
  

  

Abstract—In the area of autonomous multi-robot 
cooperation, much emphasis has been placed on how to 
coordinate individual robot behaviors in order to achieve an 
optimal solution to task completion as a team. This paper 
presents an approach to cooperative multi-robot reinforcement 
learning based on a hybrid state space representation of the 
environment to achieve both task learning and heterogeneous 
role emergence in a unified framework. The methodology also 
involves learning space reduction through a neural perception 
module and a progressive rescheduling algorithm that 
interleaves online execution and relearning to adapt to 
environmental uncertainties and enhance performance. The 
approach aims to reduce combinatorial complexity inherent in 
role-task optimization, and achieves a satisficing solution to 
complex team-based tasks, rather than a globally optimal 
solution. Empirical evaluation of the proposed framework is 
conducted through simulation of a foraging task. 

I. INTRODUCTION 
onsiderable attention and growing interest has been 
given to the problem of cooperation in multi-robot 
systems due to the wide range of applications. On-going 

challenges in searching for effective learning algorithms in a 
large state space have been defined by many researchers, 
e.g., [1-5]. With multiple robots performing joint actions in a 
shared environment with various degrees of uncertainties, 
coordinating actions in the presence of other robots becomes 
a key issue in searching for optimal behaviors of individual 
robots based on the shared task objective. The difficulties 
encountered are intensified by little or no communication 
during real-time execution. However, the fact that humans 
and other intelligent animals can perform quite well in such 
settings sheds light on developing effective collaboration 
strategies.  

Besides humans, coordinated behavior is seen in many 
other animal species, especially during pack or group 
hunting; and although less prevalent in the animal kingdom, 
collaborative behavior—in which individuals assume 
different roles—has been documented in species ranging 
from Harris Hawks to humans. Perhaps the strongest 
examples of collaborative behavior in non-human animals 
are seen with both dolphins and chimpanzees. Dolphins 
perform different collaborative fishing strategies, such as 
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driving fish toward an awaiting line of ambushers [6]; 
chimpanzees appear to take on several roles when hunting 
colobus monkeys, including a driver that keeps the monkey 
moving forward, side blockers, chasers and an ambusher [7]. 
Although the underlying abilities required for cooperation 
appear to be innate, it is clear that there is a strong learning 
component as well. 

The theory and techniques of Reinforcement Learning 
(RL) have been widely adopted and applied in a variety of  
problem domains including robotics [8-12]. In some 
applications, such as group foraging [1] or motor primitive 
planning [12], it has proven to be an effective methodology 
by which agents learn by taking actions and receiving 
reward or punishment from their environment. RL 
algorithms provide optimization of a long term reward based 
on the interaction between the agent and environment. A 
classic issue in RL is the tradeoff between exploration and 
exploitation, in which agents must balance exploring the 
unknowns and exploiting “the current best practice” based 
on the past experience. Although similar tradeoffs exist in 
both single- and multi-agent settings, it poses a greater 
challenge for the latter in the sense that each agent’s 
exploration-exploitation choice not only influences its own 
but also the other agents’ environments.  

Another important issue in RL is the size of the state 
space. With increased complexity of the task, the state space 
grows excessively, requiring unreasonable computation. 
Furthermore, if a task is complex enough, it may require 
agents to choose from a set of behavior types (i.e., roles) 
dynamically in order to reach the goal, which can be referred 
to as role emergence. Traditionally role emergence is treated 
as an independent reinforcement learning problem as in 
certain game theory and behavior-based robotics 
applications [3, 13-15].  

In this paper, we propose a general hybrid state space 
that accounts for both the task-related objective state and the 
agent role state in one unified framework. This general state 
space representation enables the integration of learning for 
both action choices and role emergence. The main RL 
module within the framework utilizes Q-learning [16] 
because it is a model-free, asynchronous and anytime 
algorithm with simplicity and speed. As the number of  
object and robot entities increase,  it imposes a challenge to 
learn in a large state space. To reduce the state space, a 
neural perception module is developed to categorize objects 
(tasks) into clusters and group robots by role types. As the 
level of state abstraction increases, certain details, such as 
individual robot identities or the optimality based on these 
details are abstracted to search for a feasible, sub-optimal 
but satisficing solution. This neural perception algorithm is 
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joined by a progressive rescheduling policy for performance 
enhancement and uncertainty adaptation. 

As a motivating example, consider a simplified multi-
robot foraging application where a robot team is assigned to 
a field to collect scattered objects. There are different roles 
that heterogeneous robots can take on dynamically during 
execution with little or no communication. Each robot needs 
to decide not only on the most efficient path to collect the 
objects, but also on which role(s) to take on in order to reach 
the team goal with optimal or near-optimal performance – 
shortest completion time, for example.  

The paper is organized as follows. Section II gives a brief 
overview of RL and Q-learning in particular. Section III 
describes our hybrid state space representation. Section IV 
presents the structure of the multi-robot cooperation 
framework and algorithm. Section V presents simulation 
results and compares the performance of this framework 
with another approach and in different settings. Finally, 
Section VI provides conclusions and discusses future work. 

II. REINFORCEMENT LEARNING 
Reinforcement learning (RL) is a computational approach 

focused on goal driven learning through an agent’s 
interaction with its environment [17]. RL can be carried out 
online by receiving a reward or penalty signal from an 
agent’s environment with or without a model. The agent’s 
objective is to maximize reward or minimize penalty in the 
long run. In the RL domain, an environmental state 
containing all relevant information for the learning process 
is said to have the Markov property. For example, in a chess 
game, the current positions of all chess pieces would serve 
as the Markov state. A reinforcement learning process is a 
Markov Decision Process (MDP) if its states satisfy the 
Markov property. Formally, a MDP includes a state set S, 
action set A and reward set R, in which a learning sequence 
is comprised of a current environmental state s∈ S from 
which an action a∈ A is taken by the agent generating a 
reward or penalty signal r∈ R received by the agent from the 
environment or intrinsic source.  A value function V is 
modified by r and the next action is selected based on 
criteria related to the value function. 

RL is different from other areas of machine learning in 
that an agent must learn from interaction through its own 
experience; to maximize its long term reward, an agent must 
not only exploit what it already knows but also explore 
unknowns while risking lower immediate reward. A large 
state space and environmental uncertainties pose major 
challenges in utilizing RL. Q-learning is used here because 
of its proven success, simplicity and asynchronous learning 
strategy, which provides an anytime algorithm. 

Watkins introduced Q-learning [16], and its convergence 
was rigorously proven in [18] and more generally in [19, 
20].  The core of the Q-learning algorithm is the update of 
state-action value Q at the end of a sequence of distinct 
states or time steps [18] as 

                   

1 1( , ) (1 ) ( , ) [ ( ')]t t tQ s a Q s a r V sα α γ− −= − + +      (1) 

1 1'
( ') max{ ( ', ')}t ta

V s Q s a− −≡            (2) 

where s is the current state at time step t, a is the action 
taken at state s, r is the reward, ∈α (0,1] is the learning rate, 
and γ∈ [0,1] is the reward discount factor. The learned value 
function approximates the optimal value function as the 
algorithm iterates. It has been proven that if all action-value 
pairs are visited indefinitely often and if 
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then the probability of tQ  converging to the optimal action-
value function Q * is one [19, 20]. The optimal policy is 
defined by, 
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Even if all value functions are not updated enough times, 

Q-learning is an “anytime algorithm”, which means we can 
interrupt the algorithm as needed based on a computation 
budget and will simply obtain the best policy/solution thus 
far. This is an important feature compared to methods like 
Dynamic Programming which sweeps through the whole 
state set, performing a costly full backup operation on each 
state. Additionally, Q-learning is exploration insensitive, 
which means a clear model of the environment is not 
required and value functions Q will converge to the actual 
values, regardless of the strategy used to determine the 
actions taken [21]. 

III. HYBRID STATE SPACE 
In multi-robot cooperation, each robot not only needs to 

deal with task related objects but it also interacts with other 
robots in order to achieve the team goal. In other words, in 
each robot’s environment, there are two types of states - 
object states and robot internal states [22]. In this section, we 
propose a hybrid state space representation integrating both 
object states and robot role states for reinforcement learning. 
This allows using one generic Q-learning algorithm to 
achieve both task planning and role emergence 
simultaneously.   Our definition of a role is a specific set of 
behaviors that a robot carries out during task execution.  
Roles can change voluntarily or involuntarily over time (i.e., 
role emergence). It is different from a robot’s capability in 
the sense that capability is a static set of behaviors that a 
robot could assume, while a role is the set of behaviors 
actually assumed. We will show in the next section how 
robots change their roles voluntarily through Q-learning 
based on the team goal. 

Assume all environment states have Markovian properties. 
We define a hybrid state space s ∈S  as a set of states 
including both object state o and role state e as  
 
 0 1 0 0 1 1{ , , ... , ... } {[ , ],[ , ], ...,[ , ], ...[ , ]}t n t t n ns s s s o e o e o e o e= =S  (5) 
 

Fig. 1 illustrates an example of a hybrid state space 
construction and state transition that integrates both object 
states o and role e for unified Q-learning in a multi-robot 
group foraging task. Here, a team of heterogeneous robots 
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dynamically assume different roles to collaborate in 
sweeping and collecting actions in order to achieve the 
shortest team completion time in collecting and depositing 
scattered objects. The left section of each state 
representation in Fig. 1 is the object entities. For example, 
the values in the circles represent the number of objects for 
each entity at a certain state, where each entity can be a 
single object or cluster of objects. The section on the right 
represents the dynamic robot roles, e.g., P2 is a role in which 
a robot can pick up two objects or less at once, P1 is a role in 
which a robot can pick up a single object only, but can also 
emerge as a sweeper S when needed to cluster objects.   The 
number of robots assuming that role is given in parenthesis, 
e.g., P2(1) means there is one P2 robot at certain state. In 
order to reduce the state space and generalize the learning 
process, we do not distinguish between homogeneous robots, 
and the location of objects or robots is tracked but is not 
included in the state space. 

IV. A FRAMEWORK IN HYBRID STATE SPACE 
In this section, we present a framework for multi-robot 

cooperation including a neural perception module using a 
Competitive Learning neural network for state space 
abstraction, Q-learning using Boltzman distribution for 
action selection, and a progressive rescheduling policy for 
refined task allocation to maximize team utility and online 
re-learning for environmental uncertainties. Our framework 
is inspired by the structure and function of mammalian brain 
circuitry in which the operations emerge from the interaction 
of multiple brain regions [23-25]. The posterior cortex (PC) 
receives and processes sensory inputs via dorsal thalamus 
(T), and anterior cortex (AC) produces motor outputs while 
interacting closely with elements of striatal complex (S, 
striatum; and P pallidum) [23-25].  Fig. 2 depicts the 
schematic diagram of our framework. The components 
follow the general sensation, perception, decision, action, 
reward feedback cycle, and thus include modules for 
Environmental Sensation (ES), Neural Perception (NP), 
Decision Process (DP), Execution (EX) and Reward 
Sensation (RS). There are primary connections between 

these individual modules acting as the pathways for input 
and output signals. Generally similar to how the human 
brain functions, this framework provides an architecture for 
robots to sense and reason about how to collaborate in a joint 
task space with environmental uncertainties towards 
maximizing global team utility.  Each functional module has 
an analogous brain structure as described below. 
\ 

ES: In the Environmental Sensation (ES) module, robots 
sense the outside world, including the task related object 
states and the behavior related role states of other robots. 
Based on observation of individual robots or information 
shared through limited communication among robots, the 
sensation signals of both object states and role states are 
packaged and passed to a Neural Perception module for 
hierarchical representation and hybrid state space 
construction. The detailed state space description was 
presented in section II. The ES module is roughly analogous 
to the sensory processing areas of thalamus (T) in the brain, 
such as the early processing areas of visual cortex of 
mammals. 

NP: The Neural Perception (NP) module is inspired by 
knowledge of how the human brain receives, processes and 
represents its environment through efficient, hierarchical 
data structures [26]. In this module, the object’s physical 
locations are passed in as input vectors to a Competitive 
Learning neural network to be classified as single objects vs. 
clusters, which can be further abstracted into subcategories 
such as shape and orientation based on processing camera 
images [27]. Learned categories from this perception module 
are not only important for the later decision process, but also 
provide for state space reduction. 

The Competitive Learning neural network [28] is an 
unsupervised learning network with the output layer known 
as the "competitive layer" (Fig. 3). During learning, the input 
vector is compared with the weight vector of each neuron 
that leads to the competitive layer. The neuron with a weight 
vector most closely matching the input vector has its weight 
vector adjusted in a “winner takes all” fashion. The process 
continues until no further weight adjustment is required and

 

 
Fig. 1.  Illustration of hybrid state space and transition in a group foraging task with two robots and dynamic role emergence. 
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Fig. 2.  Schematic diagram of a multi-robot cooperation framework 
 

 
Fig. 3.  Competitive learning NN used in clustering. 
 
the final learned weight vectors identify the centers of the 
clusters. The performance rule for finding winning node j 
based on a randomly selected normalized vector of object 
coordinates x̂  is given by  
 

ˆ ˆarg max T

j
j w x←                  (7) 

 
where the learning rule for updating the normalized winning 

jŵ  with rate η is  
 

ˆ ˆ ˆ ˆ( )j j jw w x wη← + −            (8) 
 

Therefore, with each random sample x̂ , jŵ  is updated and 
converges to one cluster’s center. The NP module is roughly 
analogous to later perceptual processing areas in mammalian 
posterior cortex (PC). 

DP: With a learned hierarchical representation of the 
world from the NP module, the Decision Process (DP) is 
performed in this core module utilizing Q-Learning based on 
trial and error of different role and object collecting actions 
with the objective of achieving optimal or near-optimal team 
utility: for example, the shortest team completion time. This 
module is closely coupled with the Execution and Reward 
Sensation module to achieve unified role emergence and 
path planning (dashed lines). There are two main 
components in this module. The first is a recursive Q-
learning algorithm with a Boltzman distribution, and the 
second is a progressive rescheduling algorithm that leads to 
task allocation and online re-learning due to environmental 
uncertainties. These two components interleave to provide 
dynamically adapted schedules as robots execute their best 

found policies in a stochastic environment. The details of the 
algorithm suite inside the DP module are shown in Table I.  
The algorithm suite in Table I is a unified decision process 
that includes both task planning and role emergence in one 
reasoning engagement. When this algorithm suite is 
distributed to a system of robots that “think alike,” minimal 
communication is required because each robot already 
knows paths or roles other robots assume based on the same 
reasoning strategy as its own. In other words, if each robot 
has identical state information and brain architecture, each 
will arrive at the same set of policies for task completion and 
will learn each other’s role and task.   While complete, error- 
free state and policy  knowledge without  communication  is 
unrealistic, these assumptions can be then relaxed 
individually to evaluate the effect on learning. 

We define a learning budget Tb by which Q-learning will 
pause learning and return the best policy found so far to the 
execution module. This is necessary under the circumstances 
of restricted learning time and it takes the advantage of Q-
learning  being  an anytime algorithm that can be interrupted 

 

TABLE I 
ALGORITHM SUITE IN DP MODULE 

Algorithm Suite 
Initialize: 
    Let t=0, re-learning flag=TRUE 
    Neural Perception: clustering by Competitive Learning NN  
    Initialize hybrid state 0 0 0[ , ]s o e=  

    For all s ∈ S, a A∈ , 
    let ( , ) 0Q s a = , ( ) 0V s =  
    Initialize Q -learning budget Tb 

While current object state to != completion state no  
  If re-learning flag is TRUE 
     Q-learning: 
        While under budget Tb 

           Recursive learning until no : 

              Choose action a at state s~  based on the probability        
               from Boltzman distribution, 

                           
( , ) /

( , ) /

1

Pr{ }
Q s a

t n
Q s b

b

ea a
e

τ

τ

=

= =
∑

 

              Observe reward r and next state s~ ’ 
              Update ( , )Q s a  such that, 
              1 1( , ) (1 ) ( , ) [ ( ')]t t tQ s a Q s a r V sα α γ− −= − + +  
                  

1 1'
( ') max{ ( ', ')}t ta

V s Q s a− −≡  

               Record current best known policy, 
                   * arg max ( , )

a
Q s aπ =  

        End 
  Progressive Reschedule: 

           Allocate tasks based on best known policy *π  
           to individual robots using Least Workload  
           algorithm to achieve optimal/sub-optimal 
           completion time 
  End 
  If perception at t and t-1 is inconsistent 
    Trigger re-learning by setting relearning flag=TRUE 
  Else 
    Set relearning flag=FALSE 
  End 
End
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at any point.  When interrupted, it returns the best solution 
for execution found to the point of interruption. 

The purpose of the Progressive Reschedule task allocation 
block is to further generate a specific task list from the best 
learned policy for individual robots within the same role 
category. The goal is to allocate tasks so as to minimize 
overall team completion time without introducing excessive 
computation. Since the overall team completion time is 
determined by the slowest team member (i.e., the longest 
completion time for an individual task), the objective 
becomes finding an allocation policy that yields 
min(max( ))ijj i

T where Tij is the individual completion time of 

the ith robot under jth allocation policy. In computational 
complexity theory, finding an optimal solution for this 
combinatorial optimization problem is NP-hard [29-31]. We 
propose a simple and fast approximation algorithm that sorts 
the non-sequential tasks by their cost in descending order 
and allocates them from top-down to the individual robot 
with the current “least workload.” In the next section, we 
compare the results between this Least Workload algorithm 
and traditional Brute Force combinatorial optimization on 
both overall team completion time and computation. 

Finally, inside the Progressive Reschedule relearning 
block, relearning is triggered by setting a flag based on the 
detection of an inconsistent perception between the current 
and previous time steps; for example, an object may move 
from its original location if it is hit by a robot, or uncertainty 
in sensor measurements may cause inconsistencies in 
perception.  Relearning allows for execution uncertainty; 
future addition of heterogeneity among robots, both in 
perception of the state space and in learned policies; and 
asynchronous learning and associated relaxation of the 
assumption that all robots “think alike.” In the mammalian 
and especially the primate brain, the DP module is 
analogous to higher-order cortical areas such as posterior 
parietal and anterior cortex (AC), which are involved in 
decision making.  These areas are well-positioned for 
decision making in that they receive perception and reward 
information and project to motor control areas. 

EX and RS: At the planning stage, the Execution (EX) 
model takes pseudo actions based on the Q-learning policy 
and Reward Sensation (RS) module feeds back reward 
signals for recursive learning (dashed lines). Besides the 
feedback path, there is another path from the DP to the RS 
module to adjust the reward definition in case of a potential 
team goal change, such as changing from shortest team 
completion time to lowest energy use; at the execution stage, 
the task lists generated by Progressive Rescheduling are 
passed to individual robots for execution (solid lines). For 
the planning stage, EX and RS may be analogous to 
prefrontal cortical areas, which are used in planning.  At the 
same time, especially during execution, EX is analogous to 
motor control areas of the brain, such as premotor and 
primary motor cortex; and RS would be analogous to the 
dopamine reward system (of the midbrain and ventral 
striatum) that appears to underlie reward learning. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 
We have conducted a number of Monte Carlo experiments 

with random environmental configurations to evaluate the 
effectiveness of our hybrid state space formulation and 
algorithm suite in a multi-robot foraging task and have also 
tested extensively in a physically realistic simulation 
environment using the Webots simulator [32] as shown in 
Fig. 4 and in the accompanying video.  

The first set of experiments is conducted to measure the 
performance of a multi-robot team in three different role 
configurations: a Homogenous team of three robots with a 
Single role of P2 (HoSr), a Heterogeneous but Fixed-role 
team of two P2 and one S (HeFr) and a Heterogeneous team 
of two P2 and one S/P1 with dynamic Role emergence 
(HeRe). In this experiment, each robot can obtain state 
information provided by Webots simulator about the 
locations of objects and robots, and it uses the framework 
described in section IV. Simple policies for lower level 
motor behaviors, such as right-of-way and manipulating 
objects are assumed. 

Fig. 5 compares the average overall team completion 
time from 200 trials for each of the three different role 
configurations based on randomly generated test cases of 12-
24 scattered objects. The raw data are shown in black points, 
and the quartile and mean of each group are indicated by the 
red box  and center line of  the  green  diamond  
respectively. The HoSr team has the lowest performance 
compared to the other team configurations. This is mainly 
due to the lack of diversified roles, highlighting the 
importance of collaboration. The results also show that 
teams with dynamic role emergence (HeRe) perform 
significantly better than teams with static roles. Also note 
that the best policy after learning budget Tb can be sub-
optimal in a large state space, and role emergence will create 
more possible role states than fixed role scenarios.  
Nonetheless, HeRe outperforms HoSr and HeFr teams with 
static  roles  on  average  even  with  a  restricted   Q-leaning 

 

 
Fig. 4.  Multi-robots collaboration simulation in Webots: Yellow/Red Team 
is composed of two robots that can pick up 1-2 objects at a time; Blue/Red 
Team is one robot that can either sweep or pick up 1 object. 
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Fig. 5.  Overall team completion time for three difference robot team 
configurations: a heterogeneous but fixed-role team of P2 and S (HeFr), a 
heterogeneous team of P2 and S/P1 with dynamic role emergence (HeRe) 
and a homogenous team of single role of P2 (HoSr). 
 
budget Tb that forces Q-learning to stop and simply return 
the best policy  

In the second set of Monte Carlo experiments, we evaluate 
and compare the Least Workload algorithm with Brute Force 
optimization in task allocation for robots with the same role 
type, based on the best found policy from the Q-learning 
algorithm. To justify the efficacy of the approach, we first 
focus on a two-robot team.  We generate 100 randomly 
initialized trials for each case of total number of tasks 
ranging from 1-15 tasks (i.e., 1500 trials in total). Within 
each trial, a random number∈(0,100) is generated to 
represent the individual task completion cost in seconds. Fig. 
6 shows the mean of overall team completion time and 
computation cost (on a logarithmic scale) from this set of 
experiments. As seen in Fig. 6(a), the overall team 
completion time from the Least Workload approach falls 
within 2.5% of the optimal solution found by Brute Force 
independent of the number of tasks. Also, as seen in Fig. 
6(b), as the number of tasks to be allocated increases, the 
computation cost from Least Workload is significantly lower 
than that of the Brute Force approach which has exponential 
time complexity. 

We also extend the robot team from two robots to five 
with total number of tasks ranging from 5-15 and total 
number of trials in a normal distribution. Similar to Fig. 6, 
Fig. 7 shows that with the increase in number of robots, the 
overall team completion time from the Least Workload 
approach still falls within 2.5% of the optimal solution, and 
the computation cost remains significantly lower than the 
Brute Force algorithm. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we have described a hybrid state space 

representation, framework, and learning algorithm inspired 
by human brain function. Using reinforcement learning in 
this framework enables robots to solve role emergence and 
task allocation simultaneously and to relearn in the face of 

environmental uncertainties that arise during task execution. 
The experimental results presented here demonstrate the 
importance of role emergence and the efficiency of our 
algorithm on enhancing team performance in a collaborative 
task.  

While the framework is general, our current reinforcement 
learning process defines the end of each episode by the 
subtask with longest completion time (i.e., the slowest team 
member), which could introduce noise in the reward 
calculation. We plan to investigate a sub-state representation 
in  the  reward  calculation  that  is  asynchronous which will  

 

 

 
Fig. 6.  Comparison of Brute Force vs. Least Workload (2 Robot Team) (a) 
Mean of team completion time by # tasks (1-15), (b) Log of Mean of 
computation cost by # tasks (1-15)       
 
 

 

 
Fig. 7.  Comparison of Brute Force vs. Least Workload (2-5 Robot Team) 
(a) Mean of overall team completion time by number of  robots, (b) Log of 
Mean of computation cost by number of  robots(2-5) 
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refine the reward calculation, albeit at risk of increasing the 
size of the state space.  

Another area for future work is scalability of the current 
learning process with uncertainty. In the present 
representation, every robot “thinks alike” without error or 
uncertainty.  Future modifications will allow for uncertainty 
in each of the ES, NP, and DP processes, allowing for 
heterogeneity in learning among robots and a distributed 
version of the framework.  Subsequent work will implement 
and conduct experiments with Pioneer robots to evolve the 
method to accommodate asynchronous learning and 
uncertainty, such as error in perception of object or role 
states or location. 
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