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Abstract— Modeling of pinching an object with arbitrary
shape by a pair of robot fingers with hemispherical ends
in a horizontal plane is proposed in a mathematical and
computational manner. Since the curvature of an object contour
with an arbitrary curve is variable according to the change
of the contact point between the object surface and the rigid
finger tip, the arclength paremeter “s” explicitly appears in
the overall fingers-object dynamics. It is shown that the overall
fingers-object system should be accompanied with the first-
order differential equation of the parameter “s” that includes
the curvatures of both the object contour and finger-tip curve.
A control input, which is of the same category as the control
input called “blind grasping” appeared in our former papers,
is utilized for the realization of stable grasp. The control input
does neither need to use the kinematic information of the object
nor use any external sensing. Finally, numerical simulations are
carried out in order to confirm the effectiveness of our proposed
model and control input.

I. INTRODUCTION

The fact that humans easily and smoothly manipulate
many kinds of objects has attracted many people since the
motion of this movement includes the intriguing properties;
finger-thumb opposition, redundancy of finger joints, arbi-
trary shape of a finger tip or a pinched object, and soft and
rolling contact between a finger tip and an object surface.

These properties are beneficial and effective to realize
the robots used in daily life, and robotic researchers have
devoted their time to analyze, simulate, and create the
finger robots with these properties [1] [2] [3]. Most of
explorations in robotics, however, remain in kinematics or
motion planning for the realization of force-torque closure
to accomplish stable grasp. The rolling geometry between
two surfaces of arbitrary shape was discussed in detail [4]
[5]. This research focused on semi-dynamic or kinematic
approaches and did not show any explicit forms representing
the physical interaction between two bodies in the wrench
space. Researchers in multibody dynamics propose many
models in a dynamic sense but do not consider rolling contact
in our sense [6] [7]. They have missed an important aspect
of physical interaction between two bodies under rolling
constraints in a dynamic sense, despite the strong demand
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Fig. 1. A pair of robot fingers pinching an object with arbitrary shape

for unveiling the correlated mechanism to realize interactive
robots with human movements.

Arimoto et al. [8], around 2000, proposed the 2-D dynamic
pinching model by a pair of robot fingers with hemispherical
ends under rolling constraints, by the aid of the assumption
that the velocity of the finger tip in the tangent direction must
be equal to the velocity on the object surface when the shape
of the pinched object is limited to flat surfaces. This model
was extended in 2006 to a three dimensional model [9]. A
mathematical model was derived, as a set of equations of
motion of the fingers-object system under Pfaffian constraints
due to rolling constraints, and the equations representing
infinitesimal rotations of the object. The control input called
“blind grasping”, which need not use object information or
external sensing, comfirms stable grasping. Because of the
lack of the total number of wrench vectors on the object,
spinning motion arises around the opposing axis by two
contact points between finger tips and object surfaces. This
proposed model has six wrench vectors on the object but
seven wrench vectors are needed to satisfy force/torque
balance in a three dimensional case. A physically faithful
viscosity model [10] was introduced to blunt the spinning
motion. However, all models proposed by Arimoto et al. [9]
were restricted to the flat surfaces.

In this paper, a new model of pinching an object with
arbitrary shape by a pair of robot fingers with hemispherical
ends in a horizontal plane is proposed in a mathematical
and computational manner (see Fig.1). A control input for
realizing stable grasping, which is of the same category of
the control input called “blind grasping”, is proposed. In
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the case of rolling contacts with an object with arbitrary
shape, its contour curvature varies according to the change
of the contact and then the arclength parameter “s” must
be taken into account to describe movement of the contact
point along the object’s contour curve. The overall fingers-
object system is shown to be governed by Euler-Lagrange’s
equations parametrized by the arclength parameter and at
the same time the first order differential equation of the
parameter “s” is derived. It is noted that Lagrange’s equa-
tions representing the overall fingers-object system and the
update equation of “s” should be solved simultaneously so
that they satisfy the principle of causality. Finally, numerical
simulator is constructed based upon our proposed model,
and by applying our proposed control signals, numerical
simulations are carried out for validating of the model and
the effectiveness of the control inputs.

II. DYNAMICS

Modeling of pinching a rigid object with arbitrary shape by
two robot fingers with 3 DOFs and 2 DOFs is schematically
shown in Fig.1. In the coordinate system, numerical values
of all angles are positive in counterclockwise direction. The
finger tips of two robot fingers are of hemispherical shape
and rigid. We introduce the local coordinate Om-XY fixed
at the object frame, and define unit vectors rX on the X axis
and rY on the Y axis (see Fig.2). The left-side contour of the
object is expressed by a curve attached to the local coordi-
nate (X(s1), Y (s1)) (see Fig.3), and similarly the right-side
contour by a curve with the local coordinate (X(s2), Y (s2))
(see Fig.4), with the aid of arclength parameters si(i = 1, 2).
P1 is the contact point between the finger tip and the object
surface, b1 the tangent unit vector of both the finger tip
and the contour of the object at contact point P1, and n1

the normal unit vector to the tangent vector b1. The angle
between the normal unit vector n1 and the X axis is denoted
by θ1, and is determined as follows:

θ1(s1) = arct (X ′(s1)/Y ′(s1)) (1)

where X ′(s1) = dX(s1)/ds1 and Y ′(s1) = dY (s1)/ds1.
Similarly θ2 (see Fig.4) is determined as follows:

θ2(s2) = arct (X ′(s2)/Y ′(s2)) (2)

where X ′(s2) = dX(s2)/ds1 and Y ′(s2) = dY (s2)/ds2.
P1P ′

1 is expressed in the local coordinate (X(s1), Y (s1)) as
follows:

P1P ′
1 = ln1(s1) = −X(s1) cos θ1(s1) + Y (s1) sin θ1(s1) (3)

On the other hand, P1P ′
1 is represented in the inertia frame

O-xy as follows:

P1P ′
1 = (x − x01) cos(θ + θ1)

−(y − y01) sin(θ + θ1(s1)) − r1 (4)

Then, the contact constraint of the left side of the object is
derived as the holonomic constraint:

Q1 = −(x − x01) cos(θ + θ1(s1))
−(y − y01) sin(θ + θ1(s1))

= −(r1 + ln1(s)) (5)
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Fig. 2. Relationship between local coordinate O-XY and fingertip O01

X

O x

y

Y (s)
s=0

Y

X(s)

ln1(s)

b1O01

Y

Q1

O  = x, ym

n1

lb (s)1

P

P

P

1

1

1
r1

y

θ

θ1

Y1

θ1

θ

b1

1

1

1

1

1
(     )

Fig. 3. Geometrical relationship based on length parameter “s1”

Similarly the contact constraint of the right side of the object
is derived as follows:

Q2 = (x − x02) cos(θ + θ2(s2))
−(y − y02 sin(θ + θ2(s2)))

= −(r2 + ln2(s2)) (6)

where

ln2(s2) = X(s2) cos θ2(s2) − Y (s2) sin θ2(s2) (7)

OmP ′
1 is expressed in the local coordinate (X(s1), Y (s1))

as follows:

OmP ′
1 = lb1(s1) = X(s1) sin θ1 + Y (s1) cos θ1 (8)
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On the other hand, OmP ′
1 is represented in the inertia frame

as follows:

R1(t) = −(x − x01) sin(θ + θ1)
−(y − y01) cos(θ + θ1) = lb1(s1) (9)

Rolling contact means that the robot finger tip rolls on the
object surface without slipping. In other words, the object’s
velocity along vector b1 at contact point P1 must be equal
to the finger tip’s velocity along vector b1 at the point, at
instant t, as follows:

r1
∂φ1

∂t
+

∂

∂t
R1(t) = 0 (10)

where ϕ1 is defined as follows (see Fig.1):

ϕ1 = π + (θ + θ1) − (q11 + q12 + q13)
= π + (θ + θ1) − p1 (11)

where p1 = q11 + q12 + q13. Eq.(10) can fortunately be
integrated in the sense of Frobenius (see [11]). In fact, we
define

R1(t, s1) = r1{θ + θ1(s1) − p1} + s1 + R1 − lb1(s1) (12)

and see that ∂R1(t, s1)/∂t = 0 is reduced to eq.(10). It is
found out that (see [11])

dR1

dt
=

∂R1

∂t
+

∂R1

∂s1

ds1

dt
= 0 (13)

It is possible to define

R̃1 = R1(t, s1(t)) − R1(0, s1(0)) (14)

Similarly the rolling constraint at the right hand finger is
derived as follows:

r2
∂φ2

∂t
+

∂

∂t
R2(t) = 0 (15)

where

R2(t) = −(x − x02) sin(θ + θ2(s2))
−(y − y02) cos(θ + θ2(s2)) = lb2(s2) (16)

lb2(s2) = X(s2) sin θ2(s2) + Y (s2) cos θ2 (17)

ϕ2 = −π + (θ + θ2) − (q21 + q22)
= −π + (θ + θ2) − p2 (18)

and p2 = q21 + q22. Since eq.(15) can be integrated as
discussed in eq.(10) (see [11]), we similarly define

R̃2 = R2(t, s2(t)) − R2(0, s2(0)) (19)

where

R2(t, s2) = −r2{θ + θ2(s2) − p2} + s2 + R2 − lb2(s2) (20)

and ∂R2(t, s2)/∂t = 0 leads to eq.(15). The following
equation can be confirmed (see [11])

dR2

dt
=

∂R2

∂t
+

∂R2

∂s2

ds2

dt
= 0 (21)

Eq.(9) is reduced to the constraint form in terms of infinites-
imally small variation:(

JT
1 (q1)b1(θ) − r1e1,− sin(θ + θ1),

− cos(θ + θ1),−ln1) (dq1, dx, dy, dθ)T = 0 (22)

where b1(θ)=(sin(θ + θ1) ,cos(θ + θ1))
T,dq1=(dq11,dq12,

dq13)T, J1=∂(x01, y01)/∂(q11, q12, q13), and e1=(1,1,1)T.
Similarly, eq.(12) is reduced to(

JT
2 (q2)b2(θ) + r2e2,− sin(θ + θ2),

− cos(θ + θ2), ln2) (dq2, dx, dy, dθ)T = 0 (23)

where b2(θ)=(sin(θ + θ2) ,cos(θ + θ2))
T,dq2=(dq21,dq22)T,

J2=∂(x02, y02)/∂(q21, q22), and e2=(1,1)T.
By associating Lagrange’s multipliers fi with the con-

straints Qi =0 (i=1, 2)(eqs.(5) and (6)), we define a La-
grangian:

L =
∑

i=1,2

1
2
q̇T
i Gi(qi)q̇i +

1
2
M(ẋ2 + ẏ2)

+
1
2
Iθ̇2 − f1Q1 − f2Q2 (24)

where q1 = (q11, q12, q13)T,q2 = (q21, q22)T,Gi(qi) denotes
the inertia matrix for finger i (i = 1, 2), M and I denote
the mass and inertia moment of the object. Due to utilizing
the Lagrangian and associateing Lagrange’s multipliers λi

with eqs.(22) and (23), the dynamic equations of the overall
fingers-object system are derived as follows:

Iθ̈ − f1lb1(s1) + f2lb2(s2)
−λ1ln1(s1) + λ2ln2(s2) = 0 (25)

1807



Mẍ − f1 cos(θ + θ1) + f2 cos(θ + θ2)
−λ1 sin(θ + θ1) − λ2 sin(θ + θ2) = 0 (26)

Mÿ + f1 sin(θ + θ1) − f2 sin(θ + θ2)
−λ1 cos(θ + θ1) − λ2 cos(θ + θ2) = 0 (27)

G1(q1)q̈1 +
{

1
2
Ġ1 + S1

}
q̇1 + f1J

T
1 (q1)n1(θ)

+λ1

{
JT

1 (q1)b1(θ) − r1e1

}
= u1 (28)

G2(q2)q̈2 +
{

1
2
Ġ2 + S2

}
q̇2 + f2J

T
2 (q2)n2(θ)

+λ2

{
JT

2 (q2)b2(θ) + r2e2

}
= u2 (29)

where

n1(θ) =
(

cos(θ + θ1)
− sin(θ + θ1)

)
, n2(θ) =

(− cos(θ + θ2)
sin(θ + θ2)

)
, (30)

and ui(i = 1, 2) stand for control inputs.
Since the arclength parameters si(i = 1, 2) depend on

the time parameter t, the parameters si(i = 1, 2) should be
updated as follows:

dsi

dt
=

ri

1 + riκi(si)
(ṗi − θ̇), i = 1, 2 (31)

where κi(si)(i = 1, 2) denote the curvature of the object
contours at contacts as follows:

κi(si) = X ′′(si)Y ′(si) − X ′(si)Y ′(si), i = 1, 2 (32)

It is interesting to note that the curvatures κi(si)(i = 1, 2) of
the object contours appear in the update equations (eq.(31))
but not in the overall Lagrange’s equations (eqs.(25) ∼ (29)).

III. CONTROL SIGNAL

Since a family of control inputs called “blind grasping” [9]
neither need use the kinematic information of the object nor
any external sensing, that is, we do not need to consider the
shape of the object, we can apply the concept of our previous
control input [9] to this stabilization problem of grasping of
the object with arbitrary shape. Therefore a control input,
realizing stable grasping with an object with arbitrary shape,
is proposed as follows:

ui = −ciq̇i + (−1)i fd

r1 + r2
JT

i (qi)
(

x01 − x02

y01 − y02

)

−riN̂iei, i = 1, 2 (33)

where

N̂i(t) = γ−1
i ri (pi(t) − pi(0)) , i = 1, 2, (34)

γi and ci(i = 1, 2) are positive constants, and pi(0) initial
values of pi(t). The first term of the right hand side of eq.(33)
plays a role of damping. The second term is a signal based
upon the opposable force between O01 and O02. The third
term compensates the difference among initial poses of the
overall system.
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Fig. 5. Local Coordinates (X(si), Y (si)),(i = 1, 2) used in the
simulation

(a) Initial pose (b) After 5 seconds
Fig. 6. Motion of pinching a 2-D object with arbitrary shape

IV. NUMERICAL SIMULATION

We construct a numerical simulator based on our proposed
model and physical parameters of the fingers-object system
given in Table I. Numerical simulations are carried out by
applying our proposed control inputs (eq.(33)) using the
parameters of control gains given in Table II and the initial

TABLE I
PHYSICAL PARAMETERS OF THE FINGERS AND OBJECT.

l11 = l21 = l22 length 0.065 [m]
l12 length 0.039 [m]
l13 length 0.026 [m]
m11 weight 0.045 [kg]
m12 weight 0.025 [kg]
m13 weight 0.015 [kg]
m21 weight 0.045 [kg]
m22 weight 0.040 [kg]
r0 link radius 0.005 [m]
ri(i = 1, 2) radius 0.010 [m]
L base length 0.063 [m]
M object weight 0.040 [kg]

TABLE II
PARAMETERS OF CONTROL SIGNALS.

fd internal force 1.000 [N]
c damping coefficient 0.006 [Nms]
γi(i = 1, 2) regressor gain 0.001 [s2/kg]
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TABLE III
INITIAL VALUES

q11(0) initial angle 5.000 × π/18[rad]
q12(0) initial angle 7.168 × π/18[rad]
q13(0) initial angle 5.545 × π/18[rad]
q21(0) initial angle −4.008 × π/18[rad]
q22(0) initial angle −10.82 × π/18[rad]
θ(0) initial angle 0.000 × π/18[rad]
x(0) initial point 3.243 × 102[m]
y(0) initial point 7.500 × 102[m]
s1(0) internal arclength parameter 0.005 [m]
s2(0) internal arclength parameter 0.001 [m]

values given in Table III in order to confirm the stability
of motion of the overall fingers-object system (eqs.(25)
∼ (29)). The curves c(si),(i =1, 2) with local coordinates
(X(si), Y (si)) are used in the simulations as follows (see
Fig.5):

X(s1) = −0.03 +

√
1 + 4 × 502 × s2

1

2 × 50
[m] (35)

Y (s1) =
Asinh(2 × 50 × s1)

2 × 50
[m] (36)

X(s2) = 0.015 [m] (37)
Y (s2) = s2 [m] (38)

It is noted that, since the si(i = 1, 2) are arclength
parameters,

√
X ′(si)2 + Y ′(si)2 = 1,(i = 1, 2). In the

case, since the object contour in the right side is flat, the
curvature κ2(s2) becomes zero. Their initial values must
be determined to satisfy the rolling and contact conditions
(eqs.(5),(6),(12) and (20)), in order to carry out the simula-
tions. The constraint stabilization method (CSM) [12] can
be used to maintain the rolling and contact constraints.
The motion obtained by the simulation is depicted in Fig.6.
Figs.8 ∼ 11 and 16 ∼ 20 show that all velocities of the
dynamic equations (eqs.(25) ∼ (29)) converge to zero, and
that all Lagrange’s multipliers converge to some constant
values. These results show that motion of the overall fingers-
object dynamics converges to some equilibrium state, and
stable grasping is eventually realized from the viewpoint of
numerical simulation.

V. CONCLUSION

In this paper, a 2-D pinching model by two robot fingers of
an object is derived mathematically and tested numerically to
ensure whether the model works with physical reality. Since
the curvature of the object contour is variable according to
the change of the contact point between the object surface
and the rigid finger tip, the arclength paremeter “s” is
taken into account to describe motion of the overall fingers-
object system. The overall fingers-object system should be
accompanied with the first-order differential equation of the
arclength parameter “s”. The dynamical equations that gener-
ate motion of the overall fingers-object system and the update
equations of arclength parameters should be numerically
integrated simultaneously so that they satisfy the principle of
causality. It is shown that the proposed control input called
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“blind grasping” is effective in realizing stable grasping as
far as numerical simulations are concerned. The problem of
stability of control inputs for our proposed pinching model
will be tackled more in detail from numerical simulation and
at the same time from the mathematical analysis in a near
future.
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