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Abstract—This paper reports some interesting results on
our experimental study of parametrically excited dynamic
bipedal walking. We describe the details of the walking machine
that has telescopic legs, semicircular feet, free hip-joint and
counterweights. The walker can sustain stable dynamic walking
on level ground based on mechanical energy restoration in
accordance with the principle of parametric excitation utilizing
the effects of semicircular feet and counterweights. Results of
numerical analysis of the effect of the counterweights on the
gait efficiency are also described.

I. INTRODUCTION
Recently, many efficient dynamic bipedal walkers have

been developed [1]. They are inspired by McGeer’s research
on passive dynamic walking (PDW) [2], and effectively
utilize the principle dynamics.

Asano et al. on the other hand proposed a method for gen-
erating efficient dynamic bipedal gait based on the principle
of parametric excitation [3]. In this method, a biped robot can
restore the mechanical energy lost by heel strike by pumping
the leg mass in accordance with parametric excitation, and
achieve stable gait generation very easily. Here by using tele-
scopic leg, both mechanical energy restoration and obstacle
avoidance can be simultaneously realized. Although the legs
are straight, the walker can avoid foot-scuffing during the
stance phase by lifting the swing leg [4][5]. In addition,
the robot has semicircular feet because this approach does
not require ankle-joint actuation. Semicircular feet are very
effective to realize efficient dynamic bipedal gait because
their rolling effect provides virtual ankle-joint torque [6][7]
and they reduce the mechanical energy dissipation caused by
heel strike [8]. Based on the observations, we have developed
a walking machine that has telescopic legs, semicircular feet,
free hip-joint, and counterweights.

In our previous works [3], we reported the development
of the walker, however, due to several problems, sustainable
level dynamic walking had been achieved only up to 5 steps.
In this paper we will propose a new bipedal walker model
that has a counterweight on each leg. This paper then reports
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the final experimental walking machine with counterweights
and its walking results. In detail, we observed more than 8
steps with the probability of one fourth in the experiment. It
is also investigated through numerical simulations how the
counterweights attached on the hip affects the gait stability
and efficiency.

II. EFFECT OF THE COUNTERWEIGHTS

A. Proposed model

We derive the dynamic equation and equation of the
inelastic collision to analyze our model. Fig. 1 shows our
previous bipedal walking model[3]. Fig. 2 shows the ideal
model for the walking machine with counterweights, which
has prismatic joints driven by telescopic actuators on each
leg. From now on, we call the model shown in Fig. 1 as
“Model 1”, and the model shown in Fig. 2 as “Model 2”.
The main physical parameters of Model 2 are identical to
Model 1, and in Fig. 2 we highlighted the difference from
Fig. 1. In this paper, we introduce counterweights which is
the main difference from our previous model [3].

Fig. 1. [Model 1] Simulation model with prismatic joint

Fig. 2. [Model 2] Simulation model with counterweights and hip mass
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B. Dynamic equation of Model 2

Mass, position, angle of the counterweights are described
in Fig. 2 as mc, li6, and θc, respectively. From now on, we
call the stance and swing leg “leg1” and “leg2”, respectively.
We derive the dynamic equation of the legs separately, and
connect them at the hip joint by introducing a constraint
force. We chose the generalized coordinate vector for the leg
i as qi = [xi zi θi li2]T (i = 1, 2). The dynamic equation
of the leg i without any constraint forces is given by[
M1(q1) 04×4

04×4 M2(q2)

] [
q̈1

q̈2

]
+

[
h1(q1, q̇1)
h2(q2, q̇2)

]
=

[
S1u1

S2u2

]
, (1)

where Mi ∈ R
4×4 is the inertia matrix, hi ∈ R

4 is the
centrifugal, Coriolis, and gravity vector, and Siui ∈ R

4

is the control input vector which is given by Siui =
[0 0 0 1]Tui (i = 1, 2), where ui [N] is the control force of
the leg i’s telescopic actuator. By taking the constraint forces
into account, we can obtain the complete dynamic equation
as[
M1(q1) 04×4

04×4 M2(q2)

] [
q̈1

q̈2

]
+

[
h1(q1, q̇1)
h2(q2, q̇2)

]
=

[
S1u1

S2u2

]
+J(q)Tλ,(2)

where J(q)Tλ ∈ R
8 indicates the constraint force which

comes from the connection of the two legs at the hip joint,
also impose the condition on the stance leg which does not
slip on the ground. The Jacobian matrix, J(q), is determined
by using the equation J(q)q̇ = 04×1. In the following, we
simply express the complete dynamic equation as

M(q)q̈ + h(q, q̇) = Su+ J(q)Tλ, (3)

where

q :=
[
q1

q2

]
, Su :=

[
S1 04×1

04×1 S2

] [
u1

u2

]
, (4)

We now describe velocity constraint conditions for the Ja-
cobian matrix. The velocity constraint conditions are given
by differentiating the conditions that two legs’ hip positions
are identical and the rolling contact conditions between the
stance leg and ground. They are expressed as

ẋ1 + ˙l12 sin θ1 + (l13 + l12) cos θ1θ̇1

= ẋ2 + ˙l22 sin θ2 + (l23 + l22) cos θ2θ̇2,
(5)

ż1 + ˙l12 cos θ1 − (l13 + l12) sin θ1θ̇1

= ż2 + ˙l22 cos θ2 − (l23 + l22) sin θ2θ̇2,
(6)

ẋ1 = Rθ̇1, ż1 = 0, (7)

The Jacobian matrix is derived by putting the four velocity
constraint conditions into equation J(q)q̇ = 04×1.

C. Equation of inelastic collision for heel-strike

The equation of inelastic collision with the ground can be
expressed as

M(q)q̇+ = M(q)q̇− + JI(q)TλI , (8)

where JT
I λI ∈ R

8 denotes the constraint force at heel-strike
and the Jacobian matrix at heel-strike, JI , should satisfy the
following equation:

JI(q)q̇+ = 06×1, (9)

The superscripts “−” and “+” indicate just-before and
just-after the impact, respectively. Using Eqs. (8) and (9),
we can get the relation between q̇+ and q̇−. It is expressed
as

q̇+ = (I8 −M−1JT
I X

−1
I JI)q̇−, (10)

where XI := JIM
−1JT

I . To get the detailed Jacobian
matrix at heel-strike, we need to derive the velocity constraint
condition. In this situation, our model should satisfy Eqs.
(5) and (6), and we also have to consider the following
conditions of leg 2 that expresses the rolling contact with
the ground:

ẋ2
+ = Rθ̇2

+
, ż2

+ = 0, (11)

In addition, the constraint conditions for mechanical lock of
the telescopic joints are expressed as

˙l12
+

= 0, ˙l22
+

= 0, (12)

Fig. 3. Simulation results of Model 2

Fig. 4. Simulation results of Model 1
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The Jacobian matrix, JI(q), is then given by summarizing
the six velocity constraint conditions of Eqs. (5), (6), (7),
and (11).

D. Control law

We chose the following desired-time trajectory of l22 as
follows

l22d(t) =

{
l22max −A sin3( π

Tset
t) (0 ≤ t ≤ Tset)

l22max (t ≥ Tset)
, (13)

Our purpose is making the length of telescopic joints follow
the above equation’s l22d by giving the controlling input in
the actuator. The length of telescopic joints is expressed as
l2 = [l12 l22]T. This vector is expressed using the gener-
alized coordinates as l2 = STq,its second order derivative
with respect to time yields

l̈2 = STq̈ = ST(M−1(Su− h) +M−1JTλ), (14)

We can solve the Eqs. (14) for λ with following the equation
Jq̈ = −J̇ q̇. λ is expressed as

λ = X−1(−J̇ q̇ − JM−1(Su− h)), (15)

where X = JM−1JT. By substituting this into Eq. (14),
we can obtain the following equation.

l̈2 = Fu+G (16)

where

F := STM−1(M − JTX−1J)M−1S, (17)
G := −STM−1h− STM−1JTX−1J̇ q̇

+STM−1JTX−1JM−1h, (18)

Then we chose the controlling input follow as

u = F−1(ū−G), (19)
ū = ¨l2d +KD( ˙l2d − l̇2) +KP (l2d − l2), (20)

where l2d = [l12d l22d]T, KD ∈ R
2×2 and KP ∈ R

2×2 are
PD gain matrices.

E. Simulation studies

1) Difference between Model 1 and Model 2: We chose
the mc, li6 improving the gait best at this angle with physical
parameter shown in TABLE I. Fig. 3 and Fig. 4 shows
the simulation results of each model ; leg angles, l22 and
the mechanical energy. We can see both Fig 3 and 4 have
the same tendency and having a stable step. The difference
between the two results is (C) Mechanical energy. Both
models need about 5[J] to pumping the leg to recover the
mechanical energy, lost by the heel strike. When investigating
the lost energy, Mode 2 loses one fourth less then Model 2.
This means Model 2 is having a smoother step.

TABLE I
PHYSICAL PARAMETER USED FOR EXPERIMENTATION

li1 0.56 m mi1 5.60 kg
li2max 0.42 m mi2 1.55 kg
li3 0.10 m ml 0 kg
li4 0.30 m mH 0.56 kg
li5 0.03 m mc 0.05 kg
li6 0.17 m A 0.08 m
R 0.50 m Tset 0.55 s

θc 1.18 rad
TABLE II

EFFECTS OF COUNTERWEIGHTS WHERE A = 0.08 [M]
Model 1 model 2

Walking speed [m/s] 0.5523 0.6100
Restored mechanical energy [J] 0.2076 0.2960
Specific resistance [-] 0.1921 0.1723

TABLE III
EFFECTS OF COUNTERWEIGHTS WHERE A = 0.10 [M]

Model 1 Model 2
Walking speed [m/s] 0.5523 0.9358
Restored mechanical energy [J] 0.2076 2.9977
Specific resistance [-] 0.1921 0.1260

2) Counterweights effect: Here, we analyze the effect of
the counterweights in our model through computer simu-
lation by MATLAB. In detail, to evaluate the effects of
the counterweights we changed the parameter mc, li6, θc

regarding to the counterweights, and observed next 3 results
walking speed, restore of the mechanical energy in one step
and specific resistance. Figs. 5 to 8 show the effects of
changing the length of counterweights at each mc. We chose
θc as −0.52, 0.0, 0.79, 1.18 [rad] to get the rough trend. Figs.
5 and 6 (θc = −0.52, 0.0 [rad]) indicate that extending the
length of counterweights decrease the walking speed and
restored mechanical energy in one step in this angle range.
On the other hand, values of specific resistance increase with
extension of the counterweights. It means that the extension
of the counterweights make the machine’s efficiency worse.
Fig. 7 (θc = 0.79 [rad]) shows that the extension of
counterweights makes the walking speed and the restored
mechanical energy in one step greater. Furthermore, the
specific resistance is improved by the extension at this angle.
Fig. 8 shows that θc = 1.18 [rad] is the best angle to give
the machine excellent effects compared with the machine
having no counterweights as shown in TABLE II. It shows
significant improvement of walking speed, restored mechan-
ical energy, specific resistance. The counterweights’position
at θc = −0.52, 0.0 [rad] is higher than that of at θc =
0.79, 1.18 [rad]. It means that the former position has larger
potential energy than the latter. Large potential energy of
the counterweights disturbs the excitation of mechanical
energy of leg2. For the same reason, our machine is not
able to realize stable gait with too heavy counterweights.
We conducted the same evaluation of the counterweights at
A = 0.10 [m] (amplitude of telescopic joints). This change
brought out the great ability of the counterweights. This
time significant effects by counterweights also appears at
θc = 1.18 [rad]. Detailed effects is shown in TABLE III.This
improvement comes from the fact that increased mechanical
energy resist the heavy counterweights. If counterweights are
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Fig. 5. Gait descriptors with respect to li6 [m] for eight values of mc [kg] where Tset = 0.55 [s], A = 0.08 [m], θc = −0.52 [rad]

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0 0.05 0.1 0.15 0.2 0.25 0.3
l16=l26 [m]

Walking speed [m/s]

mc=0.01 [kg]
mc=0.02 [kg]
mc=0.03 [kg]
mc=0.04 [kg]
mc=0.05 [kg]
mc=0.06 [kg]
mc=0.07 [kg]
mc=0.08 [kg]

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0 0.05 0.1 0.15 0.2 0.25 0.3
l16=l26 [m]

Restored mechanical energy [J]

mc=0.01 [kg]
mc=0.02 [kg]
mc=0.03 [kg]
mc=0.04 [kg]
mc=0.05 [kg]
mc=0.06 [kg]
mc=0.07 [kg]
mc=0.08 [kg]

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0 0.05 0.1 0.15 0.2 0.25 0.3
l16=l26 [m]

Specific resistance [-]

mc=0.01 [kg]
mc=0.02 [kg]
mc=0.03 [kg]
mc=0.04 [kg]
mc=0.05 [kg]
mc=0.06 [kg]
mc=0.07 [kg]
mc=0.08 [kg]

Fig. 6. Gait descriptors with respect to li6 [m] for eight values of mc [kg] where Tset = 0.55 [s], A = 0.08 [m], θc = 0.0 [rad]
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Fig. 7. Gait descriptors with respect to li6 [m] for eight values of mc [kg] where Tset = 0.55 [s], A = 0.08 [m], θc = 0.79 [rad]
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Fig. 8. Gait descriptors with respect to li6 [m] for eight values of mc [kg] where Tset = 0.55 [s], A = 0.08 [m], θc = 1.18 [rad]

attached on appropriate position,the machine is given greater
drive than that of previous condition.

III. DEVELOPMENT OF THE WALKING MACHINE
We have developed a waking machine which has tele-

scopic legs, semicircular feet, free hip-joint, and counter-
weights as shown in Fig. 9 and 10. In this section we will
describe the detail of our walking machine.

A. Walker’s mechanism

The experimental devices that we used are on recoded
[3], also Table IV gives the physical parameters of the
biped robot. The values for the items named “arbitrary” can
be chosen from free wide range, the values in parentheses
have a mechanical limit. This comes from our previous
work [3], that mass ratio comprises an important part on
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TABLE IV
PHYSICAL PARAMETER SETTINGS FOR EXPERIMENTAL MACHINE

ll1 0.5 m
ll2 0.3 (+0 – 0.12) m
ll3 0.2 m
xli, yli arbitrary length m
xhi, yhi arbitrary length m
R 0.5 m
m1 5.6 kg

m2 1.6 (+0 – 0.5) kg
ml 0 (+0 – 3.5) kg
mc voluntarily mass kg
mh 0(+0 – 2.2) kg
θH1 arbitrary angle rad
θH2 arbitrary angle rad

the control performances. One of the characteristic points
of our machine is that each leg has an attachment for the
counterweights which is identical to the simulation model
in the previous section. Also binding the two legs, both
inside and the outside, physically limits the motion into two
dimensions.

B. Control system

We chose C-CHIP as the main-computer for the purpose
of developing the robot autonomous. C-CHIP is a very small
controller which was designed at AIT and BMC, RIKEN. It
is constituted by several modules and the machine ability
depends on how it is combined. The detail of the modules
which we used is described in our previous work[3]. By using
this C-CHIP, we succeeded in moving four legs perfectly
without wires.

Fig. 11 is the overview of our systems. The difference
between the system and our previous report [3] is that here
we added the walking cycle resetting system to feedback the
data to the main computer. Before using this cycle resetting
system, it was very rare to walk successfully. This is because
it is very difficult to swithch the two cycles seamlessly;
prismatic joint pumping cycle and the walking period cycle.
To solve this problem we use the microswitch to obtain the
timing of the heel strike, and by using those strike date, we
made the desired time-trajectory of the leg signal to follow
the initial condition.

IV. EXPERIMENTAL RESULTS

By using the robot shown in Fig. 9 sustainable level
dynamic walking had been achieved only up to 5 steps. The
reason for this low success is that we could not give the same
initial condition. We can see from Fig. 4 that at this model
the impact of the heel strike is very large, and so the initial
condition becomes a very critical factor. On the other hand
from Fig. 3, the importance of the heel strike impact is lesser.
Fig. 12 shows the experimental result using Fig. 10. By using
the counterweights attached model, the success probability of
the walking experiment increased. The experimental results
when changing the length of the counterweights are shown
in Fig. 13 and 14. Also from Fig. 13 we can see a tendency
similar to Fig. 8;increasing the counterweight length and
mass, the walking speed gets faster. Using Fig.10 we had
observation of more than 8 steps with the probability of one
fourth in the experiment. In addition, we had a record of 4[m]
walks; witch was the limit of the experimental environment.

Fig. 9. Overview of Model 1 parametric excitation biped robot

Fig. 10. Overview of Model 2 parametric excitation biped robot with
counterweights

Fig. 11. Experimental apparatus
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Fig. 12. Snapshots of successful parametrically excited dynamic bipedal walking

Fig. 13. Average walking speed

Fig. 14. Average stride length of one period

V. CONCLUSION AND FUTURE WORK

In this paper, we studied the effect of the counterweights
for parametrically excited dynamic bipedal walking. Through
numerical simulation we showed that when the counter-
weights attached on the appropriate position, the robot can
walk faster and more efficiently. In the experiment, we could
finally generate a sustainable level dynamic gait by the effect
of the counterweights.

Now we are studying another approach to parametrically
excited walking based on knee-joint actuation [9] and [10].
Parametric excitation is also possible in even general kneed
walkers without prismatic joints, and the results will be
reported in another paper.

Future work in our experiment is to evaluate the effec-
tiveness of the counterweights based on experimental data.
Traversing rugged terrain, improvement of energy-efficiency
using elastic elements, and achieving stable walking by

stance-leg actuation [10] are also left as the future work.
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