

Abstract—In the area of autonomous multi-robot
cooperation, much emphasis has been placed on how to
coordinate individual robot behaviors in order to achieve an
optimal solution to task completion as a team. This paper
presents an approach to cooperative multi-robot reinforcement
learning based on a hybrid state space representation of the
environment to achieve both task learning and heterogeneous
role emergence in a unified framework. The methodology also
involves learning space reduction through a neural perception
module and a progressive rescheduling algorithm that
interleaves online execution and relearning to adapt to
environmental uncertainties and enhance performance. The
approach aims to reduce combinatorial complexity inherent in
role-task optimization, and achieves a satisficing solution to
complex team-based tasks, rather than a globally optimal
solution. Empirical evaluation of the proposed framework is
conducted through simulation of a foraging task.

I. INTRODUCTION
onsiderable attention and growing interest has been
given to the problem of cooperation in multi-robot
systems due to the wide range of applications. On-going

challenges in searching for effective learning algorithms in a
large state space have been defined by many researchers,
e.g., [1-5]. With multiple robots performing joint actions in a
shared environment with various degrees of uncertainties,
coordinating actions in the presence of other robots becomes
a key issue in searching for optimal behaviors of individual
robots based on the shared task objective. The difficulties
encountered are intensified by little or no communication
during real-time execution. However, the fact that humans
and other intelligent animals can perform quite well in such
settings sheds light on developing effective collaboration
strategies.

Besides humans, coordinated behavior is seen in many
other animal species, especially during pack or group
hunting; and although less prevalent in the animal kingdom,
collaborative behavior—in which individuals assume
different roles—has been documented in species ranging
from Harris Hawks to humans. Perhaps the strongest
examples of collaborative behavior in non-human animals
are seen with both dolphins and chimpanzees. Dolphins
perform different collaborative fishing strategies, such as

Manuscript received Feb 28, 2009. This work was supported by the
Office of Naval Research under Grant No. N00014-08-1-0693.

Xueqing Sun, Tao Mao, and Laura E. Ray are with Thayer School of
Engineering, Dartmouth College, Hanover, NH 03755 USA (e-mail:
{xueqing.sun, tao.mao, laura.e.ray}@dartmouth.edu)

Jerald D. Kralik is with Department of Psychological & Brain Sciences,
Dartmouth College, Hanover, NH 03755 USA (e-mail:
jerald.d.kralik@dartmouth.edu)

driving fish toward an awaiting line of ambushers [6];
chimpanzees appear to take on several roles when hunting
colobus monkeys, including a driver that keeps the monkey
moving forward, side blockers, chasers and an ambusher [7].
Although the underlying abilities required for cooperation
appear to be innate, it is clear that there is a strong learning
component as well.

The theory and techniques of Reinforcement Learning
(RL) have been widely adopted and applied in a variety of
problem domains including robotics [8-12]. In some
applications, such as group foraging [1] or motor primitive
planning [12], it has proven to be an effective methodology
by which agents learn by taking actions and receiving
reward or punishment from their environment. RL
algorithms provide optimization of a long term reward based
on the interaction between the agent and environment. A
classic issue in RL is the tradeoff between exploration and
exploitation, in which agents must balance exploring the
unknowns and exploiting “the current best practice” based
on the past experience. Although similar tradeoffs exist in
both single- and multi-agent settings, it poses a greater
challenge for the latter in the sense that each agent’s
exploration-exploitation choice not only influences its own
but also the other agents’ environments.

Another important issue in RL is the size of the state
space. With increased complexity of the task, the state space
grows excessively, requiring unreasonable computation.
Furthermore, if a task is complex enough, it may require
agents to choose from a set of behavior types (i.e., roles)
dynamically in order to reach the goal, which can be referred
to as role emergence. Traditionally role emergence is treated
as an independent reinforcement learning problem as in
certain game theory and behavior-based robotics
applications [3, 13-15].

In this paper, we propose a general hybrid state space
that accounts for both the task-related objective state and the
agent role state in one unified framework. This general state
space representation enables the integration of learning for
both action choices and role emergence. The main RL
module within the framework utilizes Q-learning [16]
because it is a model-free, asynchronous and anytime
algorithm with simplicity and speed. As the number of
object and robot entities increase, it imposes a challenge to
learn in a large state space. To reduce the state space, a
neural perception module is developed to categorize objects
(tasks) into clusters and group robots by role types. As the
level of state abstraction increases, certain details, such as
individual robot identities or the optimality based on these
details are abstracted to search for a feasible, sub-optimal
but satisficing solution. This neural perception algorithm is

Cooperative Multi-Robot Reinforcement Learning: A Framework in
Hybrid State Space

Xueqing Sun, Tao Mao, Jerald D. Kralik, Laura E. Ray

C

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1190

joined by a progressive rescheduling policy for performance
enhancement and uncertainty adaptation.

As a motivating example, consider a simplified multi-
robot foraging application where a robot team is assigned to
a field to collect scattered objects. There are different roles
that heterogeneous robots can take on dynamically during
execution with little or no communication. Each robot needs
to decide not only on the most efficient path to collect the
objects, but also on which role(s) to take on in order to reach
the team goal with optimal or near-optimal performance –
shortest completion time, for example.

The paper is organized as follows. Section II gives a brief
overview of RL and Q-learning in particular. Section III
describes our hybrid state space representation. Section IV
presents the structure of the multi-robot cooperation
framework and algorithm. Section V presents simulation
results and compares the performance of this framework
with another approach and in different settings. Finally,
Section VI provides conclusions and discusses future work.

II. REINFORCEMENT LEARNING
Reinforcement learning (RL) is a computational approach

focused on goal driven learning through an agent’s
interaction with its environment [17]. RL can be carried out
online by receiving a reward or penalty signal from an
agent’s environment with or without a model. The agent’s
objective is to maximize reward or minimize penalty in the
long run. In the RL domain, an environmental state
containing all relevant information for the learning process
is said to have the Markov property. For example, in a chess
game, the current positions of all chess pieces would serve
as the Markov state. A reinforcement learning process is a
Markov Decision Process (MDP) if its states satisfy the
Markov property. Formally, a MDP includes a state set S,
action set A and reward set R, in which a learning sequence
is comprised of a current environmental state s∈ S from
which an action a∈ A is taken by the agent generating a
reward or penalty signal r∈ R received by the agent from the
environment or intrinsic source. A value function V is
modified by r and the next action is selected based on
criteria related to the value function.

RL is different from other areas of machine learning in
that an agent must learn from interaction through its own
experience; to maximize its long term reward, an agent must
not only exploit what it already knows but also explore
unknowns while risking lower immediate reward. A large
state space and environmental uncertainties pose major
challenges in utilizing RL. Q-learning is used here because
of its proven success, simplicity and asynchronous learning
strategy, which provides an anytime algorithm.

Watkins introduced Q-learning [16], and its convergence
was rigorously proven in [18] and more generally in [19,
20]. The core of the Q-learning algorithm is the update of
state-action value Q at the end of a sequence of distinct
states or time steps [18] as

1 1(,) (1) (,) [(')]t t tQ s a Q s a r V sα α γ− −= − + + (1)

1 1'
(') max{ (', ')}t ta

V s Q s a− −≡ (2)

where s is the current state at time step t, a is the action
taken at state s, r is the reward, ∈α (0,1] is the learning rate,
and γ∈ [0,1] is the reward discount factor. The learned value
function approximates the optimal value function as the
algorithm iterates. It has been proven that if all action-value
pairs are visited indefinitely often and if

∞<∞= ∑∑
=∞→=∞→

T

t
tT

T

t
tT

and
0

2

0
limlim αα (3)

then the probability of tQ converging to the optimal action-
value function Q * is one [19, 20]. The optimal policy is
defined by,

),(maxarg* asQ
a

=π (4)

Even if all value functions are not updated enough times,

Q-learning is an “anytime algorithm”, which means we can
interrupt the algorithm as needed based on a computation
budget and will simply obtain the best policy/solution thus
far. This is an important feature compared to methods like
Dynamic Programming which sweeps through the whole
state set, performing a costly full backup operation on each
state. Additionally, Q-learning is exploration insensitive,
which means a clear model of the environment is not
required and value functions Q will converge to the actual
values, regardless of the strategy used to determine the
actions taken [21].

III. HYBRID STATE SPACE
In multi-robot cooperation, each robot not only needs to

deal with task related objects but it also interacts with other
robots in order to achieve the team goal. In other words, in
each robot’s environment, there are two types of states -
object states and robot internal states [22]. In this section, we
propose a hybrid state space representation integrating both
object states and robot role states for reinforcement learning.
This allows using one generic Q-learning algorithm to
achieve both task planning and role emergence
simultaneously. Our definition of a role is a specific set of
behaviors that a robot carries out during task execution.
Roles can change voluntarily or involuntarily over time (i.e.,
role emergence). It is different from a robot’s capability in
the sense that capability is a static set of behaviors that a
robot could assume, while a role is the set of behaviors
actually assumed. We will show in the next section how
robots change their roles voluntarily through Q-learning
based on the team goal.

Assume all environment states have Markovian properties.
We define a hybrid state space s ∈S as a set of states
including both object state o and role state e as

 0 1 0 0 1 1{ , , ... , ... } {[,],[,], ...,[,], ...[,]}t n t t n ns s s s o e o e o e o e= =S (5)

Fig. 1 illustrates an example of a hybrid state space
construction and state transition that integrates both object
states o and role e for unified Q-learning in a multi-robot
group foraging task. Here, a team of heterogeneous robots

1191

dynamically assume different roles to collaborate in
sweeping and collecting actions in order to achieve the
shortest team completion time in collecting and depositing
scattered objects. The left section of each state
representation in Fig. 1 is the object entities. For example,
the values in the circles represent the number of objects for
each entity at a certain state, where each entity can be a
single object or cluster of objects. The section on the right
represents the dynamic robot roles, e.g., P2 is a role in which
a robot can pick up two objects or less at once, P1 is a role in
which a robot can pick up a single object only, but can also
emerge as a sweeper S when needed to cluster objects. The
number of robots assuming that role is given in parenthesis,
e.g., P2(1) means there is one P2 robot at certain state. In
order to reduce the state space and generalize the learning
process, we do not distinguish between homogeneous robots,
and the location of objects or robots is tracked but is not
included in the state space.

IV. A FRAMEWORK IN HYBRID STATE SPACE
In this section, we present a framework for multi-robot

cooperation including a neural perception module using a
Competitive Learning neural network for state space
abstraction, Q-learning using Boltzman distribution for
action selection, and a progressive rescheduling policy for
refined task allocation to maximize team utility and online
re-learning for environmental uncertainties. Our framework
is inspired by the structure and function of mammalian brain
circuitry in which the operations emerge from the interaction
of multiple brain regions [23-25]. The posterior cortex (PC)
receives and processes sensory inputs via dorsal thalamus
(T), and anterior cortex (AC) produces motor outputs while
interacting closely with elements of striatal complex (S,
striatum; and P pallidum) [23-25]. Fig. 2 depicts the
schematic diagram of our framework. The components
follow the general sensation, perception, decision, action,
reward feedback cycle, and thus include modules for
Environmental Sensation (ES), Neural Perception (NP),
Decision Process (DP), Execution (EX) and Reward
Sensation (RS). There are primary connections between

these individual modules acting as the pathways for input
and output signals. Generally similar to how the human
brain functions, this framework provides an architecture for
robots to sense and reason about how to collaborate in a joint
task space with environmental uncertainties towards
maximizing global team utility. Each functional module has
an analogous brain structure as described below.
\

ES: In the Environmental Sensation (ES) module, robots
sense the outside world, including the task related object
states and the behavior related role states of other robots.
Based on observation of individual robots or information
shared through limited communication among robots, the
sensation signals of both object states and role states are
packaged and passed to a Neural Perception module for
hierarchical representation and hybrid state space
construction. The detailed state space description was
presented in section II. The ES module is roughly analogous
to the sensory processing areas of thalamus (T) in the brain,
such as the early processing areas of visual cortex of
mammals.

NP: The Neural Perception (NP) module is inspired by
knowledge of how the human brain receives, processes and
represents its environment through efficient, hierarchical
data structures [26]. In this module, the object’s physical
locations are passed in as input vectors to a Competitive
Learning neural network to be classified as single objects vs.
clusters, which can be further abstracted into subcategories
such as shape and orientation based on processing camera
images [27]. Learned categories from this perception module
are not only important for the later decision process, but also
provide for state space reduction.

The Competitive Learning neural network [28] is an
unsupervised learning network with the output layer known
as the "competitive layer" (Fig. 3). During learning, the input
vector is compared with the weight vector of each neuron
that leads to the competitive layer. The neuron with a weight
vector most closely matching the input vector has its weight
vector adjusted in a “winner takes all” fashion. The process
continues until no further weight adjustment is required and

Fig. 1. Illustration of hybrid state space and transition in a group foraging task with two robots and dynamic role emergence.

1192

Fig. 2. Schematic diagram of a multi-robot cooperation framework

Fig. 3. Competitive learning NN used in clustering.

the final learned weight vectors identify the centers of the
clusters. The performance rule for finding winning node j
based on a randomly selected normalized vector of object
coordinates x̂ is given by

ˆ ˆarg max T

j
j w x← (7)

where the learning rule for updating the normalized winning

jŵ with rate η is

ˆ ˆ ˆ ˆ()j j jw w x wη← + − (8)

Therefore, with each random sample x̂ , jŵ is updated and
converges to one cluster’s center. The NP module is roughly
analogous to later perceptual processing areas in mammalian
posterior cortex (PC).

DP: With a learned hierarchical representation of the
world from the NP module, the Decision Process (DP) is
performed in this core module utilizing Q-Learning based on
trial and error of different role and object collecting actions
with the objective of achieving optimal or near-optimal team
utility: for example, the shortest team completion time. This
module is closely coupled with the Execution and Reward
Sensation module to achieve unified role emergence and
path planning (dashed lines). There are two main
components in this module. The first is a recursive Q-
learning algorithm with a Boltzman distribution, and the
second is a progressive rescheduling algorithm that leads to
task allocation and online re-learning due to environmental
uncertainties. These two components interleave to provide
dynamically adapted schedules as robots execute their best

found policies in a stochastic environment. The details of the
algorithm suite inside the DP module are shown in Table I.
The algorithm suite in Table I is a unified decision process
that includes both task planning and role emergence in one
reasoning engagement. When this algorithm suite is
distributed to a system of robots that “think alike,” minimal
communication is required because each robot already
knows paths or roles other robots assume based on the same
reasoning strategy as its own. In other words, if each robot
has identical state information and brain architecture, each
will arrive at the same set of policies for task completion and
will learn each other’s role and task. While complete, error-
free state and policy knowledge without communication is
unrealistic, these assumptions can be then relaxed
individually to evaluate the effect on learning.

We define a learning budget Tb by which Q-learning will
pause learning and return the best policy found so far to the
execution module. This is necessary under the circumstances
of restricted learning time and it takes the advantage of Q-
learning being an anytime algorithm that can be interrupted

TABLE I
ALGORITHM SUITE IN DP MODULE

Algorithm Suite
Initialize:
 Let t=0, re-learning flag=TRUE
 Neural Perception: clustering by Competitive Learning NN
 Initialize hybrid state 0 0 0[,]s o e=

 For all s ∈ S, a A∈ ,
 let (,) 0Q s a = , () 0V s =
 Initialize Q -learning budget Tb

While current object state to != completion state no
 If re-learning flag is TRUE
 Q-learning:
 While under budget Tb

 Recursive learning until no :

 Choose action a at state s~ based on the probability
 from Boltzman distribution,

(,) /

(,) /

1

Pr{ }
Q s a

t n
Q s b

b

ea a
e

τ

τ

=

= =
∑

 Observe reward r and next state s~ ’
 Update (,)Q s a such that,
 1 1(,) (1) (,) [(')]t t tQ s a Q s a r V sα α γ− −= − + +

1 1'
(') max{ (', ')}t ta

V s Q s a− −≡

 Record current best known policy,
 * arg max (,)

a
Q s aπ =

 End
 Progressive Reschedule:

 Allocate tasks based on best known policy *π
 to individual robots using Least Workload
 algorithm to achieve optimal/sub-optimal
 completion time
 End
 If perception at t and t-1 is inconsistent
 Trigger re-learning by setting relearning flag=TRUE
 Else
 Set relearning flag=FALSE
 End
End

1193

at any point. When interrupted, it returns the best solution
for execution found to the point of interruption.

The purpose of the Progressive Reschedule task allocation
block is to further generate a specific task list from the best
learned policy for individual robots within the same role
category. The goal is to allocate tasks so as to minimize
overall team completion time without introducing excessive
computation. Since the overall team completion time is
determined by the slowest team member (i.e., the longest
completion time for an individual task), the objective
becomes finding an allocation policy that yields
min(max())ijj i

T where Tij is the individual completion time of

the ith robot under jth allocation policy. In computational
complexity theory, finding an optimal solution for this
combinatorial optimization problem is NP-hard [29-31]. We
propose a simple and fast approximation algorithm that sorts
the non-sequential tasks by their cost in descending order
and allocates them from top-down to the individual robot
with the current “least workload.” In the next section, we
compare the results between this Least Workload algorithm
and traditional Brute Force combinatorial optimization on
both overall team completion time and computation.

Finally, inside the Progressive Reschedule relearning
block, relearning is triggered by setting a flag based on the
detection of an inconsistent perception between the current
and previous time steps; for example, an object may move
from its original location if it is hit by a robot, or uncertainty
in sensor measurements may cause inconsistencies in
perception. Relearning allows for execution uncertainty;
future addition of heterogeneity among robots, both in
perception of the state space and in learned policies; and
asynchronous learning and associated relaxation of the
assumption that all robots “think alike.” In the mammalian
and especially the primate brain, the DP module is
analogous to higher-order cortical areas such as posterior
parietal and anterior cortex (AC), which are involved in
decision making. These areas are well-positioned for
decision making in that they receive perception and reward
information and project to motor control areas.

EX and RS: At the planning stage, the Execution (EX)
model takes pseudo actions based on the Q-learning policy
and Reward Sensation (RS) module feeds back reward
signals for recursive learning (dashed lines). Besides the
feedback path, there is another path from the DP to the RS
module to adjust the reward definition in case of a potential
team goal change, such as changing from shortest team
completion time to lowest energy use; at the execution stage,
the task lists generated by Progressive Rescheduling are
passed to individual robots for execution (solid lines). For
the planning stage, EX and RS may be analogous to
prefrontal cortical areas, which are used in planning. At the
same time, especially during execution, EX is analogous to
motor control areas of the brain, such as premotor and
primary motor cortex; and RS would be analogous to the
dopamine reward system (of the midbrain and ventral
striatum) that appears to underlie reward learning.

V. EXPERIMENTAL RESULTS AND DISCUSSION
We have conducted a number of Monte Carlo experiments

with random environmental configurations to evaluate the
effectiveness of our hybrid state space formulation and
algorithm suite in a multi-robot foraging task and have also
tested extensively in a physically realistic simulation
environment using the Webots simulator [32] as shown in
Fig. 4 and in the accompanying video.

The first set of experiments is conducted to measure the
performance of a multi-robot team in three different role
configurations: a Homogenous team of three robots with a
Single role of P2 (HoSr), a Heterogeneous but Fixed-role
team of two P2 and one S (HeFr) and a Heterogeneous team
of two P2 and one S/P1 with dynamic Role emergence
(HeRe). In this experiment, each robot can obtain state
information provided by Webots simulator about the
locations of objects and robots, and it uses the framework
described in section IV. Simple policies for lower level
motor behaviors, such as right-of-way and manipulating
objects are assumed.

Fig. 5 compares the average overall team completion
time from 200 trials for each of the three different role
configurations based on randomly generated test cases of 12-
24 scattered objects. The raw data are shown in black points,
and the quartile and mean of each group are indicated by the
red box and center line of the green diamond
respectively. The HoSr team has the lowest performance
compared to the other team configurations. This is mainly
due to the lack of diversified roles, highlighting the
importance of collaboration. The results also show that
teams with dynamic role emergence (HeRe) perform
significantly better than teams with static roles. Also note
that the best policy after learning budget Tb can be sub-
optimal in a large state space, and role emergence will create
more possible role states than fixed role scenarios.
Nonetheless, HeRe outperforms HoSr and HeFr teams with
static roles on average even with a restricted Q-leaning

Fig. 4. Multi-robots collaboration simulation in Webots: Yellow/Red Team
is composed of two robots that can pick up 1-2 objects at a time; Blue/Red
Team is one robot that can either sweep or pick up 1 object.

1194

Fig. 5. Overall team completion time for three difference robot team
configurations: a heterogeneous but fixed-role team of P2 and S (HeFr), a
heterogeneous team of P2 and S/P1 with dynamic role emergence (HeRe)
and a homogenous team of single role of P2 (HoSr).

budget Tb that forces Q-learning to stop and simply return
the best policy

In the second set of Monte Carlo experiments, we evaluate
and compare the Least Workload algorithm with Brute Force
optimization in task allocation for robots with the same role
type, based on the best found policy from the Q-learning
algorithm. To justify the efficacy of the approach, we first
focus on a two-robot team. We generate 100 randomly
initialized trials for each case of total number of tasks
ranging from 1-15 tasks (i.e., 1500 trials in total). Within
each trial, a random number∈(0,100) is generated to
represent the individual task completion cost in seconds. Fig.
6 shows the mean of overall team completion time and
computation cost (on a logarithmic scale) from this set of
experiments. As seen in Fig. 6(a), the overall team
completion time from the Least Workload approach falls
within 2.5% of the optimal solution found by Brute Force
independent of the number of tasks. Also, as seen in Fig.
6(b), as the number of tasks to be allocated increases, the
computation cost from Least Workload is significantly lower
than that of the Brute Force approach which has exponential
time complexity.

We also extend the robot team from two robots to five
with total number of tasks ranging from 5-15 and total
number of trials in a normal distribution. Similar to Fig. 6,
Fig. 7 shows that with the increase in number of robots, the
overall team completion time from the Least Workload
approach still falls within 2.5% of the optimal solution, and
the computation cost remains significantly lower than the
Brute Force algorithm.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have described a hybrid state space

representation, framework, and learning algorithm inspired
by human brain function. Using reinforcement learning in
this framework enables robots to solve role emergence and
task allocation simultaneously and to relearn in the face of

environmental uncertainties that arise during task execution.
The experimental results presented here demonstrate the
importance of role emergence and the efficiency of our
algorithm on enhancing team performance in a collaborative
task.

While the framework is general, our current reinforcement
learning process defines the end of each episode by the
subtask with longest completion time (i.e., the slowest team
member), which could introduce noise in the reward
calculation. We plan to investigate a sub-state representation
in the reward calculation that is asynchronous which will

Fig. 6. Comparison of Brute Force vs. Least Workload (2 Robot Team) (a)
Mean of team completion time by # tasks (1-15), (b) Log of Mean of
computation cost by # tasks (1-15)

Fig. 7. Comparison of Brute Force vs. Least Workload (2-5 Robot Team)
(a) Mean of overall team completion time by number of robots, (b) Log of
Mean of computation cost by number of robots(2-5)

200

300

400

Te
am

C
om

pl
et

io
n

Ti
m

e

H
eF

r (
2

P2
+

1
S

fix
ed

)

H
eR

e
(2

 P
2

+
1

S
em

er
ge

nc
e)

H
oS

r (
3

P2
)

Robot Config

Each Pair
Student's t
0.05

T
ea

m
 C

om
pl

et
io

n
T

im
e

HoSr
(3P2)

HeRe
(2P2+1S emerge)

Ea
ch

 P
ai

r
St

ud
en

t’s
 t

0.
05

HeFr
(2P2+1S fixed)

Robot Configuration

1195

refine the reward calculation, albeit at risk of increasing the
size of the state space.

Another area for future work is scalability of the current
learning process with uncertainty. In the present
representation, every robot “thinks alike” without error or
uncertainty. Future modifications will allow for uncertainty
in each of the ES, NP, and DP processes, allowing for
heterogeneity in learning among robots and a distributed
version of the framework. Subsequent work will implement
and conduct experiments with Pioneer robots to evolve the
method to accommodate asynchronous learning and
uncertainty, such as error in perception of object or role
states or location.

REFERENCES
[1] Matarić M. J. (1997). Reinforcement Learning in the Multi-Robot

Domain. Autonomous Robots 4, pp. 73-83.
[2] Goldsmith S. & Robinett. R. (1998). Collective search by mobile

robots using alpha-beta coordination. Conference on Collective
Robotics Workshop, Paris, France, 4-7 Jul 1998, pp. 136–146.

[3] Martinson E. & Arkin R. C. (2003). Learning to role-switch in multi-
robot systems. International Conference on Robotics and Automation,
pp. 2727–2734.

[4] Powers R. & Shoham Y. (2005). New criteria and a new algorithm for
learning in multi-agent systems. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NIPS),
Vancouver, Canada.

[5] Velagapudi P., Scerri P., Sycara K., Wang H., Lewis. M., Wang J.
(2008). Scaling effects in multi-robot control. In Proceedings of
Intelligent Robots and Systems (IROS).

[6] Wells, R. S. (2003). Dolphin social complexity: Lessons from long-
term study and life history. In F.B.de Waal & P. L. Tyack (Eds.),
Animal social complexity. Cambridge, MA: Harvard University Press.

[7] Boesch, C. (2003). Complex cooperation among Taï chimpanzees. In
F.B.de Waal & P. L. Tyack (Eds.), Animal social complexity.
Cambridge, MA: Harvard University Press.

[8] Littman M. L. (1994). Markov games as a framework for multi-agent
reinforcement learning. In Proceedings of the Eleventh International
Conference on Machine Learning, New Brunswick, pp. 157-163.

[9] Hu J., Wellman M. P. (1998). Multiagent reinforcement learning:
Theoretical framework and an algorithm. In Proceedings of the
Fifteenth International Conference on Machine Learning, Morgan
Kaufman, San Francisco, pp. 242-250.

[10] Chalkiadakis G. & Boutilier C. (2003). Coordination in multiagent
reinforcement learning: a bayesian approach. In Proceedings of the
Second International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 709–716.

[11] Zhang X., Aberdeen D., Vishwanathan S.V.N. (2007). Conditional
random fields for multi-agent reinforcement learning. In Proceedings
of the 24th International Conference on Machine Learning (ICML),
ACM International Conference Proceeding Series, Corvalis, Oregon,
pp. 1143–1150.

[12] Peters J., Vijayakumar S., Schaal S. (2008). Natural actor-critic.
Neurocomputing 71, pp. 1180-1190.

[13] Claus C. & Boutilier C. (1998). The dynamics of reinforcement
learning in cooperative multiagent systems. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence, AAAI Press,
Menlo Park, CA.

[14] Asada M., Uchibe E., Hosoda K. (1999). Cooperative behavior
acquisition for mobile robots in dynamically changing real worlds via
vision-based reinforcement learning and development. Artificial
Intelligence, vol. 110, pp. 275-292.

[15] Liu, Z., Ang Jr., M. H., and Seah, W. K. G. (2005). Reinforcement
learning of cooperative behaviors for multi-robot tracking of multiple
moving targets. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1289–
1294.

[16] Watkins, C.J.C.H. (1989). Learning from Delayed Rewards. PhD
thesis, Cambridge University, Cambridge, England.

[17] Sutton R. S. & Barto A. G. (1998). Reinforcement Learning. MIT
Press, Cambridge, MA.

[18] Watkins C. J.C.H. & Dayan P. (1992). Technical Note: Q-Learning.
Machine Learning, Volume 8, Numbers 3-4, May, pp. 279-292.

[19] Jaakkola, T., Jordan, M. I., Singh, S. P. (1994). On the convergence of
stochastic iterative dynamic programming algorithms. Neural
Computation, 6(6), pp. 1185-1201.

[20] Tsitsiklis J. (1994). Asynchronous stochastic approximation and Q-
learning. Machine Learning

[21] Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996).
Reinforcement learning: A survey. Journal of Artificial Intelligence
Research, 4, pp. 237-285.

[22] Jones C., Shell D., Matarić, M. J., Gerkey, B. (2004). Principled
approaches to the design of multi-robot systems. In Proceedings of the
Workshop on Networked Robotics, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

[23] Granger R. (2006). Engines of the brain: The computational
instruction set of human cognition, AI Magazine 27(2), pp. 15-31.

[24] Rodriguez A., Whitson J., Granger R. (2004). Derivation & analysis
of basic computational operations of thalamocortical circuits. Journal
of Cognitive Neuroscience 16. pp. 856-877.

[25] Shimono K., Brucher F., Granger R., Lynch G., Taketani M. (2000).
Origins and distribution of cholinergically induced beta rhythms in
hippocampal slices. Journal of Neuroscience 20. pp. 8462-8473.

[26] Hearn R. & Granger R. (2008). Learning Hierarchical Representations
and Behaviors. Association for the Advancement of Artificial
Intelligence.

[27] Nowak, S.C. (2009). Vision-Based Perception for Reinforcement
Learning in Multi-Robot Systems. Diplomarbeit, Helmut-Schmidt
University, Germany.

[28] Duda R. O., Hart P. E., Stork D. G. (2005). Pattern Classification. pp.
560-561

[29] Cormen, T. H., Leiserson, C. E., Rivest, R. L. (1990). Introduction to
Algorithms. MIT Press/McGraw-Hill.

[30] Woeginger G. J. (2003). Exact Algorithms for NP-Hard Problems: A
Survey", Combinatorial Optimization – Eureka, You Shrink! Lecture
Notes in Computer Science, vol. 2570, Springer, pp. 185–207.

[31] Koes M., Nourbakhsh I., Sycara K. (2005). Heterogeneous multirobot
coordination with spatial and temporal constraints. In Proceedings of
the Twentieth National Conference on Artificial Intelligence (AAAI).
AAAI Press, pp. 1292–1297.

[32] Webots Reference Manual. Cyberbotics Ltd. Professional Mobile
Robot Simulation Software. http://www.cyberbotics.com.

1196

