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Abstract— In this paper a sensor fusion for pose estimation
using optical and inertial data is presented. The proposed
algorithm is based on extended Kalman filtering and fuses data
from an optical tracking system and an inertial measurement
unit. These two redundant sensor systems complement each
other well, with the tracking system providing absolute positions
and the inertial measurements giving low latency information
of derivatives. Models for both sensors are given respecting the
different sampling times and latencies. Another key issue is to
use information about every landmark, i.e. marker ball, visible
for the tracking system, by coupling the two sensor systems
tightly together. The algorithm is evaluated in simulation and
tested with an experimental hardware platform. The combined
sensor system is robust with respect to short time marker
occlusions and effectively compensates for latencies in the pose
measurements.

I. INTRODUCTION

In modern operating rooms optical tracking systems are
widely used for navigation. Surgeons navigate hand held
tools equipped with reflecting marker balls while looking at
a monitor visualizing the tool in a virtual patient. Tracking
systems are not only used in hand held navigated interven-
tions but also in automated navigated control with robots.
We developed an application for positioning of a biopsy
needle with the Kinemedic, a versatile medical light-weight
robot [11]. Fig. 1 shows the Kinemedic’s successor, the
MIRO with markers for optical tracking. In such applications
tracking systems show three major drawbacks: (a) Occlusion
of markers can lead to immediate loss of pose information.
(b) Tracking systems are slow with low sampling rates and
high latencies compared to a robots internal sensors. (c) Mea-
surements are corrupted by noise, especially the orientation.
A possible solution to this drawbacks is the additional use
of an inertial measurement unit (IMU). Recent developments
in Micro-Electro-Mechanical Systems (MEMS) have lead to
commercially availabe small size IMUs that give a three axis
measurement of angular rates and translational acceleration.
In combination with the tracking systems that are already
standard in operation rooms an IMU could improve the
quality of the measurements. In general the IMU data is very
reliable, because it does not depend on external conditions,
such as line of sight, and is insensitive to metal or mag-
netic fields. However, since only derivatives of position and
orientation are measured, the numerical integration of IMU
measurements will inevitably lead to a drift of computed
poses. An IMU is therefore not a substitute for a tracking
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Fig. 1. The MIRO, a versatile medical light-weight robot, developed at
the German Aerospace Center (DLR), with tracking markers of an optical
tracking system attached to it

system, but a suitable extension that costs a fraction of
additional cameras and does not need much space in a
crowded operation room. The quality of the combined data
then depends on calibration, synchronization, sensor models
and proper data fusion algorithms.

The authors identified three main goals for the combined
system with optical tracking and IMU:

• The sensor fusion should be able to estimate position
and orientation in case of short time occlusions of
tracking markers.

• Estimated position and orientation should not show
significant delay.

• Orientation estimates should be reduced in noise.
These goals aim to negate the most common performance

drawbacks of optical tracking systems, as described above.
The priorities of the goals depend on the specific application
and can not be given in general. To achieve these goals the
lower sampling rate and latency of the optical tracking sys-
tem is rigorously modelled and the data fusion is performed
with single marker position measurements instead of taking
a 6-DoF pose measurement from the tracking system.

In section II a review of Kalman filtering and data fusion
algorithms based on it is given. In the following section III
the process and measurement models are derived based on
sensor models. The data fusion is described and evaluated

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 492



in simulation in section IV. A brief overview of the experi-
mental hardware setup and results are given in section V.
Section VI concludes the paper and gives an outlook on
future work.

II. STATE OF THE ART

In this section a review of the Kalman filter and the ex-
tended Kalman filter is given. It is followed by a presentation
of Kalman filter applications in navigation.

A. Review of the Kalman Filter

Since the publication of the Kalman filter [8], its variants
have become the core of many sensor fusion applications. A
detailed introduction is given in [15]. The Kalman filter esti-
mates the states of a linear system when noisy measurements
of its outputs, and its control inputs, are known. It is optimal,
as it minimizes the estimation error covariance for linear
systems in the presence of zero-mean mutually independent
white gaussian noise. However, in practice most systems of
interest are non-linear, so an extended Kalman filter has been
developed [13]. Let there be a system with the discrete state
space model

x[k] = f(x[k−1],u[k],s[k]) (1)

y[k] = g(x[k],r[k]) (2)

where x, u and y represent state, control input and output
vectors, s and r are process and measurement noise. The
noise vectors at every step are mutually independent and are
described by the covariance matrices S and O. State update
and measurement functions are represented with f and g. The
filter first needs to calculate the matrices

A =
∂ f
∂x

|x̂[k−1|k−1],u[k] (3)

W =
∂ f
∂ s

|x̂[k−1|k−1],u[k] (4)

C =
∂g
∂x

|x̂[k|k−1] (5)

V =
∂g
∂r

|x̂[k|k−1] (6)

where [k|k−1] and [k|k] were used to denote an a-priori, and
respectively an a-posteriori, value calculated at time step k.

Once these Jacobians are obtained, the filter will proceed
with the following formulas, for the predict

x̂[k|k−1] = f(x̂[k−1|k−1],u[k],0) (7)

P[k|k−1] = AP[k−1|k−1]AT +WSWT (8)

and update phases

K[k] = P[k|k−1]CT (CP[k|k−1]CT +VOVT )−1 (9)

x̂[k|k] = x̂[k|k−1]+K[k](y[k]−g(x̂[k|k−1],0)) (10)

The error covariance matrix

P[k|k] = (I−K[k]C)P[k|k−1](I−K[k]C)T +K[k]OKT [k]
(11)

is given with the Joseph form [3], which guarantees that
the covariance matrix is symmetrical and the computation is
numerically stable.

The extended Kalman filter, or its further developed vari-
ants like the unscented Kalman filter [7], are generally not
optimal estimators, due to the linearization. Furthermore,
in many applications the assumption of zero-mean white
Gaussian noise does not hold. Nevertheless, they have proven
sufficient in practice, as their use in navigation shows.

B. Kalman Filtering applied in Sensor data fusion

In outdoor navigation the combination of IMU and GPS
is widely used and algorithms for data fusion based of
Kalman filtering are established, e.g. terrestrial vehicle nav-
igation [14] [6]. Magnetic sensors, inertial angular rate, and
gravity sensors were fused for motion tracking [10]. Terrain
mapping is done with laser range finding, GPS and IMU
data [12]. In augmented reality applications [4] [5] ultra
sonic sensors, IMUs, and optical tracking are used.

In GPS/IMU systems, the concepts of loose, tight- and
ultra-tight couplings have been developed, depending on the
degree of processing done on satellite measurements before
they are fed to the filter. Loose coupling means the filter is
given the position calculated from time delay measurements
of four satellites. Tight coupling means that the filter is given
the time delay measurements of the visible satellites, and
calculating the position is done inside the filter itself [6].
Ultra-tight coupling means using the EKF results to adjust
the code tracking loop for the satellite signals [1], [9].

Another development in filter design is the Single Con-
straint at a Time, or SCAAT, technique, presented in [16],
applied by e.g. [5]. It involves processing only one measure-
ment of a system output component when doing an update
phase. Acquiring a complete set of measurements takes more
time than acquiring just one measurement, so in order to
reduce latencies the measurements should be processed as
soon as available.

There were approaches of combining optical tracking and
IMU data, e.g. in [2] a data fusion for medical applications
based on optical tracking and inertial data is presented.
It implements a loosly coupled data fusion using position
and orientation measurements from the tracking system.
Delays are handled with time variant covariances. Usually,
different sampling times and latencies of the sensors are not
explicitely modeled in Kalman filter applications. None of
the approaches known to the authors transferred advanced
methods such as the tight coupling of sensors from outdoor
navigation to medical applications.

III. MODELING OF THE SYSTEM

Sensor data fusion requires proper models of the sensors.
The optical tracking system and the inertial measurement unit
are modelled with bias, latency, noise, and sampling times
considered. Based on this IMU model a process model is
derived, which basicly integrates the IMU measurements in
space. The optical tracker provides data for the measurement
model.
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A. Sensor models

A measured sample of data coming from a sensor or
measured system is defined as a set of a

• Value (scalar or vector) with a physical unit,
• Timestamp with the physical time corresponding to the

value,
• Quality corresponding to the measured value, normal-

ized in [0,1].
The optical tracking system (OTS) provides a set of

position measurements

M[i] =
{N

M,1pm[i],NM,2 pm[i], ...,NM,n pm[i],e1[i],e2[i], ...,en[i]
}

(12)
at a discrete step i ∈ N of several marker balls and their
corresponding quality e j. The position N

M,jp of of the marker
M,j is given with respect to the navigation frame N. The
quality reflects how clearly, if at all, a marker was seen and
identified by the cameras. Each marker measurement

N
M,jpm[i] =N

M,j p(i · ts,OT S − tl,OT S)+N
M,j pn(i · ts,OT S − tl,OT S)

(13)
is given with the true position N

M,jp ∈R3 at the physical time
(i · ts,OT S − tl,OT S) with ts,OT S and tl,OT S being the sampling
time and the latency respectively. Positions of marker points
and the noise N

M,jpn are given with respect to the navigation
frame N. The navigation frame is the frame of reference
of the optical tracking system. It is fixed to the room and
assumed to be an inertial frame.

The inertial measurement unit gives accelerations S
Sam ∈

R3 and angular rates ωm ∈R3 in 3 axis at the discrete step k∈
N with the sampling rate ts,IMU . The acceleration measured

S
Sam[k] = S

Sa(k · ts,IMU )+S
S ab(k · ts,IMU )+S

S an(k · ts,IMU )
+ S

Sag(k · ts,IMU ) (14)

is the true acceleration a corrupted with a bias ab, noise
anand earth gravitational acceleration ag. All vectors denote
an acceleration effecting the inertial sensor in its own frame
S . Similarly, the measured angular rates

S
Sωm[k] =S

S ω(k · ts,IMU )+S
S ωb(k · ts,IMU )+S

S ωn(k · ts,IMU )
(15)

are the true rates ω with bias ωb and noise ωn. Unlike
the OTS the IMU is assumed to measure without latencies.
Furthermore the sampling time of the OTS is a multiple
of the one of the IMU: ts,OT S = ψ · ts,IMU ,ψ ∈ N,ψ ≥ 1.
Similarly, for the OTS latency tl,OT S = ρ ·ts,IMU ,ρ ∈N,ρ ≥ 0.
Note that i = 0 and k = 0 correspond to the same physical
time t = 0.

B. Process Model

The task is to track an object as it moves in space.
However, the IMU and the markers are rigidly fixed to
this object. The tracking task can therefore be reduced to
a tracking of the IMU with the markers attached to it.

The process model takes the inertial measurement as the
control input vector

u[k] = (S
Sam[k],SS ωm[k])T (16)

and numerically integrates them to obtain the IMU motion
with respect to the navigation frame. The state vector

x[k] = (N
S p[k],NS q[k],NS v[k],SS ab[k],SS ωb[k])T (17)

is given with the position, the orientation quaternion and the
velocity of the object in the navigation frame. The bias of
the IMU is treated as a random walk, its time derivative
is assumed to be zero mean gaussian noise. Based on the
IMU model a state space model for the system with zero
order hold discretization and system sampling time ts = ts,IMU
can be derived. The difference equations that determine the
system matrix are:

N
S p[k] =N

S p[k−1]+ ts ·N
S v[k−1] (18)

N
S q[k] =N

S q[k−1]∗q(ts,(ωm[k]−S
S ωb[k−1]+S

S ωn[k])) (19)

N
S v[k] = N

S v[k−1]+ ts · (R(N
S q[k−1]) ·

(S
Sam[k]−S

S ab[k−1]+S
S an[k])−N

S ag)
(20)

S
Sab[k] =S

S ab[k−1]+ ts ·SS ab,n[k] (21)

S
Sωb[k] =S

S ωb[k−1]+ ts ·SS ωb,n[k] (22)

The function R(q) gives a rotation matrix equivalent to the
orientation of a quaternion q. In (19), q(ts,ω) is a quaternion
describing a rotation obtained by a constant angular velocity
ω maintained for a short time period ts.

C. Measurement Model

For a single marker, the relationship between that marker’s
measured position in the N-frame, N

M,jpm, at a time t = i ·
ts,OT S, with latency ρ · ts,IMU , and the IMU’s position and
orientation in the N-frame, N

S p, at a time (i ·ψ −ρ) · ts,IMU is
given by

N
M,jpm[i] = N

S p[i ·ψ −ρ]+R(N
S q[i ·ψ −ρ])S

M,jp

+ N
M,jpn[i ·ψ −ρ] (23)

where S
M,jp is the position of the marker in the IMU frame

and N
M,jpn[i ·ψ −ρ] is the measurement noise.

A marker measurement N
M,jpm[i] is used to build an obser-

vation model, if the quality e j[i] of that measurement exceeds
a predefined threshold θ . The observation model is built from
a system of equations of the form shown in (23), with one
equation for each marker with a sufficient quality.

IV. DATA FUSION

The extended Kalman filter, as described in section II-A is
applied to the models given in section III. Simulation results
are plotted to verify the data fusion with the models given.
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A. Fusion model

The state update f and measurement g functions are
given with (18), (19), (20) and (23). Differences to common
implementations arise, because of the latency of optical
measurements and their lower sampling rate than the inertial
measurements. The filter runs a predict phase whenever new
inertial data is available, which means several successive pre-
diction phases occur between update phases. During predict
phases, the covariance matrix P increases to reflect the grow-
ing uncertainty of estimations. State estimations, covariance
matrices as well as inertial measurements are stored in a
buffer, so that when an optical measurement with latency
ρ · ts,IMU becomes available at t = i · ts,OT S = (i ·ψ) · ts,IMU ,
the update step is applied to estimations obtained at an earlier
time (i ·ψ −ρ) · ts,IMU : based on available marker data, the
Kalman filter will correct the estimations from that time.
After an update phase, ρ predict phases are run through the
buffer from the updated position until the present.

B. Simulation

The simulation generates a reference trajectory (position,
orientation, velocity) with the states of the process model.
Measured values for inertial quantities and markers were
calculated from the true values using equations (14), (15)
and (23), given a realistic noise level and bias. The process
sampling time ts = ts,IMU = 2ms, while the optical system
has ts,OT S = 18ms with latency tl,OT S = 26ms. Three markers
were simulated for tracking. Sinusoidal motion in 6-DoF of
different magnitude and phase is simulated. The plots in
Fig. 2 show the x-position (left column) and yaw-rotation
(right column). In the first row, the system is simulated
without occlusion of markers. The fused data (dashed line)
follows the true value (solid line) tightly, whereas the mea-
sured position and orientation (dotted line) are delayed.
In the second and third row, one and three marker were
occluded (covered) respectively, from time toc = 15s on. The
position estimation tracks the reference with only two visible
markers, whereas it drifts away, when no markers are visible
anymore. The orientation shows no significant drift in this
short time interval. This can also be seen in table I, where
the corresponding root mean square (RMS) errors for the
time interval 15s−18s are given. The position estimates get
worse the more markers are occluded with a huge step from
one to no visible marker. The RMS errors for the optical
tracker are given for a signal without delay to show that
the estimation performs better even when working with a
delayed pose measurement.

V. EXPERIMENTS

An experimental hardware setup was developed and ex-
periments were performed in order to verify the simulation.

A. Hardware setup

The IMU used for experiments was an ADIS 16350 unit
from Analog Devices, connected via a data acquisition card
to an off the shelf PC. The data fusion was processed on
the computer running the QNX real-time operating system.

Fig. 2. Simulation plots with x-axis (left) and yaw-angle (right) in the
navigation frame. Three scenarios are shown: all markers visible (top), two
markers visible (middle), all markers occluded (bottom). Marker occlusions
occur at time toc = 15s

TABLE I
SIMULATION RESULTS SHOWING RMS ERRORS FOR A TIME INTERVAL

OF 3 SECONDS WITH OCCLUDED MARKERS

Optical tracker Sensor fusion

Markers
occluded

Pos. X
RMSE
(mm)

Yaw
RMSE
(rad)

Pos. X
RMSE
(mm)

Yaw
RMSE
(rad)

0 0.83 0.002 0.12 0.0006
1 - - 0.15 0.0011
2 - - 0.17 0.001
3 - - 29.2 0.0009
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Sampling time for the IMU was ts,IMU = 2ms. Optical
tracking was provided by the ART v2 system from Advanced
Realtime Tracking Gmbh. It measures marker positions with
a sampling time of ts,OT S = 18ms and a latency (estimated)
of tl,OT S = 26ms.

The experiments consisted of tracking the circuit board,
where the IMU was mounted on. This circuit board was fixed
on a support board, upon which three markers were aligned
with the IMU x- and y-axis, see Fig. 3. Nevertheless, their
positions relative to the IMU S

M,jp with j = 1,2,3 are known
with some error, and it remains as a future work to implement
a procedure to calibrate marker positions, relative to an IMU,
accurately.

Fig. 3. The inertial measurement unit mounted on a circuit board with
tracking markers (M,1;M2;M3) aligned to the IMU’s x- and y-axis

B. Experimental Results

Like in the simulations, the state vector was estimated,
in different marker occlusion scenarios. The IMU platform
was moved in space manually in an unrestricted 6-DoF
motion. The algorithms were processed four times on the
same data, first with no marker occlusion, then with one,
two and finally three markers occluded from time toc = 32.5s
on lasting for 3s. Markers were not physically occluded but
instead invalidated in the software. This way the same set
of data can be used for all cases. In Figure 4 the output of
the sensor fusion algorithm (dashed line), is shown, versus
the output obtained from the optical tracker (dotted line), as
well as a reference (solid line). The reference trajectory was
generated from the optical tracking data, that was smoothed
and shifted forward by tl,OT S = 26ms to remove the latency.
This reference enables an evaluation of performace in case
of marker occlusions and latency but unfortunately not the
performace concerning noise. The plots are grouped the same
way as for simulation and show similar results. The plots for
the x-position and yaw-rotation in the first row show that the
latency was effectively compensated. In the second row the
marker M,2 is occluded and N

M,2pm is invalid, e2 = 0 for
ts ≥ 32.5s. The rotation around the axis connecting M,1 and
M,3 (dottet line in Fig. 3) is not measured and the position
of the IMU N

S p can not be determined by the measurements,

Fig. 4. Experimental plots with x-axis (left) and yaw-angle (right) in the
navigation frame. Three scenarios are shown: all markers visible (top), two
markers visible (middle), all markers occluded (bottom). Marker occlusions
occur at time toc = 32.5s

since it is not on this axis. Figure 4 show that the gyros can
track the missing rotation for a few seconds and therefore
also allow the observation of the IMU position. In the third
row all markers are occluded and observability of all states
is lost. The double integration of accelerometers, and the
propagation of orientation errors to the position, leads to an
instantaneous drift in the position, whereas the gyros can
track the orientation for 3 seconds, as also shown in table II.
When 6-DoF motion is performed, at least one marker has
to be visible at any time for pose tracking.

Another test was performed to determine the minimum
requirements for long term pose estimation. It showed that
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TABLE II
EXPERIMENTAL RESULTS SHOWING RMS ERRORS FOR A TIME

INTERVAL OF 3 SECONDS WITH OCCLUDED MARKERS

Sensor fusion

Markers
occluded

Epos.
X RMS
(mm)

Yaw RMS
(rad)

0 1.1 0.0028
1 1.5 0.0078
2 7.4 0.0157
3 147.3 0.008

the RMS error did not diverge in case of cyclic marker
visibility. In every cycle first only M,1 was visible then only
M,2, and finally only M,3, for 250ms each. A stable pose
estimation can be provided over many cycles, if at least one
marker is always visible and every marker out of three is
visible regularly.

VI. CONCLUSION AND FUTURE WORK

The sensor fusion presented in this paper successfully
combines an inertial measurement system with an optical
tracking system. Models for both sensors are given and
a state space model with process model and measurement
model is derived. The sensor fusion couples the redundant
sensors tightly using information about every visible marker
ball for the estimation, while taking their different sampling
rates and latencies into account. In case that only one
marker is visible the orientation can be sufficiently estimated
with the gyros for a few seconds and the pose is tracked
with the marker position. If all markers are occluded, the
position estimation based on the accelerometers drifts away
immediately. For good long time tracking performance, it
is necessary that at least one marker is always visible and
3 different markers are visible regularly but not at the same
time. It is shown that the sensor fusion can maintain tracking
even in cases in which a purely optical system would fail.
Furthermore, the estimated pose tracks a reference trajectory
in all cases without delay and a high resolution in time.
Noise reduction is shown in simulation. The combined data
can show errors in case of insufficient calibration or syn-
chronization of the sensor systems which causes systematic
errors the Kalman filter can not deal with optimally. A future
research topic will be the propagation of the quality of
the measurements through the sensor data fusion to provide
applications with a profound knowledge of the reliability of
the current estimation.
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