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Abstract— As medical robotics gathers increasing attention,
the ergonomics of the surgical-console design becomes an
important issue. Motivated by the need of augmenting the
surgeon mastery, we explore the capabilities of a near infrared
brain-computer interface as a complementary input modality
to enhance the human-robot interaction at the robotic console.
A multistage analysis framework is proposed and evaluated
by an exploratory off-line synchronous study. The three stages
of the data processing flow, namely dimensionality reduction,
solution to binary problems and aggregation into multi-class
decision are examined to address key challenges during the
pattern recognition step. Early experimental results endorse
near infrared based brain-computer interface as a suitable
additional communication modality between the surgeon and
the robotic console.

I. INTRODUCTION

The application of robotic surgery is expanding due to its
increased clinical uptake and clear advantages established in
certain surgical specialties [1]. In particular, it is beneficial
in minimally invasive surgery, where the technical demand
on the surgeon is higher [2]. As robotic surgery becomes
more common and the complexity of the attempted surgical
procedures increases, the traditional input console is unable
to provide the surgeon with ergonomically nature control of
the action. For example, the surgeon has no haptic feedback
and multitasking is difficult or even unviable. In general, the
amount of manoeuvres required in surgical robotics increase
with the complexity of the operation, and can lead to sensory
overload. When under stress, this becomes a route cause of
surgical errors. The potential solution to these problems can
be addressed by the concept of perceptual docking [2], which
represents a fundamental paradigm shift of perceptual learn-
ing and knowledge acquisition for robotic systems in that
operator specific motor and perceptual/cognitive behaviour is
acquired in situ through human-robot interaction. One recent
work in the area is the use of gaze contingent control for
improved visuo-motor coordination and attention selection
[3]. However, it is unlikely that a single technology can
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provide a comprehensive solution to all the needs of human-
robot interaction.

Near InfraRed Spectroscopy (NIRS) is a non-invasive,
relatively affordable and portable neuroimaging modality that
can detect cerebral blood flow as a surrogate for cortical
activity. Unlike functional magnetic resonance , it allows the
subject to have freedom of movement to perform a wide
variety of tasks [4], [5]. The advent of wireless NIRS devices
have further enhanced its use in normal control environments
[6]. In complicated surgical tasks, NIRS can isolate discrete
patterns of activation that can be related to the surgeon’s
intentions [4].

In brain-computer interface (BCI), the brain activity is
reduced to an input command for controlling a cursor,
a computer or a robotic device. BCI systems have now
migrated from invasive (e.g. electrocorticography) to non
invasive technologies, such as electroencephalography (EEG)
and more recently NIRS. Although EEG remains the most
popular since it retrieves the direct electrical activity of
the brain, NIRS based BCI is gaining momentum [7], [8],
[9]. NIRS has better spatial resolution compared to EEG,
and therefore it is more consistent in extracting cortical
responses for a given task. The existing work with NIRS
based BCI make use of the indirect brain response based on
neurovascular coupling. However, a fast direct response can
also be recorded by NIRS [10], thus making it an attractive
choice for BCI in the future, although specific hurdles remain
to be addressed for the fast-NIRS signal [11].

Thus far, the predominant clinical application of BCI is
in the control of prosthetic limbs [12]. In robotic surgery,
BCI is an attractive candidate to reduce the above mentioned
sensory overload and to enrich, as well as augment the
surgeon-robot interface. This could be utilized to confirm
the intention of an action, in the early detection of surgical
errors and/or to assess psychological stress. In general, ap-
propriateness of BCI in the field of surgical robotics remains
largely unexplored.

The use of NIRS as an input for BCI is a relatively new
topic in neuroimaging modality and consequently requires
further work to assess its practical potential. In this context,
there are pressing needs to develop a robust analysis frame-
work for mapping NIRS response to intention and motor
control. Motivated by this requirement, this study investigates
the key data processing and pattern recognition challenges
associated with the practical use of NIRS. The novelties
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Fig. 1. Stimuli showing an object (circle) and a target (cup) in all possible
6 directions of 3D space (top left), a sketch of the experimental setup (top
right) and the interrogated area over a brain atlas (bottom).

of the framework include a new feature selection strategy
that takes into account meaningful sets of information, new
conversion functions from binary to probabilistic outputs and
a simple combination of classifiers strategy. We will use a
simple motor control task to outline the key processing steps
involved. We conclude by discussing potential applications
in robotic surgery.

II. MATERIALS AND METHODS

An off-line synchronous BCI experiment in which 2
subjects mentally guiding an object towards a target in all 3D
was designed. Using a block design paradigm, the subjects
were exposed to 6 different stimuli in randomized sessions.
Each session consisted of 30 second baseline rest period
followed by three blocks of 20 seconds of stimulus and 30
seconds of rest. The stimulus consisted of a blank screen with
an object and a target as illustrated in Fig. 1. The subject
imagined moving the object into the target and instructions
to do so were presented in two fashions; a) no specific
instructions were given on how to move the target, non motor
imagery (NMI), b) the subjects were instructed to imagine
that they were pushing the object to the target using the right
index finger, motor imagery (MI). The subjects completed 48
sessions (6 stimuli x 2 instruction modalities x 4 repetition)
of 3 blocks each. Continuous wave NIRS measurement was
obtained using a multi-channel HITACHI ETG-4000 optical
topography system. Two arrays of 12 channels using a 3x3
optode configuration of light sources and detectors allow
for a 24 channel recording. Interoptode distance was 3 cm.
Channels were positioned according to the UI 10/10 system
with the optode arrays centred at CP3 and CP4 [13].

Light measurements were converted to relative changes
in oxy- and deoxyhaemoglobin using the modified Beer
Lambert law [14]. The haemodynamic response was linearly

detrended and decimated to 1 Hz. Task data was isolated
and a 960D pattern vector was constructed using informa-
tion from all 24 channels, 20 task-time samples and both
haemoglobin species, (24 · 20 · 2 = 960). Classification of
the haemodynamic patterns was performed in a three stages
analysis framework composed by a dimensionality reduction
step, a binary pair-wise classification and a final aggregation
unit of binary classifiers into a multi-class decision. This
paper explores different possibilities for each of the stages.

A. Dimensionality reduction

The 960D space represents the haemodynamic brain re-
sponse to moving the object towards the desired target.
The curse of dimensionality [15] discourages the direct
classification of patterns in this high dimensional space.
In order to construct a valid reduced subset of features,
two strategies were examined. In the first strategy, feature
extraction was implemented using Isomap [16]. It has been
previously demonstrated that Isomap is capable of capturing
the haemodynamic brain response manifold [4]. The second
strategy presents a feature selection process which empha-
sizes the importance of different time samples originating
from a single chromophore signal at a particular location.

1) Feature Extraction: Isomap is a manifold embedding
technique capable of unveiling the globally optimal solution
[16]. Isomap can be summarized in two steps. First, an
approximate estimation of the true geodesic distance along
the manifold surface is computed. In our case, Floyd’s
algorithm has been applied using r = 7 nearest neighbours.
Previous experience has taught us that the haemodynamic
manifold is well captured with this value [4]. Second, classi-
cal multidimensional scaling (cMDS) is applied to the matrix
of pair-wise distances to produce the output projection. The
high dimensional 960D space was projected to either a 2
or 3 dimensional manifold. Adequacy of the projection is
assessed by means of the distance distortion. Fixed Reference
Isomap (FR-Isomap) [17] was designed to solve the problem
of consistent embedding. In FR-Isomap, new points are
projected on the reduced space generated by the references,
in this case the training set. The projection coordinates of any
new pattern are characterized from its nearest neighbours
in the high dimensional space, by solving an optimization
problem based on the Sammon’s non-linear criterion [18].

2) Feature Selection - rSOMA-SFFS: A new feature se-
lection algorithm has been developed to ensure that features
are not treated blindly but in terms of significant blocks of
information. Feature vectors were constructed by concatena-
tion of all task samples of both haemoglobin species across
all the recorded channels. As discussed, the 960D feature
vector arises from η (number of task samples) samples
per haemoglobin signal in the task period across all 24
channels. These features can be considered in meaningful
subsets, or SOMAs (Subset Of Meaningful Attributes). A
SOMA in this case refers to the subset of 20 features
collected for a single chromophore at one single channel,
for a total of 48 SOMAs. Each SOMA is then projected into
a reduced SOMA (rSOMA) by the extraction of the first 2
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principal components which contains more than 85% of the
information in most SOMAs as illustrated in Fig. 2.

Fig. 2. PCA results on the SOMAs. The first two components account for
more than 85% of the information in most cases.

A variation of the popular Sequential Floating Forward
Selection (SFFS) [15], [19] has been implemented so that
rSOMAs become indivisible groups of features that must
be included or conditionally excluded as single entities to
the current subset Si. A block diagram of this algorithm is
shown in Fig. 3. The classifier’s classification error εc on
the training set as the evaluation function was used . The
three stopping criteria selected were reaching the maximum
number of rSOMAs (M = 8), the maximum number of
iterations (I = 104) or the 0% of classification error.

Fig. 3. rSOMA-SFFS algorithm block diagram. The algorithm groups
features in meaningful subsets of information that can be added or discarded
altogether.

B. Binary classifiers construction

After the dimensionality reduction stage, the multiclass
problem was split into K(K − 1)/2 = 15 binary decision
sub-problems. Each binary classifier was learned using a
Support Vector Machine (SVM). Since particular implemen-
tations of SVM may not lead to the optimum solution,
each classifier were then allowed to be boosted using the
AdaBoost algorithm. A pick the best strategy has been im-
plemented to choose between SVM and AdaBoost classifier
at every turn, the selection criterion being the smaller training
error.

1) Support Vector Machines (SVM): Support Vector Ma-
chines are a family of classifiers which aim to find a
hyperplane separating the classes so that the distance from
the hyperplane to the patterns closest to it is maximal for
optimum generalization capabilities [20], [21]. The payoff
of the use of SVM over other classifiers is that they always
find the global minimum. SVM has already been used for
BCI with good results [8]. Perhaps, the more controversial
issue when using SVM is the selection of the best kernel
characterizing the classifier, which is still an open question
[21]. In this study, a linear kernel was used. Slack variables
ξi are introduced in the basic linear formulation in order to
handle non-linearly separable problems:

xi ·w + b ≥ +1− ξi for yi = +1 (1)
xi ·w + b ≥ −1 + ξi for yi = −1 (2)

ξi ≥ 0 ∀i. (3)

In the above equation xi are the patterns in the dataset
and yi are the class labels. The model parameters are the
< w, b > which are established such that they optimize the
cost function L = ‖w‖2

2 +C (
∑

i ξi)
k, where C is the regu-

larization constant introduced to penalize misclassifications.
A value k = 1 was selected. Moreover, a value of 10−3

for the regularization constant was selected since we found
this value to be in the range that avoids extreme behaviours,
overfitting and random results. The optimization problem
is solved using a constrained formulation of Lagrangian
multipliers. The STPR toolbox [22] was used to implement
SVM classifiers.

2) AdaBoost: Practical limitations of SVM implementa-
tions may lead to a suboptimal selection of the class sepa-
rating hyperplane [23]. Originally developed for improving
the performance of weak classifiers such as PAC, AdaBoost
can enhance the performance of a weak learner closer to the
Bayesian limit [24]. Each binary classifier ht(x) was given
the chance to improve using the AdaBoost algorithm, before
proceeding to aggregation on a multi-class classifier. The
boosting is achieved by modifying the distribution of weights
over the patterns in the training set: on each iteration, the
distribution is re-weighted so that patterns which are more
difficult to classify are given more weight than those easier to
classify. In this way, AdaBoost emphasises on those regions
harder to separate and a non-linear classifier H (x) is built
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upon the decision made by multiple simple linear classifiers
(5):

f(x) =
T∑

t=1

αtht (x) (4)

H (x) = sign (f(x)) (5)

where αt are the coefficients assigned to each classifier
ht(·), based on its training error εt according to (6):

αt =
1
2
log

(
1− εt
εt

)
(6)

AdaBoost was run using a maximum of T = 20 classifiers.

C. Aggregation of binary classifiers

Finally, aggregation of the 15 binary classifiers into a
single multiclass classifier was attempted using three voting
strategies:

1) Majority Voting (MV): each binary classifier cast a
vote. Current pattern is assigned to the class with more votes.
In case of draw, the current pattern is assigned to the null
class 0, that means that no decision can be done. Random
selection has been suggested as a solution under draws, but
a 0-class strategy is more conservative.

2) Weighted Majority Voting (WMV): again, each binary
classifier casts a vote yk. As opposed to the previous scheme,
votes have different weights µk, according to the margin
of the binary classifier that produced them. Patterns x are
assigned to the class ωi that has the maximum score after
the weighted voting stage. In case of draw, the classifier with
the smallest margin is discarded and the weighted votes are
counted again.

3) Correcting Classifiers (CC): correcting classifiers aim
to tackle the nonsense introduced by considering a binary
classifier’s output when the pattern under consideration be-
longs to neither of the two classes it was trained with [25].
The output of the binary classifier that separates class ωi

from ωj is interpreted as a probability of membership to
ωi, p̂ij . To convert the binary output of a SVM in such a
measure, the function (7) and shown in Fig. 4 is proposed.

p̂ij =
1

1 + e
−d
m

(7)

where d is the distance of the pattern from the separating
hyperplane in SVM, or the final score f(x) in AdaBoost,
and m is the margin. Another possible function is the one
proposed in [27]. Each i-vs-j classifier is then complemented
with a correcting classifier (i, j)-vs-all yielding an output
q̂ij capturing the probability of new patterns belonging
to ωi

⋃
ωj . These values are then used to calculate the

probability of each class p̂i (8):

p̂i =
2

K(K − 1)

∑
j 6=i

p̂ij · q̂ij (8)

Finally, the aggregation policy is given by (9).

arg max
1≤i≤K

p̂i (9)

Fig. 4. Conversion from binary output to probabilistic output for SVM
(top left) and AdaBoost (bottom right).

III. RESULTS AND DISCUSSION

For each of the two instruction paradigms - motor im-
agery (MI) and non motor-imagery (NMI) - a number of
simulations were carried out using the proposed scheme.
The number of simulation was the result of using 3 different
channel selections (left only, right only and all channels),
two underlying classifiers (SVM and AdaBoost), three ag-
gregation policies (MV, WMV and CC), and a varying
number of binary classifiers depending on the directions
being classified. To make the most of the small test set,
the simulations were made with the split between training
set and test set at either 75%-25% or 80%-20% respectively.
Ten runs were made for each valid combination, with the
dataset being pick at random from the pool.

A. Instruction paradigm and multichannel information

The results of the simulations were split into six groups as
result of two instruction paradigms and three possible atten-
dance to channels; right only channels (channels 1 to 12), left
only channels (channels 13 to 24), or all channels together.
A non-parametric multigroup Kruskal-Wallis test indicated
that not all tested configurations present the same median.
The multiple comparison procedure based on t–test with
95% confidence level and a Bonferroni correction proved
that there is a statistically significant difference between the
two instruction paradigms. It is the NMI which show a better
performance. This is in agreement with Luu and Chau [9]
suggestion than non forcing a common strategy may be a
more intuitive for BCI systems as this requires less cognitive
load. In terms of the channels, the use of right only channels
under NMI has a statistically significantly better performance
than using the channels on the right. This suggests that it may
be easier to separate the ipsilateral motor response despite
being smaller in intensity. However the channels in the
contralateral side may still give a small contribution as using
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TABLE I
CLASSIFICATION ACCURACY FOR EACH PARTICIPANT ALONG THE MAIN

DIRECTIONS

Direction Subject 1 Subject 2
Input µ± σ Input µ± σ

U/D MI/Left 0.67± 0.20 MI/Left 0.55± 0.17
FE (2D) FE (3D)

L/R MI/Left 0.57± 0.25 MI/Left 0.61± 0.18
FE (3D) FE (2D)

B/F NMI/Right 0.62± 0.22 NMI/Left 0.65± 0.22
FE (2D) FE (3D)

all channels slightly outperforms using only the ipsilateral
information, but this did not reach statistical significance.

B. Separation of single directions

Tab. I reports the classification accuracy for each partic-
ipant, for its optimal combination of instruction paradigm,
multi-channel information and dimensionality reduction
technique, with the 75%-25% partition. In this particular
exercise, the Feature Selection algorithm did not outperform
Feature Extraction. However, the difference did not reach
statistical significance. Whilst Feature Extraction yields the
top performance in cases where half of channels are taken
into account, Feature Selection marginally performs better
if all channels are considered. This hints that the proposed
rSOMA-SFFS algorithm is able to learn automatically the
optimal subset of information needed. The pick the best
strategy consistently behave as a compromise between both
classifiers as illustrated in Fig. 5.

Depth perception in 2D displays benefits from cues
that include perspective, occlusion, size and shadows [26].
The wireframed stimulus here used includes standard one-
pointperspective, but none of the other cues. As emanates
from Fig. 5, the perspective cue is sufficient to facilitate
the control along the third dimension (B/F) for which the
classification rates are in range with rates along the other
two remaining dimensions.

C. Separation of multiple directions

The non normal but symmetric behaviour of the three
groups of simulation corresponding to the three aggregation
policies - MV, WMV and CC - was assessed by means of
QQ plots, histograms and boxplots (not shown). A Kruskal
Wallis test was applied and found statistical significance that
at least one of the group has a different median.

A subsequent multiple comparison test shows that majority
voting aggregation policy producing the weakest results
reached statistical significance. In between weighted majority
voting and correcting classifiers, it is the latter who yields
better results, however this is inconclusive, as statistical
significance was not reach as illustrated in Fig. 6. The
combination of potentially conflicting decisions by multiple
classifiers remains an unsolved problem [28].

Fig. 5. The first six panels show the classification success rate (average of
both subjects) by SVM (red), AdaBoost (green) and pick the best strategy
(blue). Left column plots correspond to MI, and right column to NMI. The
panel below shows a mean ranks t-test with 95% confidence level and a
Bonferroni correction for MI and NMI groups.

Fig. 6. Mean ranks t-test with 95% confidence level and a Bonferroni
correction.

IV. CONCLUSIONS AND FUTURE WORK
In this paper we have developed a comprehensive haemo-

dynamic pattern classification framework for its potential use
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in robotic control. The analysis framework was evaluated un-
der the perspective of a visuo-motor stimulus. Being an initial
explorative study, the sample size used in study is admittedly
small and the small training size may have hindered higher
classification rates. The total training time is in line with
similar published works [7], [8] . Nevertheless, the study
has outlined practical potential of this promising approach.
In the light of these results, we suggest that a NIRS based
BCI has potential to complement existing human-machine
interfaces. Prospective early applications may be, for ex-
ample, corroboratory selector switch of surgical decision,
selection of robot movement alternative pre-loaded paths
with adaptive active constraints and/or early identification of
mental weariness. It is expected that application to surgical
robot arm direct movement control requires further ethical
and safety considerations.
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