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Abstract— In this paper a new strategy for handling the
observation information of a bearing-range sensor throughout
the filtering process of EKF-SLAM is proposed. This new
strategy is advised based on a thorough consistency analysis
and aims to improve the process consistency while reducing the
computational cost. At first, three different possible observation
models are introduced for the EKF-SLAM solution for a robot
equipped with a bearing-range sensor. General form of the
covariance matrix and the level of inconsistency in the robot
orientation estimate is then calculated for these variants, and
based on the numerical comparison of the estimation results,
it is proposed to use the bearing and range information of
a feature in the initialization step of EKF-SLAM. However,
it is recommended to use only the bearing information to
perform other iteration steps. The simulation observations
verify that the new strategy yields to more consistent estimates
both for the robot and the features. Moreover, through the
proposed consistency analysis, it is shown that since the source
of consistency improvement is independent from the choice of
the motion model, it gives us an advantage over other existing
methods that assume a specific motion models for consistency
improvement.

Index Terms— Consistency Analysis , EKF-SLAM, Observa-
tion Model

I. INTRODUCTION

THE problem of Simultaneous Localization and Mapping

(SLAM) has been an active research area for last

two decades and Extended Kalman Filter (EKF) based ap-

proaches to the SLAM problem are among the most popular

algorithms developed so far. EKF-SLAM involves building a

map of features while computing a robot’s trajectory through

that map based on noisy sensor and actuator data. According

to the standard EKF algorithm, motion and observation mod-

els are being linearized around the latest available estimate

of the system state vector by Taylor expansion. This process

could greatly affect the performance of the filter which is

generally analyzed by convergence and consistency.

Early convergence proofs of EKF-SLAM algorithm as-

sumed that the observation and motion models to be linear

[1]. Most of these convergence properties still hold true for

the nonlinear case provided that the Jacobians are evaluated

at the true state of the system [2]. Such an assumption is

generally violated in real world situations and could make

the solution of the EKF-SLAM inconsistent. One of the first

researches on filter inconsistency in EKF-based SLAM was
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discussed in [3], and it is shown that in a stationary robot

with no process noise, by measuring the relative position of

a new landmark multiple times, the estimated variance of the

robot orientation decreases unexpectedly. It is further shown

that this is due to the violation of a fundamental relationship

between different system Jacobians. Since then, significant

empirical evidence of filter inconsistency in moving robot

scenarios has been reported in several works [4], [5], [6]

which in turn has drawn researcher’s attention to ponder its

roots in more detail and devise new methods to improve

filter consistency. Research efforts in this area fall into

two categories: those that aim at reducing the robot state

uncertainty and consequently linearization errors [5], [7], and

those based on observability analysis [8], [9], [10].

In [5] based on extensive simulation studies, it is suggested

that in order to improve consistency, the uncertainty of the

robot orientation should be kept small enough by making

regular observations of the robot heading. In [7] consistency

improvement is achieved using a robot centered representa-

tion of the environment and a modified filtering approach

both of which aim to reduce the uncertainty of the robot

state.

An example of consistency improvement through observ-

ability analysis is given in [10], in which anchoring the map

to the first seen observation or using an external sensor like

GPS is proposed. However, this approach is bounded to a set

of assumptions and could not be applied in general. Recently,

Huang et al. in [8], [9] presented an observability based study

of the inconsistency problem in EKF-SLAM and proposed a

new filtering strategy based on First Estimate Jacobians and

is called FEJ-EKF. According to this analysis, as a result of

evaluating Jacobians at the latest state estimates rather than

the true states, the unobservable subspace of the standard

EKF-SLAM does not match that of the ideal EKF-SLAM.

Consequently, the estimated orientation covariance is mis-

takenly reduced when actually no information is injected to

the system, and this causes inconsistency. FEJ-EKF attempts

to preserve the rank of the linearized error-state system the

same as the rank of the underlying nonlinear system and this

is achieved by evaluating the filter Jacobians at the first-ever

available estimates for each state variable.

In this paper, we concentrate on the role of observation

model on the consistency improvement. The concept of

measuring the relative bearing and range of a point in the

environment is shared in modeling of most exteroceptive

sensors mounted on mobile robots. Therefore, devising a

general strategy for handling such information throughout the

filtering procedure with the goal of consistency improvement
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could have a broad application. It is desired that such an

strategy does not require additional computational cost or

sensor and does not rely on the kinematic model of the robot,

otherwise it would impose a constraint on applicability of the

method.

II. PROBLEM FORMULATION

Consider a mobile robot moving in a 2D environment and

equipped with a bearing-range sensor such as Laser Range

Finder (LRF). From the observation model point of view, one

can assume three different models as the observation model

for EKF-SLAM: Bearing-Range observation model (BR),

Bearing-Only observation model (BO) and Range-Only ob-

servation model (RO). Adopting each of these observation

models results in a variant of EKF-SLAM, which as it will

be shown later, exhibits a different filter performance from

the consistency perspective. In the following we will discuss

these variants in more details.

Representing the state vector in Gaussian form, the goal

of a typical EKF-SLAM solution is to use the information

obtained from the observation and motion model of a mobile

robot in order to estimate the mean and covariance matrix

of the augmented vector of robot state, XT
v , and stacked

state vector of stationary features in the environment, XT
f .

We will denote the augmented vector X = [XT
v , XT

f ]T

as system state vector. The robot state vector XT
v =

[xv, yv.θv] represents the robot position and orientation in

a reference coordinate frame and the features state vector

Xf = [fT
1 , fT

2 , · · · , fT
n ]T consists of individual feature

coordinates in the same reference coordinate frame. In the

beginning of the EKF-SLAM process the system state vector

is comprised only of the robot state vector and is generally

initialized to zero. Three aforementioned variants have a

similar outline for implementation and hence are summarized

in the following collectively.

A. Prediction

State Prediction: In this stage, robot control inputs are

processed to obtain a prediction for robot state and the

covariance of the system state is propagated through the

linearized motion model. For clarity and brevity purposes,
′+′ and ′−′ superscript are used to identify the state vector

and covariance matrix values after update and after prediction

stages, respectively. General motion model for system state

vector becomes:

X− (k) = f
(
X+ (k − 1) ,uk

)
, (1)

in which, uk is the control input with zero mean Gaussian

noise with covariance Q, n → N(0, Q) and f(·) is the

function, which describes system state vector’s dynamics.

In prediction step, P−(k) which is the covariance matrix of

prediction for system state vector is also calculated using

covariance propagation equations in linear systems.

Observation Prediction: Having the results of the previous

step at hand and knowing the type of the observation model

as well as the sensor field of view, one can readily determine

whether a feature is seen at the current step and can predict

its corresponding measurement as well. As mentioned before,

we assume that the robot is equipped with a bearing-range

sensor which enables it to measure the relative position of

a feature with respect to the robot. Therefore, without any

restriction one can assume the range or bearing part or

both of them as the sensor measurement. Advantages and

disadvantages of each alternative will be discussed later in

the next section.

For a feature f = (xf , yf )T in the reference coordinate the

bearing-range observation model is as follows:(
rf

φf

)
=

( √
(xf − xv)2 + (yf − yv)2

arctan( yf−yv

xf−xv
) − θv

)
. (2)

Let us denote the bearing-range, range-only and bearing-only

observation models by hBR(X) = (rf , φf ), hRO(X) = rf

and hBO(X) = φf , respectively. At the current step, some

features are extracted from the senor’s raw data. In practice,

observed features are fed into a data association procedure

to find out possible correspondence between previously

seen features and currently observed ones. After this step,

observed features fall into two categories: newly observed

features and previously seen features. The former is stored

to be augmented to the system state vector in augmentation

step and the later will be used in updating step. No matter

what kind of observation model is used, the corresponding

measurement prediction vector Z−(k) for the features in the

second category can be calculated as the stacked vector of

the individual sensor measurement predictions z−i (k). For

bearing-range observation model, observation Jacobian for

the HRB
i = ∂hBR/ ∂X|(f−

i ,X−
v )is calculated by substituting

(f−
i , X−

v ) in the following equation in which r = rf ,

φ = φf , cφ = cos(φ) and sφ = sin(φ).

HBR =
( −cφ −sφ 0 cφ sφ

sφ

r
−cφ

r −1 −sφ

r
cφ

r

)
. (3)

For the bearing-only and range-only case HBO
i and HRO

i

are composed of the first and second rows of the HBR
i

in 3, respectively. Overall observation Jacobian matrix H
is obtained by stacking up HBR

i ’s or HBO
i ’s or HRO

i ’s

depending on the adopted observation model.

B. Update & Augmentation

Update: Supposing R to be the observation covariance ma-

trix, covariance update rule can be expressed in information

form.

Ω−(k) = P−(k)−1 (4a)

Ω+(k) = Ω−(k) + Ωnew(k) (4b)

P+(k) = Ω+(k)−1, (4c)

where, Ω(·) is the information matrix, Ωnew (k) =
H(k)R−1(k)H(k)T is the new information obtained from

the sensor measurement. Information form of EKF update

will be used in the next section, where we analyze the amount

of inconsistency incurred in the filtering process.

Augmentation: In this stage, first-ever seen features are

included in the system state vector through the inverse
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observation model and the covariance matrix of the sys-

tem state vector is expanded in order to include the new

correlation information corresponding to the newly observed

features and the remaining part of the system state vector.

More accurate a feature is initialized into the system state

vector, more consistent the filter will perform. Therefore,

contrary to the observation step, for all three variants we use

the inverse function of the bearing-range observation model

g(Xv, rf , φf ) for feature initialization.

III. CONSISTENCY ANALYSIS

Under the Linear-Gaussian assumption the pair (x+, P+),
is a consistent estimate for two first statistical moments of

the random variable x if the two following conditions are

satisfied:

E[x − x+] = 0 (5a)

E[(x − x+)(x − x+)T ] = 0. (5b)

So far, analytical results for EKF-SLAM consistency evalu-

ation have considered the cases of a stationary robot making

n observations of a feature from one or two poses. The

former case in which robot observes a feature from one

pose is of interest since the effect of observation model on

the extent of inconsistency could be calculated for it. For a

robot with initial uncertainty P0 observing a feature n times

with covariance R, if all Jacobians are calculated at the true

state, according to Theorem 3.2 in [2] the general expression

for covariance matrix of the augmented system state vector

becomes:

P+(n) =
(

P0 P0A
T
e

AeP0 AeP0A
T
e + A−1RA−T

n

)
, (6)

where, matrices Ae and A are obtained from the Jacobians of

the BR observation model. Calculation of the general form of

the P+ (n) matrix of other variants is not as straightforward

as the BR case, since the final information matrix becomes

non-invertible after n observations. In such case inversion

lemma, which is used in [2] could not be applied. However,

it is clear that since the sensor always measures the relative

position of the feature with respect to the robot, for a

stationary robot, observing a single feature n times, the robot

state vector and its covariance should remain unchanged

irrespective of the choice of the observation model. Deviation

from this ideal covariance is a symptom of inconsistency

and the extent of this deviation determines the level of

inconsistency in covariance matching. It can be shown that if

all Jacobians are calculated at the true state, the covariance

matching condition for the robot state is preserved. However,

in real world such an assumption is violated since we do not

know the true state of a feature and due to noisy observations,

at each time instant the Jacobians are calculated at a different

feature state. Therefore, it is expected that the estimated

covariance will not match the real one.

Another point to be considered in performance evaluation

is the amount of error in the process of state estimation.

According to (5a) being unbiased is also an important issue

in filter consistency. Therefore, both conditions of covariance

matching and being unbiased should be met in order for an

estimate to be called completely consistent.

In the following we first analyze mathematically the

covariance matching condition for the robot orientation un-

certainty for all the three EKF-SLAM variants. Then we use

a graphical tool to visualize the effect of the observation

model on covariance estimation. Further numerical analysis

that examines both unbiasedness and covariance matching

conditions for estimation in stationary and moving robot

scenarios will be considered in section IV.

Suppose a robot with initial state vector Xv = [0, 0, 0]T

and a diagonal initial covariance P0 = diag(σx, σy, σθ)
and initial information matrix Ω0 = P−1

0 . The robot is

stationary with no process noise and observes a feature

f for n times with covariance R. As mentioned earlier

regardless of the variant of the EKF being used, inverse BR

observation model is employed for feature augmentation. In

information form, such augmentation is realized by adding(
HBR

i

)T (RBR)−1HBR
i to the robot initial information ma-

trix. Here HBR
i is the Jacobian of the BR observation model

when observing the feature for the first time and RBR =
diag(σr, σφ) is the corresponding observation covariance

matrix. After the first step, each variant of EKF will have

a different information matrix and consequently different

covariance matrix. Assuming Hi to be the observation model

Jacobian (either BR, BO or RO) in step i and R to be the

relevant observation covariance the final information matrix

of the system after n observations for n > 1 is:

Ωn =
(

Ω0 03×2

02×3 02×2

)
+ (HBR

1 )T (RBR)−1HBR
1 (7)

+
n∑

i=2

HT
i R−1Hi,

and the final covariance matrix is Pn = Ω−1
n . In all variants

of EKF, Pn has the following general form:

Pn =

⎛
⎜⎜⎜⎜⎝

σx 0 0 σx 0
0 σy 0 0 σy

0 0 γ(n)σθ ω34 ω35

σx 0 ω43 ω44 ω45

0 σy ω53 ω54 ω55

⎞
⎟⎟⎟⎟⎠ , (8)

in which, ωij(n)’s and γ(n) are determined based on the

employed observation model and observation step. In addi-

tion, as it will be shown in all variants of EKF, γ(n) has the

following general form:

γ(n) =
Ψ(n)

Ψ(n) + Υ(n)
, (9)

where, Ψ(n) and Υ(n) are function of robot observations up

to step n and {σr, σφ, σθ}. Ideally, γ (n) is expected to be

equal to one in order for the covariance matching condition

of (5b) to be met. Therefore, the mathematical analysis of

this coefficient in three EKF variants is of interest. In the

following ri and φi are sensor observations in step i and

s(·) = sin(·) and c(·) = cos(·).
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Bearing-Only: for n = 2 we have

ΨBO(2) = s2
φ1−φ2

σr + ( 1
2r

2
2 + r2

1c
2
φ1−φ2

)σφ (10)

ΩBO(2) = (r2 − r1cφ1−φ2)
2σθ.

Range-Only: for n = 2 we have

ΨRO(2) = r2
1s

2
φ1−φ2

σφ + (1 + c2
φ1−φ2

)σr (11)

ΩRO(2) = r2
1s

2
φ1−φ2

σθ.

Bearing-Range: for n = 2 we have

ΨBR(2) = r2
1r

2
2s

2
φ1−φ2

σ2
φ (12)

+(r2
1 + r2

2)(1 + c2
φ1−φ2

)σφσr + s2
φ1−φ2

σ2
r

ΩBR(2) =
(
2(r2

1 + r2
2)(1 + c2

φ1−φ2
) − 4r1r2cφ1−φ2

)
σrσθ

+2r2
1r

2
2s

2
φ1−φ2

σφσθ

These expressions are calculated and simplified using

Matlab and Mathemathica. Expressions of γ(n) for different

steps are also calculated which confirm below claims about

the behavior of this coefficient in different EKF variants.

Close inspection of Ψ’s and Ω’s in above equations reveals

two facts: first, that for all three variants of EKF, γ(n)
has a radial symmetry and the value of γ (n) depends

on the noise of the bearing observation rather than bear-

ing observation itself; second, that the stochastic nature of

the sensor observations makes it difficult to perform any

deterministic calculation on the amount of inconsistency

introduced by γ(n) in estimation process. As a result an

appropriate numerical method should be devised in order to

make comparison between EKF variants.

To facilitate the numerical analysis and to visualize the

effect of γ (n) on uncertainty reduction we propose to use a

graphical diagram, which we will refer to it as “consistency

map”. In order to produce such a graph, suppose that the

robot is located in the center of a square with side length

of 50m. Divide this square into 0.5m×0.5m grid cells and

calculate γ (n) at the center of each cell. Plot the results in a

2-dimensional graphical-map encoding the γ (n) value as a

color-point. The greater is the area of the consistency map in

which γ (n) is close to one, the greater is the area in which

covariance matching condition is met and consequently the

better is the performance of the filter.

Example plots of consistency map for the BO, RO and

BR variants of the EKF-SLAM are shown in Fig. 1, 2

and 3, respectively. In producing these figures, the value

of γ (n) is calculated after 10 observations (n = 10) and

sensor parameters σθ and σr are set to (0.5◦)2 and 0.12,

respectively. It is evident from the consistency maps of

EKF variants that the BO variant outperforms two others,

in covariance matching sense, because γ (n) is mostly equal

to one in the BO consistency map except for a small area

in center of the map. Fig. 2 shows that for features that are

too close to the robot the RO variant outperforms two other

variants but in other areas it has a similar performance to the

BR variant. Finally, Fig. 3 illustrates that in most of the areas

around the robot the BR variant has a poor performance in

covariance matching sense.
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Fig. 1. Consistency map for the BO EKF-SLAM. γ(10) is mostly equal
to one for most of the features except for those located in a small area near
the center of the map.
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Consistency Map for RO−EKF−SLAM
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Fig. 2. Consistency map for the RO EKF-SLAM. γ(10) is mostly close
to zero in the RO consistency map, especially for features located in distant
areas from the robot.
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Fig. 3. Consistency map for the BR EKF-SLAM. γ(10) is mostly close
to zero in the BR consistency map, especially for features located in distant
areas and a small area near the center of the map.

IV. SIMULATION RESULTS

In order to test both conditions of filter consistency for

three EKF variants introduced so far, in this section we

consider two other cases: first a stationary robot observing
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a single landmark, second a moving robot which tracks a

closed path twice. For sake of comparison, in stationary robot

scenario, simulation conditions are adopted from [3] and in

moving robot scenario the environment and sensor parame-

ters are selected as in [5]. The stationary robot scenario is

of great importance as the ideal covariance for the system

state vector can be calculated for it before the simulation is

executed, and this allows us to determine the performance of

the filter in a measurable manner. Furthermore, the simplicity

of the scenario makes it easier to scrutinize the effect of the

sensor model or the location of the feature on the estimation

process.

However, in practice, many parameters can affect the

performance of the filter and the effect of most of them has

not been analyzed yet. For example, it has not been explained

yet in what way the geometry of the features map and the

path of the robot can affect the performance of the filter. This

necessitates testing any devised filtering strategy on moving

robot scenarios where the ground truth is available to see

whether the filter preserves its positive characteristics in real

experiments.

a) Stationary Robot: To examine the behavior of the

estimation error we simulate the stationary robot scenario

for the BR and BO variants with exactly the same set of

noisy observations. In this simulation the robot is supposed

to be stationary at point [0, 0] with no process noise. The

initial covariance of the robot state vector is considered as

P0 = diag(0.72, 0.72, (0.5◦)2) and it is assumed that there is

only one feature at point [70.1, 97.89] and the robot observes

it for 500 consecutive steps. The sensor parameters σθ and

σr are set to (0.5◦)2 and 0.12, respectively.

Figures 4, 5 and 6 illustrate the time history of the

estimation errors as well as the estimated and ideal 2σ
covariance bounds of robot orientation, and feature state

components for the BO, BR and RO variants, respectively.

For the feature, ideal 2σ covariance bounds are obtained by

calculating Jacobians at true state vector. Also, for robot ori-

entation, it is expected that estimated 2σ covariance bounds

remain unchanged and any increase and decrease is a sign

of inconsistency.

From the consistency map of BO-EKF in Fig. 2 one can

expect that BO-EKF would outperform two other variants in

covariance matching sense. Fig. 6 shows that the BO variant

not only has the best performance in covariance matching

sense but also has the lowest amount of estimation error

among other variants. On the other hand, Fig. 5 demonstrates

that in case of using BR-EKF the covariance estimate of the

robot orientation starts to decline immediately after the first

observation, as expected, and then approximately bottoms

out at 20th time step. Feature covariance estimates undergo

a similar decline and these spurious updates in turn create a

bias in estimation error for the feature state as well as the

robot orientation. Fig. 6 shows that inconsistency also occurs

in RO-EKF. Estimated uncertainty bounds start to decline

after step 179 when simultaneously a peak is appeared in

estimation errors.
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Bearing−Only EKF−SLAM (stationary robot)

Fig. 4. Estimation error behavior in the stationary robot scenario using BO-
EKF-SLAM. Maximum estimation error for feature’s x and y coordinates
are emx = 1.52m and emy = −1.25m, which both occur at 3rd time
step. Ideal 2σ uncertainty bound is obtained by calculating Jacobians at
true state vector. Estimated and ideal covariances are nearly identical.
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Fig. 5. Estimation error behavior in the stationary robot scenario using BR-
EKF-SLAM. Maximum estimation error for feature’s x and y coordinates
are emx = 9.27m and emy = −6.63m, which both occur at 19th time
step. Ideal 2σ uncertainty bound is obtained by calculating Jacobians at true
state vector. Estimated and ideal covariances do not match.
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Fig. 6. Estimation error behavior in the stationary robot scenario using RO-
EKF-SLAM. Maximum estimation error for feature’s x and y coordinates
are emx = 2.58m and emy = −1.87m, which both occur at 179th time
step. Ideal 2σ uncertainty bound is obtained by calculating Jacobians at true
state vector. Estimated and ideal covariances do not match.
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b) Moving Robot (Simulation): In this simulation, the

moving robot scenario of [5] is considered. The scenario is

run for BR, BO and RO variants of EKF-SLAM over 50

Monte Carlo simulations. The average Normalized (state)

Estimation Error Squared (NEES) results for the robot state

estimates and three example feature estimates are shown in

Fig. 7 and Fig. 8, respectively. As it can be seen in these

figures, by applying the BO observation model, not only

the robot state estimates become more consistent but also

the upper bounds of the average NEES [11] for the features

in the map is significantly decreased and the estimations of

the features’ states are closer to consistency compared to

that of other variants. Although the traditional EKF-SLAM

outperforms BO-EKF-SLAM for a few steps, generally its

average NEES is above the average NEES of the BO case,

which is an indication of its overall inferiority.

Interestingly, the RO observation model yields to the worst

results after closing the loop. Comparing this with the results

of the BO-EKF shows that although RO-EKF has a similar

performance in the first loop, it fails to appropriately close

the loop and therefore loses its consistency.

Fig. 7. Average NEES for the robot pose estimate over 50 Monte
Carlo simulations for three EKF variants. The horizontal lines mark the
95% probability concentration region for a 3-dimensional state vector. The
bearing-only variant remains in the boundary for the longest time steps.

Fig. 8. Average NEES of typical features’ estimate over 50 Monte Carlo
simulations for three EKF variants. The horizontal dashed lines mark the
95% probability concentration region for a 3-dimensional state vector. The
horizontal solid and dotted lines show the maximum average NEES of all
the features.

V. CONCLUSIONS

In this paper we have analyzed the role of the observation

model on the filter performance in the EKF-SLAM problem.

Supposing that the robot is equipped with a Bearing-Range

sensor such as LRF, we considered three different possible

strategies for sensor information handling in the filtering

procedure. For each strategy we calculated the general form

of the system covariance matrix in the simple and math-

ematically tractable scenario of a stationary robot n times

observing a single landmark. This allowed us to separate

the effect of the choice of the observation model from the

effect of the motion model on inconsistency. The use of a

graphical tool termed as consistency map made it possible

to visualize and compare the extent of inconsistency of

different strategies in the filtering procedure. It is emphasized

that for filter consistency both conditions of unbiasedness

and covariance matching should meet in stationary and

moving robot scenarios. The case of RO observation model

is represented as an example that satisfies both conditions in

stationary robot scenario but exhibits severe inconsistency in

moving robot scenario.

The analysis of the stationary robot scenario indicated

that BO observation model might also lead to consistency

improvement, a hypothesis that is corroborated by simulation

results for moving robot scenario. In fact, simulations showed

that using BO observation model not only the level of

inconsistency in robot state estimation is reduced, but also the

average NEES bounds for features’ states are clearly reduced.
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