produce those sequences. Together,
they allow a designer to conceive a gait in terms three-
dimensional shapes and translate them into easily manipulated
wave functions. We validate the algorithms by using them to
produce rolling gaits for crawling and climbing.

I. INTRODUCTION

Snake robots are mobile actuated chains that can lo-

comote via coordinated flexing of their bodies. Typically,

snake robots possess many active joints, giving them great

versatility, but also making it infeasible for an operator to

individually control each degree of freedom. A common

solution to this difficulty is to define parameterized gaits, or

patterned joint motions, and have the operator select among

them to direct the robot. The key question then becomes how

to design useful gaits.

The gait design approach taken in this paper is based on

our observation that gait designers think more easily in terms

of the three-dimensional shape assumed by a snake robot

than in terms of joint angles. With this approach, we first

specify a gait as a moving three-dimensional curve, then

discretize it in time. From this discretization, we extract a

series of keyframe backbone curves that the robot must pass

through in order to execute the gaits. For each backbone

curve, we then find the set of joint angles that fits the robot

to the curve. We then reassemble these sets of joint angles

into numerical functions describing the trajectory of each

joint angle. Finally, we perform a second fitting operation,

which identifies analytical functions that minimally capture

the form of the numerical functions.

II. BACKGROUND

Snake robots have been studied since at least 1971, with

Hirose’s pioneering work on the Active Cord Mechanism

(ACM) [1]. While this and other early snake robots were

confined to planar motion, much recent effort has been

directed towards mechanisms that can assume full three-

dimensional shapes. Notable developments in this area in-

clude Yim’s Polybot [2], Mori and Hirose’s ACM-R3 [3],

our modular snakes (“modsnakes”), shown in Fig. 1 [4],

Gonzalez-Gomez et al.’s Hypercube [5], [6], and Goldman

and Hong’s HyDRAS [7], [8].

Fig. 1: Our modular snake (“modsnake”) robots have sixteen joints, arranged
to allow full workspace flexibility. In past work, we have demonstrated a
variety of successful motion strategies for these robots, including traversal
of both smooth and rough terrain, swimming, and pole climbing (shown
here).

Gaits are commonly defined for snake robots by specifying

the joint angles as oscillating functions of time. Hirose’s

serpenoid curve sets the joint angles sinusoidally along

the body of the robot and varies the phase of the sine

wave in time to generate locomotion [1], [9]. Chirikjian and

Burdick [10] extended this principle to a wider range of

waves and locomotion modes. We have found much success

in applying a three-dimensional variation of this approach to

generate crawling, climbing, and swimming gaits [11], [12];

similar results have been demonstrated by Gonzalez-Gomez,

et al. [5], [6], using central pattern generators (CPGs) to

generate the waves in a distributed fashion. The use of

CPG-generated waves is becoming increasingly widespread

in locomotion control, and is thoroughly reviewed in [13].

Several researchers have applied forms of backbone fitting

to find the basic waves that make up snake robot gaits.

Chirikjian and Burdick [14] analyzed the curvature of a

sidewinding snake, Andersson explored algorithms for fitting

a chain of universal joints to a continuous curve [15], and

Goldman and Hong [7], [8] examined the kinematics of

climbing a pole. These approaches share the limitation,

however, of assuming either planar mechanisms or omni-

directional flexibility at each joint.

III. GAIT DESIGN FOR MODSNAKE ROBOTS

Our modsnake robots are constructed of chains of single-

degree-of-freedom modules. Each module consists of a joint

and a link, and the joint axis of each module is rotated around
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Fig. 2: Modsnake geometry. The ith link is distal to the ith joint, and
together they make up the ith module. Each joint is rotated around the
central axis of the snake by 90◦ with respect to the previous joint; in this
illustration, joint i generates rotation in the plane, while joint i+1 generates
rotation out of the plane.

the central axis of the snake by 90◦ with respect to the

previous joint, as illustrated in Fig. 2 [4]. This geometry

allows full three-dimensional flexibility while maintaining

smaller individual links and greater robustness than equiva-

lent designs combining pairs of modules into active universal

joints. We use the convention that the ith link is distal to the

ith joint, and that the angle of the ith joint thus determines

the position of link i with respect to link i − 1.

We control these robots by designing gaits which prop-

agate waves along their bodies [12]. The first stage in this

wave-based approach is to divide the modules into odd and

even sets by joint number, such that all the joint axes in

each set are parallel when the snake robot is stretched out.

We then take parameterized, periodic functions in time and

joint number for each set, and manipulate those parameters

to design useful gaits. For example, a basic form of this

approach is to define α(n, t), the angle of the nth joint at

time t, as

α(n, t) =

{

βodd + Aodd sin(θodd) odd

βeven + Aeven sin(θeven + δ) even
(1)

θodd,even = (Ωodd,evenn + ωodd,event) , (2)

where β, A, θ, and δ are respectively offset, amplitude,

frequency, and phase shift. The parameter Ω describes the

spatial frequency of the macroscopic shape of the robot and

the temporal component ω determines the frequency of the

actuator cycles. This single wave model encompasses a wide

variety of gaits, from slithering and sidewinding to the rolling

helix used to climb the pole in Fig. 1, and is similar to the

parameterized CPG functions used in [5], [6].

This wave-based approach is a powerful tool, as it greatly

reduces the complexity of designing gaits. Rather than indi-

vidually choosing a trajectory for each joint angle, the gait

designer can work with a smaller set of parameters that apply

across all the joints. It is not a complete solution, though, as

it still leaves open the question of how to select regions of

this parameter space which correspond to useful gait types.

To date, our efforts in this direction, while fruitful, have

been largely empirical. For instance, through experimentation

we have determined that an offset of δ = π

4
can be used

to generate a sidewinding motion, while an offset of δ =
π

2
corresponds to rolling motions [12]. Unfortunately, this

empirical approach is limited in that it is much easier for a

gait designer to think in terms of backbone curves [14], i.e.,

the three-dimensional shapes assumed by the robot, than in

terms of wave parameters. Without considerable experience,

it is hard to translate the former into the latter, especially if

the snake is convoluted enough that the “odd” and “even”

joints no longer correspond to “horizontal” and “vertical”

bending. It is even harder to identify when a conceived gait

cannot be realized via the wave model in (1), and then to

generate a new wave function with which to express it.

IV. ANNEALED CHAIN FITTING

As translating from a three-dimensional backbone curve

to a set of joint angles is difficult for a gait designer, the

first stage of our approach automates this operation. For

this purpose, we take a given backbone curve as being a

three-dimensional locus, along with a “twist” value φ that

specifies the roll angle of the first link of the robot with

respect to the curve’s tangent. While in principle it would be

possible to solve directly for the set of joint angles which

best fit the robot to the locus, such an operation would be

computationally prohibitive and, with no way to generate

a good starting guess, prone to getting stuck in suboptimal

local minima. Instead, we take an iterative approach, and

progressively “sculpt” the robot onto the backbone in a

series of smaller, more stable optimizations. If the robot had

spherical or universal joints, this sculpting process would

be trivially accomplished by sequentially setting each joint

angle to place the corresponding link directly on the curve.

With our alternating-axis geometry, however, the alignment

of a given joint axis with the curvature of the backbone (and

thus the ability of that module to fit to the curve) depends on

the joint angles of the preceding modules. Because our fitting

algorithm must consequently allow for the adjustment of

previously fit joint angles as each new module is considered,

we refer to this process as annealed chain fitting.

At each iteration of the algorithm, we separate the joints

of the snake robot into three categories: fixed joints, which

have been previously fit to the curve and will not be changed;

active joints, which are being fit to the curve; and free joints,

which will be fit to the curve in future steps. As shown

in Fig. 3, the joints are assigned to the categories via a

moving active window. The size of this window determines

the number of active joints, and the step size controls how

many active joints are fixed (and how many free joints are

made active) between each iteration.

Once the active modules have been selected for an it-

eration, their joint angles are optimized to fit the modules

as closely as possible to the backbone curve. In this paper,

we take the sum of squared distances of the distal ends of

the modules from the backbone as our objective function,

with modifications to penalize sharp angles and “bunching

up” along the curve. This objective function essentially

creates “sliding springs” which pull the modules towards the
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(a) Joint angles of the nth modules from chain fitting to a rolling arc, as in Fig. 5.
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(b) Standing waves which generate the joint angles for the rolling arc.

Fig. 6: Waveform for a rolling arc gait. As in Fig. 5, at each time t, the first link of the modsnake is made tangent to the arc with a twist angle of φ = t,
and the remaining links are fit to the curve. With the exception of the first two odd modules (which are distorted by boundary condition effects) there is
no variation in the joint angles with respect to module number, and sinusoidal variation with respect to time. These joint angles are described by a pair
of standing waves of equal magnitude which are phaseshifted from each other by δ = π/2.

Extracting the individual joint angles from the fitting data

results in the plots of godd and geven in Fig. 6(a).

The plots in Fig. 6(a) are line plots, as the time discretiza-

tion can be made small enough to approach continuity, but

the spatial resolution is fundamentally limited to the actual

modules of the robot. Although the first two odd modules

are slightly distorted by boundary condition effects, there are

clear patterns to godd and geven. Each is sinusoidal in time and

shows no variation with respect to module number. As there

is a quarter-period offset in time between the odd and even

functions and they have equal magnitudes, we can assign a

pair of continuous functions of the form

fodd(l, t) = A sin (ωt) (5)

feven(l, t) = A sin (ωt −
π

2
) (6)

to the gait, which, as in Fig. 6(b), are equal to godd and

geven at l = nodd and l = neven, respectively. This waveform

matches our previous results for generating rolling gaits [11],

where we experimentally determined that restrictions of (1)

with Aodd = Aeven, βodd = βeven = 0, Ωodd = Ωeven = 0,

ωodd = ωeven and δ = −π

2
form the snake robot into the

rolling arc shown in Fig. 7.

Fig. 7: Modsnake in its rolling arc configuration

B. Rolling in a Helix

One of the more intriguing features of a snake robot is

its ability to climb a pole by wrapping around it in a helix,

as shown in Fig. 1, and then rolling up the pole. In this

gait, as illustrated in Fig. 9, each segment of the body rolls

along the pole, effectively acting as a wheel. As with the

arc gait, this rolling motion is entirely driven by flexure,

with no rotary joints aligned with the direction of rolling.

We have previously used our empirical approach to find one

such gait for our modsnakes. Others have found an analytical

solution for a rolling helix gait for a universal-joint snake

robot [7], [8], but it relies on both the bidirectional flexibility

of the universal joints and the symmetries inherent in rolling

a robot with a cylindrical cross-section up a cylindrical pole,
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Fig. 8: Waveform for a rolling helix gait. At each time t, the first link of the modsnake is made tangent to the helix with a twist angle of φ = t, and the
remaining links are fit to the curve, following the pattern in Fig. 4. For this gait, the joint angle varies sinusoidally with respect to module number as well
as time, and thus is described by a pair of traveling waves. As with the rolling arc, the phase shift between the odd and even waves is δ = −π/2, which
is characteristic of all rolling gaits.

Fig. 9: Rolling up a pole as a helix. In this gait, the snake robot forms
a helix around a pole, then twists on its own central axis, so each body
segment rolls against the pole with the same net direction of travel.

and is thus not readily extensible to an alternating joint

configuration or non-cylindrical geometry. The chain fitting

process does not share these requirements, and we can use

it to systematically find joint angles for a rolling helix gait

without relying on symmetries of the problem.

Generating the rolling helix gait follows much the same

process as did generating the rolling arc. At each time t,

we place the first link tangent to the helical backbone with

twist angle φ = t and iteratively fit the rest of the links

to the curve, as illustrated in Fig. 4. During this fitting, the

mechanism takes on a characteristic zig-zag pattern around

the backbone curve, which stems from the alternating-joint

configuration of the robot. Extracting the odd and even angles

gives the plots of godd and geven in Fig. 8.

The fit angles for the helix gait are noisier than those

for the arc, owing to the more complex curvature of the

helix increasing the likelihood of the chain fitter becoming

stuck in local minima. Even so, a clear pattern emerges,

and the joint angles can be seen to vary sinusoidally with

respect to both module number and time. This pattern is a

traveling wave, and the continuous functions fodd and feven in

Fig. 8 are of the form in (1), with parameters Aodd = Aeven,

βodd = βeven = 0, Ωodd = Ωeven, ωodd = ωeven and δ = −π

2
.

These parameters match our previous empirical results [11],

validating that chain fitting at various twist angles indeed

produces the rolling helix gait used to climb the pole in

Fig. 1. Note that the phase shift of δ = ±π

2
is characteristic

of rolling gaits, and reflects the fact that the odd and even

modules exchange their direction of bending at every quarter-

rotation.

C. Rolling in an “S”

Some gaits, even simple ones, cannot be described by the

single-wave model, and our new approach reveals appro-

priate models to use to generate these gaits. For instance,

consider a variation on the rolling gait, in which the robot

assumes the “S” shape in Fig. 10. No choice of parameters

in (1) will produce this motion, but by applying chain fitting

and wave extraction to this gait, as in Fig. 11, we can see

a clear pattern emerge. The two sets of joint angles are

Fig. 10: Modsnake in its rolling “S” configuration
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Fig. 11: Wave functions for a rolling “S” gait. The joint angles are described by standing waves, in which the spatial and temporal components are
multiplied together, as compared to the additive traveling waves which produce the rolling helix.

described by parameterized functions of the form

fodd(l, t) = Aodd sin (Ωoddl + ∆odd) sin (ωoddt) (7)

feven(l, t) = Aeven sin (Ωevenl + ∆even) sin (ωevent + δ), (8)

where the spatial and temporal components are multiplied

together, rather than added as in the previous gaits, and ∆
and δ represent the spatial and temporal shifts, respectively.

VI. CONCLUSIONS

Annealed chain fitting is an effective algorithm for finding

the joint angles to fit a long kinematic chain to a backbone

curve, and works even when the joints do not allow for

omnidirectional bending. Combined with keyframe wave

extraction, it provides an attractive means of generating gaits

for snake robots. Together, the two algorithms enable both

translating a designer’s intuition for three-dimensional curves

into the space of joint angles, and facilitate the identification

of simple parameterized functions that describe those angles.

In this paper, we have explored the use of chain fitting

and wave extraction to generate rolling gaits for snake robots

that crawl and climb. The waveforms we found match our

previous empirical results, confirming the basic principle of

our approach. In our future work, we will apply the two

algorithms to gaits such as sidewinding and slithering, where

the backbone curve itself changes, rather than just the twist

angle of the modules. We will be particularly interested in

novel gaits which cannot be described by our single-wave

model, and are thus beyond the scope of our previous design

efforts. We will also look to improving the quality of the

chain fitting results with better boundary conditions at the

starting end and more nuanced metrics of how well the

mechanism fits to the backbone for a given set of joint angles.
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