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Abstract— We aim at developing a singer robot capable of
listening to music with its own “ears” and interacting with a
human’s musical performance. Such a singer robot requires
at least three functions: listening to the music, understanding
what position in the music is being performed, and generating
a singing voice. In this paper, we focus on the second function,
that is, the capability to align an audio signal to its musical
score represented symbolically. Issues underlying the score
alignment problem are: (1) diversity in the sounds of various
musical instruments, (2) difference between the audio signal
and the musical score, (3) fluctuation in tempo of the musical
performance. Our solutions to these issues are as follows: (1)
the design of features based on a chroma vector in the 12-tone
model and onset of the sound, (2) defining the rareness for
each tone based on the idea that scarcely used tone is salient
in the audio signal, and (3) the use of a switching Kalman
filter for robust tempo estimation. The experimental result
shows that our score alignment method improves the average
of cumulative absolute errors in score alignment by 29% using
100 popular music tunes compared to the beat tracking without
score alignment.

I. INTRODUCTION

Robots are expected to become more involved in human
society thanks to remarkable developments in their physical
functions. For example, housework or nursing robots are
being developed and tested to help people or caretakers. For
symbiosis between humans and robots in everyday situations,
robots need not only advanced physical functions but also the
ability to interact naturally with humans.

Among many possible kinds of interactions, we focus es-
pecially on interactions between humans and robots through
music. This is because music plays an important role in
human cultures. Even people who do not share a language
can share a friendly and joyful time through music although
natural communications by other means are difficult. There-
fore, music robots that can interact with humans through
music are essential for robots to live in harmony with
humans.

The objective of our research is to develop a singer robot
that can sing with accompaniments or with human singers.
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Singing is the most basic means of musical expressions for
humans. This is also an effective type of musical expression
for robots. Robots are able to make expressive sounds in
a variety of ways such as changing the volume or the
timbre of their singing voices. Furthermore, robots can make
expressive physical body motions, like squaring their torsos
while singing loudly. The type of musical interactions we are
concerned with is explained in the following examples. A
man plays a musical instrument while the robot sings along.
When the man plays faster, the robot’s singing gets faster
accordingly. When the music reaches the exciting chorus
part, the robot sings louder and moves its body more actively
and the man responds to the robot’s singing and enlivens his
performance. Our ultimate goal is a singing robot capable of
these rich interactions.

The singing robot we are envisioning consists of three
main functions. The first one is the capability to listen to
music. The robot should actually listen to the music with
its own “ears”, that is, microphones. “Hearing” music with
humans the same way they do is necessary for musical
interaction. Generally, the sound that the robot hears is mixed
with music and self-generated sounds such as motor sounds
or the robot’s own singing voice. The robot therefore has to
extract the sound of music from the mixed sound. Second,
the robot has to understand what position of the music is
being played to sing the correct melody and words. Finally,
the robot should sing in such a way that its voice matches
the music. The robot synthesizes a singing voice and may
move its body for vivid musical expression.

This paper addresses the second function. We believe the
robot should be able to sing along with various musical
performances. Musical performances can vary in the types
of musical instruments, the tempo, the musical key, or even
an arrangement of the melody. To understand what position
in the music is performed robustly, a solution to refer to a
prior-recorded audio signal is not acceptable. This is because
the signal can be different for each performance. Therefore,
we give the musical score in symbolic representation to the
robot so that the robot can estimate the position of the music
allowing for the variation of musical instruments and the
tempo.

II. SYSTEM ARCHITECTURE AND ISSUES OF SCORE
ALIGNMENT FOR SINGER ROBOTS

This section explains the singer robot’s architecture and
the issues to realize the singer robot.
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Fig. 1. Singer robot architecture

A. The Architecture of The Singer Robot
The architecture of the singer robot is depicted in Figure 1.

This is an extension of the beat tracking based singer robot
developed by Murata et al. [1]. This architecture has three
essential functions: 1) listening, 2) score position under-
standing and 3) singing function. We explain each function
along with Figure 1.

1) The listening function achieves the separation of music
sound. When the robot is singing, the music the robot “hears”
is a mixture of the target music and its own singing voice.
The robot extracts the music sound because singing voice can
impede the following music recognition such as beat tracking
as reported in [1], [2]. The echo cancellation techniques are
available for the separation of the music sound and singing
voice. We use the independent-component-analysis (ICA)-
based adaptive filter [3] since this method realizes a robust
incremental separation.

2) After the separation, the score position understanding
function estimates the current score position of the music
sound and predicts the next beat time. Here, “beat” means
the position of the quarter notes in the musical score. The
estimation of the score position is critical for the singer robot
because it cannot sing the appropriate word and the melody
without the knowledge of the current score position. The beat
tracking method is only used for this function in Murata’s
singer robot. This results in an inharmonious performance
since the false detection of the beat causes a time-lag between
the robot’s singing and the music. The prediction of the next
beat time is necessary because singing voice generation takes
a while.

3) The singing function selects the appropriate melody
and word according to the output of the score position
understanding function. The singing voice is synthesized
with VOCALOID2 [4] developed by YAMAHA.

B. Problem Statement
The situation where a singer robot and humans interact

through music is described as follows: they enjoy the music

in a casual way. They are in an ordinary room rather than a
concert hall. The type of music is pop or folk music that is
familiar to most people.

The type of musical instruments are unknown to the robot.
Humans may play the piano, guitar or other instruments. The
music may be an ensemble using multiple instruments. The
only thing that is available to the robot is the musical score
of the performance.

The musical score is incomplete in the following sense.
First, the tempo is undetermined in the score because the
tempo tends to vary when humans perform a musical piece.
Second, percussions or drums are not necessarily played as
written in the score. For example, the drummer may play the
drums in a complex pattern or people may clap their hands
simply on each beat.

The score alignment problem becomes even harder if it is
unknown which part the music starts from. Since the robot
sings to humans’ music performance, they can determine
beforehand where the music starts. This paper discuss the
score alignment under the condition that the music starts at
the beginning of the score this time.

Here let us describe the problem.
Score alignment problem for singer robots� �

Input: music audio signal and the corresponding musi-
cal score in standard MIDI file,
Output: the score position currently performed,
Assumptions:
1) no prior knowledge as to what instruments are used,
2) the tempo of input music is known,
3) the score for percussion is unknown, and
4) the music starts at the beginning of the score.

� �
The score alignment for singer robots need to satisfy the

following requirements in terms of the implementation.
Requirement 1) incremental processing,
Requirement 2) low computational cost.

C. Three Issues and Our Solutions
We break down the score alignment in question into the

following three issues and present our solutions.
a) Diversity in the sound of various instruments: The

timbre of sound differs in both (1) frequency domain and (2)
time domain as shown in Figure 2 and 3, respectively. These
figures show a single note on the piano at left and on the
flute at right.
(1) Figure 2 indicates that although these two are the same
note A4 with fundamental frequency 440 [Hz], the shape of
the spectrum for each sound is different.
(2) Figure 3 shows the power envelope in time domain
of each note. The power envelope of instrument sounds
generally consists of attack, decay, sustain and release. Some
instruments such as piano or guitar have declining sustain,
while instruments such as flute, violin or saxophone have
persisting sustain.

When multiple notes are performed by various instruments
at the same time, in other words, dealing with a polyphonic
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Fig. 2. The spectrum of a single note in frequency domain
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Fig. 3. The power envelope of a single note in time domain

audio, detecting the fundamental frequency of each note
or recognizing the sustaining sounds becomes even more
difficult.

We use a 12-dimensional chroma vector as frequency
domain feature, and detect onset times as time domain
features. The merit of the chroma vector is the robustness to
the variety in the spectral shape of various instruments and
the availability in a polyphonic audio signal. The chroma
vector extracts each power of 12 pitch names, that is, C, C],
..., B, instead of the fundamental frequency. The onset of
each note in this paper is defined as the peak near from the
steep increase in the power shown as Figure 3. We extract
the onsets for two reasons: (a) we need to obtain the time
when each note starts for the score alignment, and (b) onsets
are more easily extracted as the increase of the power in time
domain than sustains or releases especially in a polyphonic
audio signal.

b) Difference between the audio signal and the musical
score: Figure 4 shows the musical score at top and the
audio signal at bottom in chroma vector sequence. The
vertical white lines indicate onsets of musical notes. Onsets
in the musical score is defined as the starting frame of each
note. The color in the musical score indicates the rareness
explained below and the color in the audio signal indicates
the power of each tone.

The audio signal of actual performance differs from the
musical score in chroma vector representation in these ways:
(1) The power of previous sound persists in solid line circles
although no note appears in the musical score,
(2) the musical score has notes while the power of signals
is hardly observed in dotted circles, and
(3) the volume of each note is not specified by the score.

We alleviate the difference between the audio signal and
the musical score based on the idea that musical notes
in scarcely used pitch name are often outstanding in the
audio signal. We can preprocess the musical score because
the musical score is available before we acquire the audio
signal. Therefore, we define our original feature, rareness, for
each pitch name in the musical score. The definition of the
rareness is analogous to information entropy. In Figure 4, the
rareness for B is high because the number of B notes is fewer
than that of the other pitch notes. By contrast, the rareness
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Fig. 4. Difference in chroma vector between the audio signal and the
musical score (Top: the musical score, Bottom: the audio signal). The color
represents rareness on the top, and the power of the signal on the bottom.

for C or E is low since these notes are frequently used in the
score. Each tone is weighted by its rareness. Thus, infrequent
notes can be extracted more easily from a polyphonic audio
signal than frequently used notes.

c) Fluctuation in tempo: Stable tempo estimation is
essential not only for correct score alignment but also for
the robot to produce a smooth and mellifluous singing
voice. Fluctuations in tempo can be observed in (1) actual
performance by human and (2) estimated tempo by beat
tracking [1].
(1) The speed, or tempo, of human musical performance
changes as shown in Figure 5. The plots in Figure 5 are
calculated from MIDI data strictly aligned with human
performance. Each tempo is obtained by dividing the length
of the note in the musical score by the length in time.
(2) Figure 6 shows the fluctuation in the beat tracking. The
sequence of tempo includes not a few outliers. Outliers are
typically caused by change in the drumming pattern.

We adopt a switching Kalman filter (SKF) for stable tempo
estimation. SKF enables incremental tempo estimation from
the tempo sequence including errors.

D. Another Issue in Application to Singer Robots
When music is played in a room surrounded by walls,

the music sound inevitably includes direct reflections and
reverberation. These can affect both onset detection and the
shape of chroma vectors. Sirect reflections can cause false
onset detections even if the music is played exactly the same
way as written in the score. In general, we can alleviate
the effect of direct reflections by analyzing the music signal
with low time resolution. For example, we can set a large
shift interval for short-time Fourier transform. However, this
solution results in an inaccurate score alignment in terms of
time accuracy.

Reverberation causes difference in the audio signal from
the musical score since it prolongs the shape of chroma
vector sequence. This reverberation is not written in the
musical score because the reverberation depends on the
environment where the robot and music players exist.

We set 11 [msec] long shift interval for short-time Fourier
transform to ensure the time accuracy. We evaluate the effect
of reverberation on the score alignment in Section IV.
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E. Related Studies
This section describes two kinds of related studies. One

is related to music robots and the other is related to score
alignment methods.

1) Existing Music Robots: Robots that moves their body
to music, music robots, have interested many researchers.
Several music robots have been reported so far such as
dancing robots [5], [6]. These robots, however, focus on
generating appropriate motion and ignore the music sounds
which are essential for natural interactions through music.
We can expect an advanced robot dance by giving them the
ability to listen to music.

Although robots that actually listen to music have been
reported, these robots pay attention to only beat structures
in music audio signal. Therefore, these robots are able
to simply perform repetitive motions, such as playing the
percussion, stepping, or scatting. Weinberg et al. developed
a percussionist robot named Haile [7], and a robot named
Simon [8] that plays the marimba with their own arms. These
robots improvises their performance by genetic algorithm.
Although they extract a beat structure from an audio signal
of human performance such as the rhythmic stability, they
obtain pitch information through the MIDI communication in
symbolic representation, not in an acoustic manner. Yoshii
et al. applied the real-time beat tracking method invented
by Goto [9] to Honda’s ASIMO. This robot extracts the beat
structure from the music audio signal and steps to the music.
When the music tempo changes, the robot also changes
the stepping speed accordingly. Mizumoto et al. applied
Yoshii’s real-time beat tracking and an adaptive filter based
on independent-component-analysis developed by Takeda et
al. [3] to Robovie-R2 so that it can count musical beats as
“one, two, three, four” [2]. They enabled the robot to count
beats successfully by suppressing its own voice with the
adaptive filter. Murata et al. developed another beat tracking
method based on spectro-temporal pattern matching. They
applied this beat tracking method and Takeda’s adaptive filter
to Honda’s ASIMO [1]. This robot steps and makes a scatting
voice to the music and sings according to the musical beats.

However, the beat tracking has an unsolved problem when
it is applied to a singer robot system. The problem with
Murata’s system in singing is that this robot counts the
number of beats from the beginning of the music to decide
what to sing. With the beat tracking based estimation of
the music position, it is difficult to recover from a wrong
estimation if it fails to extract beat time or the correct tempo.

Our work can contribute to music robot’s capability other

than singing. Giving robots a musical score and enabling
them to align the music audio signal with the musical score
is an effective way to enable the robots to perform along
with the music. For example, in addition to singing, robots
may dance to music whose dancing motion is choreographed
in advance or they may play a certain melody on a musical
instrument with human players.

2) Existing Score Alignment Methods: In the music in-
formation processing field, there have been several studies
related to score alignment [10]–[12]. However, the existing
studies have such constraints as batch processing [10] or
assumptions that the music is played on a single instrument
[11] or that the instrument used in the music is given [12].
These assumptions are undesirable for singer robots in our
situation.

III. SCORE ALIGNMENT METHOD

This section describes our score alignment method. Fig-
ure 7 shows the overview of the method. This score align-
ment consists of four main parts:

1) Feature extraction from the audio signal and the mu-
sical score,

2) beat interval (tempo) calculation by beat tracking,
3) incremental matching between audio signal feature and

score feature in chroma vectors,
4) tempo estimation with Switching Kalman Filters using

beat tracking result and matching results.
The input is the audio signal and the musical score. The
output is the score position currently performed and the
predicted next beat time. The score position is determined
by the matching described in section III-D and the next time
in the audio signal is the output of Kalman Filter described
in section III-E.

A. Feature Extraction from the Audio Signal
Two features are extracted from the audio signal. One is

a chroma vector and the other is onset times. Onset is the
starting point of each musical note. Table I shows the indices
used in the following equations.

1) Chroma vector generation: The system first obtains the
spectrogram of a music audio signal by applying the short-
time Fourier transform (STFT). STFT is calculated with a
Hanning window of 4096 [points], a shifting interval of 512
[points] and sampling rate of 44.1 [kHz]. Let p(t,ω) be the
power at time frame t and frequency bin ω . Chroma vector
c(t) = [c(1, t),c(2, t), ...,c(12, t)]T (T means the transpose
of the vector) is generated for each time frame t. Each
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component, which corresponds to one of 12 pitch names, is
represented as Eq. (1) with band-pass filters for each pitch
name.

c(i, t) =
OctH
∑

h=OctL

∫ ∞

−∞
BPFi,h(ω)p(t,ω)dω, (1)

where BPFi,h is the band-pass filter for note name i at
h-th octave. OctL and OctH are lower and higher bound
octave to consider respectively. The peak of the band is the
fundamental frequency of the note. The edges of the band are
the frequencies of neighboring notes. For example, the BPF
for note “A4” (“A” note at 4th octave ) whose fundamental
frequency is 440 [Hz] has the peak of its band at 440 [Hz].
The edges of its band are at 415 [Hz], “G]4” and 466 [Hz],
“A]4.” In this paper, we set OctL = 3 and OctH = 7. In other
words, the lowest note was “C3”, 131 [Hz], and the highest
note was “B7”, 3951 [Hz].

To emphasize the pitch name currently played, we apply
the convolution in Eq. (2).

c′(i, t) = −c(i+1, t −1)−2c(i+1, t)− c(i+1, t +1)
−c(i, t −1) +6c(i, t) +3c(i, t +1)
−c(i−1, t −1)−2c(i−1, t)− c(i−1, t +1)

(2)

This convolution is processed cyclically for index i. For
example, when i = 1 (pitch name is “C”), c(i−1, t) is in fact
substituted by c(12, t) (pitch name is “B”). By subtracting
the neighboring pitch name power, a component with more
power than others can be emphasized, analogous to edge
extraction in image processing. By subtracting the power of
the previous time frame, the increase in power is stressed.
Finally, we obtain the chroma vector for the audio signal,
csig(i, t) with Eq. (3).

csig(i, t) =

{

c′(i, t) (c′(i, t) > 0),
0 otherwise. (3)

2) Onset detection: We use the onset extraction method
proposed by Rodet et al. [13]. This method exploits the in-
crease in power at the onset time which lies particularly in the
high frequency region. Sound onsets of pitched instruments
have the centroid in the higher frequency region than those
of percussive instruments such as drums. Thus, this method
is particularly effective in detecting the onsets of pitched

TABLE I
DENOTATIONS OF INDICES

Symbols Definitions
i index for 12 pitch names (C, C], ..., B)
t time frame of audio signal
n index for onsets in audio signal
tn n-th onset time in audio signal
f frame index of musical score
m index for onsets in musical score
fm m-th onset frame in musical score

instruments. First, the power called high frequency content
is obtained as:

h(t) = ∑
ω

ω p(t,ω). (4)

High frequency content is a weighted power where the
weight increases linearly with the frequency bin. Onset time
tn is determined by picking the peaks of h(t) using a median
filter.

B. Feature Extraction from the Musical Score
1) Chroma vector generation: A musical score is divided

into frames such that the length of one frame is equal to one-
48th of a bar. This frame resolution can deal with sixteenth
notes and triplets. The chroma vector for the musical score
is defined as Eq. (5):

csco(i,m) =

{

1 pitch name i starts at frame fm,

0 otherwise, (5)

where the index fm means the m-th onset frame in the
musical score.

2) The definition of rareness: The rareness r(i,m) for each
pitch name index i at frame fm is defined as Eq. (7).

n(i,m) =
∑p∈M csco(i, p)

∑12
i=1 ∑p∈M csco(i, p)

, (6)

r(i,m) =

{

− log2 n(i,m) (n(i,m) > 0),
max

i
(− log2 n(i,m)) (n(i,m) = 0), (7)

where M denotes a frame range whose length is two bars with
its center at frame fm. Therefore, n(i,m) is the distribution
of each pitch name around frame fm.

C. Beat Tracking
We use the beat tracking method developed by Murata et

al. [13]. First, a spectrogram p(t,ω) whose frequency bin is
in linear scale is transformed into pmel(t,ϕ) whose frequency
bin is in 64 dimensional Mel-scale. The onset vector d(t,ϕ)
is defined as in Eq. (8).

d(t,ϕ) =

{

psobel
mel (t,ϕ) (psobel

mel (t,ϕ) > 0),
0 otherwise, (8)

psobel
mel (t,ϕ) = −pmel(t −1,ϕ +1)+ pmel(t +1,ϕ +1)

−2pmel(t −1,ϕ)+2pmel(t +1,ϕ)

−pmel(t −1,ϕ −1)+ pmel(t +1,ϕ −1).(9)
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Equation (9) means the onset emphasis with a Sobel filter.
Second, is beat interval (tempo) estimation. Beat interval

reliability R(t,k) is defined as Eq. (10) using normalized
cross-correlation.

R(t,k) =

∑
j

Pw−1
∑

l=0
d(t − l, j)d(t − k− l, j)

√

∑
j

Pw−1
∑

k=l
d(t − l, j)2 ∑

j

Pw−1
∑

l=0
d(t − k− l, j)2

, (10)

where Pw is the window length for reliability calculation
and k is the time shift parameter. The beat interval I(t) is
determined based on the time shift value k where R(t,k)
takes the local peak.
D. Matching between Audio Signal And Musical Score

The matching process consists of two steps:
1) weighting subsequent score positions by using the

tempo output by switching Kalman filters as described
in section III-E,

2) calculation of similarities between audio signal chroma
vectors at the onset time and the musical score chroma
vector along with the rareness.

1) Weighting Score Positions Based on Tempo: Let
(tn, fm) be the last matching pair, where tn is time in the
audio signal and fm is the frame index of the musical score.
Given the new onset in the audio signal detected at tn+1
and the tempo at that time, the number of frames, F , to go
forward in the musical score is estimated as

F = A(tn+1 − tn), (11)

where factor A corresponds to the tempo. The faster the
music is, the larger A becomes. The weight for score frame
fm+k is defined as,

W (k) = exp
(

−
( fm+k − fm −F)2

2σ 2

)

, (12)

where k is the number of onsets in musical score to go
forward, and σ is the variance for the weight. We set σ = 24
in our implementation, which corresponds to the length of
half note. Note that k can be a negative number. Negative
k allows us to consider the matching such as (tn+1, fm−1),
where the matching moves backward in the musical score.

2) Similarities between Audio Signal and Musical Score:
The similarity between the pair (tn, fm) is defined by the
equation

S(n,m) =
12

∑
i=1

tn+1

∑
τ=tn

r(i,m)csco(i,m)csig(i,τ), (13)

where i is pitch name index, r(i,m) is rareness, csco and csig
are chroma vectors generated from musical score and audio
signal respectively.

When the last matching is (tn, fm), the new matching will
be (tn+1, fm+k), where

k = argmax
l

W (l)S(n+1,m+ l). (14)

In our implementation, the search range of k for each match-
ing step is limited within 2 bars to reduce computational cost.

E. Tempo Estimation using Switching Kalman Filters
We use switching Kalman filters (SKF) [14] to deal with

two types of errors in the matching results and the tempo
estimated by the beat tracking method. These are
(1) small errors caused by slight changes of the performance
speed, and
(2) outliers in tempo estimation by beat tracking.

(1) Overview of SKF: SKF is an extension of Kalman filter
(KF). KF is a linear prediction filter with state a transition
model and an observation model. The KF estimates the state,
which is unobservable, from observed values including errors
in a discrete time series.

SKF has multiple state transition models and observation
models. The model is automatically switched based on
the likelihood of each model every time SKF obtains an
observation value. In this paper, the SKF have two models:
(1) small observation error model and (2) large observation
error model for outliers. Other modeling elements such as
state transitions are common to the two models.

(2) Modeling of SKF: We used the SKF model proposed
by Cemgil et al. [15] for estimating the beat time and beat
interval. Suppose the k-th beat time is bk and the beat interval
at that time is ∆k and that the tempo is stable. The next
beat time is represented as bk+1 = bk +∆k and the next beat
interval is ∆k+1 = ∆k. Let state vector be xk = [bk ∆k]

T and
the state transition is represented as

xk+1 = Fkxk +vk =

[

1 1
0 1

]

xk +vk, (15)

where Fk is a state transition matrix and vk is transition error
vector derived from a normal distribution with mean 0 and
covariance matrix Q. Given the most recent state is xk, the
next beat time bk+1 can be predicted as the first component
of xk+1 shown as follows:

xk+1 = Fkxk (16)
Let the observation vector be zk = [b′k ∆′

k]
T, where b′k is

the beat time calculated from the matching result and ∆′

k is
the beat interval reported by beat tracking. The observation
is modeled as

zk = Hkxk +wk =

[

1 0
0 1

]

xk +wk, (17)

where Hk is the observation matrix and wk is the observation
error vector derived from a normal distribution with mean 0
and covariance matrix R.

Specifically, SKF switches observation error covari-
ance matrices Ri (i = 1,2), where i is model number.
Through preliminary experiments, we set Ri as follows:
R1 = diag(0.02,0.005) for small error model and R2 =
diag(1,0.125) for outlier model, where diag(a1, ...,an) de-
notes n × n diagonal matrix whose elements are a1, ...,an
from top-left to bottom-right.

1) Observation of Beat Times: In our implementation,
beats lie at every 12 frames in the score as the score is
divided into frames whose length corresponds to 48th note.
Observed beat time b′k is interpolated by matching results
when no note exists at the k-th beat frame.
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Fig. 8. Set up for impulse response measurement

IV. EXPERIMENTS

This section reports on our experiments that evaluated the
error in score alignment results of popular music pieces.
We compare the error using four methods: (1) full of our
method, (2) our method without SKF, (3) our method without
rareness, and (4) the beat tracking only. Ground truth data
for score alignment are generated from a MIDI file of each
song. These MIDI files are strictly aligned with the actual
performance. The error is defined as the absolute value of the
difference between the beat time reported by each method
and the ground truth data in seconds. The errors are averaged
for each song.

A. Conditions
We use 100 pieces of popular music from the RWC music

database (RWC-MDB-P-2001) developed by Goto et al. [16].
Needless to say, we use full length versions of these songs
that include vocals and instruments for the experiments.

The specification of four methods are as follows:
(1) our method: the SKF and the rareness are in use,
(2) without SKF: no modification for tempo estimation,
(3) without rareness: all notes have equal rareness,
(4) beat tracking: this method determines the score position
by counting the beats from the beginning of the music.

We experiment with using two kinds of music signals to
evaluate what effect the reverberation in the room environ-
ment would have.

1) Clean music signal: music signal without reverbera-
tion,

2) Reverberated music signal: music signal with rever-
beration. The reverberation is simulated by impulse
response convolution. Figure 8 shows the set up for im-
pulse response measurement. This impulse response is
measured in an experimental room. The reverberation
time (RT20) in the room is 156 [msec]. An auditorium
or a music hall would have a longer reverberation time.

B. Results and Discussion
Table II shows the results with two types of music signals

and four methods. The values are the means and standard
deviations of 100 songs. The error in our method (1) is
less than beat tracking method (4) with both clean and
reverberated signals. Our method improves the error by 29%
with clean signals and by 14% with reverberated signals.
The SKF decreases the errors because method (1) has less

TABLE II
RESULTS: AVERAGE AND STANDARD DEVIATION

OF CUMULATIVE ABSOLUTE ERRORS

Clean signal Reverberated signal
Ave. Std. dev. Ave. Std. dev.

(1) Our method 8.9 11.0 9.9 12.6
(2) w/o SKF 11.6 12.8 10.5 11.2
(3) w/o rareness 9.7 13.5 10.3 13.3
(4) Beat tracking 12.5 9.7 11.5 9.1
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Fig. 9. The number of tunes by average error with clean signal
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Fig. 10. The number of tunes by average error with reverberated signal

errors than (2). Similarly, the rareness decreases the errors
comparing the results of method (1) and (3). The results also
indicate that the SKF is more effective than the rareness
since method (2) has less errors than (3). This is because
the rareness sometimes induces high similarity between a
certain frame in the musical score and the wrong onset such
as drum sounds. If the drum sound happens to have large
power in a component of chroma vector with high rareness,
this results in the wrong matching. To avoid this problem,
we can consider the rareness for the combination of pitch
names, not for a single pitch name.

Figure 9 and 10 show the number of music tunes dis-
tributed by the average error value for each method. The
larger number of tunes with less average error indicates the
better performance. With clean signals, Our method has 31
tunes with less than 2-second error while the beat tracking
has 9 tunes. With reverberated signals, similarly, our method
has 36 tunes with less than 2-second error while the beat
tracking has 12 tunes. Thus, our method is superior to the
beat tracking method in terms of estimating the score position
with less errors. This is essential for generating a natural
singing voice along with the music sound. The distribution
of our method makes little difference between clean signals
and reverberated signals, although our method has more error
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with reverberated signals shown as Table II. Therefore, the
reverberation in our experimental room mainly affects the
songs with much error. The reverberation has little effect on
the songs with little error. A longer reverberation such as in
a music hall can deteriorate the score alignment accuracy.

We confirm that the accuracy of our method depends
on whether drums are played in a song by comparing the
errors of musical tunes with drum sounds and of those
without drum sounds. The number of musical tunes with
and without drum sounds is 89 and 11, respectively. The
average cumulative error of songs with drums is 7.3 [sec.]
with the standard deviation 9.4 [sec.]; whereas that of songs
without drums is 22.1 [sec.] with the standard deviation 14.5
[sec.]. The tempo estimation by beat bracking is apt to have
huge fluctuations when drum sounds are absent. This causes
incorrect matchings, leading to a high cumulative error.

There are other two reasons for errors in our method:
1) Matching error caused by false onset detections: False

onset detections due to percussion sounds or signal
power changes by vibrato or other shaky musical ex-
pressions cause matching at a previous score position.
This mismatching leads to tempo acceleration and
increased matching error.

2) Sound effects: Some songs contain sound effects that
are not written in the musical score as musical note
information. Sound effects can be interpreted as noise
for our matching method based on chroma vector
similarity.

V. CONCLUSION

Our goal is to develop an interactive singer robot. We
first discussed three capabilities desired for the robot: (1)
listening, (2) capability to understand score position and (3)
singing. In this paper, we described a way to realize the
second function, namely, a method to align a musical audio
signal with the score. To create a score alignment method
robust to the diversity in timbre of musical instruments, we
designed the features based on chroma vector and onset of
the sound. We also defined rareness for each pitch name to
alleviate the difference between the audio signal and the mu-
sical score. For robust tempo estimation, we used a switching
Kalman filter with small error model and outlier model.
The experimental results indicated that our method had less
error than the existing beat tracking method without score
alignment by 29% with respect to cumulative absolute errors.
However, false onset detections deteriorated the performance
of our method. To improve this, we may predict the next
pitched sound by reading ahead in the score in advance.

In our work in the near future, we plan to develop a
singing system as shown in Figure 1 for a humanoid robot
called HRP-2. In further future work, we intend to expand
the singing expression such as active body motion associated
with the quality of vocal sound. The motion data can be
acquired, for example, using motion capture data of a human
singer.
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