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Abstract— This paper presents an approach for quasi-static
regrasp planning using n fingers, taking advantage of a method
that quickly explores the grasp space for discrete objects. The
approach relies on a sampling method, which provides samples
of force-closure or non force-closure grasps used to compute
regions of the graspable or non-graspable space, respectively.
The regrasp contact points generated assure that a force-closure
grasp is always possible when performing the regrasp motions.
Application examples are included to show the relevance of the
results.

Index Terms— Regrasp planning, independent contact re-
gions, non-graspable regions.

I. INTRODUCTION

The manipulation of objects by multifingered hands has

received considerable attention in the last years. The ma-

nipulation problem appears when an object grasped by an

end-effector needs a grasp change during the execution of

the task. This problem has been tackled using two different

approaches: finger gaiting and regrasping. Finger gaiting

involves the relocation of one of the fingers on the surface

of the object while keeping the grasp with the remaining

fingers [1]. The change of a grasp from n fingers to n − 1
fingers involves a change in the problem conditions, as the

number of degrees of freedom of the hand-object system

increases when one contact is lost.

The regrasping approach (or multi-fingered manipulation)

solves the manipulation problem by using all the available

fingers on the hand; the positions of the fingers can only

be changed by rolling or sliding them along the surface of

the object [2]. The finger gaiting and regrasping movements

can also be combined to plan a desired manipulation of

the object; for instance, the manipulation problem may be

represented as a switching graph, where each node represents

a grasp, and the finger gaiting planning is reduced to a graph

search problem [3]–[5].

The analysis of a grasp that fully restrains the object to

resist the influence of external disturbances is mainly based

on the properties of form or force-closure, depending on

whether the position of the contacts or the forces applied by

the fingers ensure the object immobility [6]. The requirement

of maintaining the force-closure (FC) property of the grasp

while performing the manipulation complicates the planning

problem [3]. To provide robustness to the grasp to finger
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positioning errors, the concept of independent contact regions

(ICRs) on the object boundary was introduced [7]. The

positioning of a finger in each ICR assures an FC grasp,

independently of the exact position of each finger. The

computation of ICRs has been solved for 2D polygonal [8]

and 3D polyhedral objects [9], as well as for objects of

arbitrary shape described by a mesh with a large number of

points, with frictional and frictionless contacts for 2D [10]

and 3D [11] objects. A related concept is the notion of non-

graspable regions (NGRs), defined such that a finger contact

in each NGR always produce a non-FC grasp, independently

of the exact position of each finger [12].

The problem tackled in this paper is the search of tra-

jectories for the fingertips on an object surface, in order

to change from an initial FC grasp to a final desired one

without losing the FC condition. The problem is solved

by finding a path between the initial and final grasps in

a grasp space representing all the possible grasps of the

object. The grasp space is explored by taking samples,

evaluating whether each sample represents a FC or non-FC

grasp, and respectively computing the corresponding ICRs

or sets of NGRs (hereafter called NGRHs). This allows a

quick exploration of the grasp space. The ICRs and the

NGRHs are regions of the grasp space that are represented

as nodes of a regrasp graph, which is then searched for a

solution path. The detailed algorithms used to compute the

ICRs and NGRHs were presented in a previous work [12],

as well as a comparative study of some sampling approaches

to explore the grasp space [13]. Those results are used here

to find the solution to the regrasping problem.

The approach used in this work focuses only on the

geometry of the object and on the FC property to find the

trajectories for the fingertips on the object surface, i.e. it

is object-centered. The hand kinematics is not considered

(some other works include it in the grasp computation,

e.g. [14]). It is assumed that the manipulation is performed at

low velocities, therefore the interaction forces are dominant

compared to the inertial forces, and the manipulation can be

considered quasi-statical. The basic quasi-static manipulation

motions are rolling and sliding of the fingers on the object

surface [15].

The rest of the paper is organized as follows. Section II

provides the required background on FC grasps and grasp

space, and explains the computation of ICRs and NGRHs.

Section III describes the approach proposed to plan a re-

grasp movement on a discrete object. Section IV shows two

examples to illustrate the approach, and, finally, Section V

presents the conclusions of the work.
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II. INDEPENDENT CONTACT REGIONS AND SETS OF

NON-GRASPABLE REGIONS

This subsection presents the assumptions and basic notions

to deal with the problem of regrasp planning, and summarizes

the procedures presented in [12] to compute the independent

contact regions (ICRs) and sets of non-graspable regions

(NGRHs) for an FC and non-FC grasp, respectively.

A. Assumptions

The following assumptions are considered in this work.

There is a frictional punctual contact between each finger

and the object, with friction being modeled according to

Coulomb’s law. The object surface is discretized with a large

enough set Ω of points pi, whose positions are described by

one or two parameters u for 2D or 3D objects, respectively.

The normal direction n̂i pointing toward the interior of the

object at pi is known. It is assumed that the surface is

smooth, i.e. the normal vectors have small variations between

two sampled points. Each point is connected with a set of

neighboring points forming a mesh; the number of neighbors

is irrelevant and therefore different types of mesh are valid.

B. Grasp space

An n-finger grasp G is described by the set of parame-

ters ui that determine the positions of the fingers on the

grasped object surface, i.e. G = {u1, . . . , up}, with p = n

for 2D objects and p = 2n for 3D objects. The p-dimensional

space representing the position of the possible contact points

defined by u1, . . . , up is called the grasp space G (also known

as grasp configuration space or contact space [16]). G has

some symmetries, as any grasp G = {u1, . . . , up} accounts

for K different grasps, with K = n! being the total number

of possible permutations of the fingers on the object while

keeping the same contact points. This symmetry is used to

ease the generation of the grasp space.

Fig. 1 shows an example of G for an ellipse discretized

with 64 points, and grasped with 3 frictional fingers; each

point of G represents 3 contact points on the ellipse. The

grasp space G contains 643 = 262, 144 grasps, with 12.1% of

FC grasps and 87.9% of non-FC grasps, as shown in Fig. 1b

with dark and light colors, respectively.

C. Force-closure condition

A unitary force f i applied on the object at pi along the

surface normal direction generates a torque τ i = pi × f i;

f i and τ i are grouped together in a wrench vector

ωi = (f i, τ i)
T

. The resultant wrench applied on the ob-

ject can be expressed as a positive linear combination of

wrenches applied at the contact points, which are grouped

in a wrench set W . For frictionless grasps, the grasp forces

can only be applied in the direction normal to the object

boundary, thus W = {ω1, . . . ,ωn}. For frictional grasps, the

grasp forces lie inside a friction cone that can be linearized

a) b)

Fig. 1. Grasp space for a 2D object with 3 frictional contacts: a) Discretized
ellipse, b) Grasp space.

with an m-side polyhedral convex cone, then the grasping

force f̃ i at the contact point pi can be expressed as

f̃ i =

m
∑

j=1

αijsij , αij ≥ 0 (1)

with sij being the unitary vector along the j-th edge of the

convex cone. The wrench produced by the force f̃ i is

ω̃i =

m
∑

j=1

αijωij , ωij =

(

sij

pi × sij

)

(2)

where ωij is called a primitive contact wrench. Therefore, for

frictional grasps W = {ω11, . . . ,ω1m, . . . ,ωn1, . . . ,ωnm}.

A necessary and sufficient condition for the existence of

an FC grasp is that the origin of the wrench space lies strictly

inside the convex hull of W , CH(W ) [17]. This condition is

applied in this work using the following lemma [12].

Lemma 1: Let G be a grasp with an associate set of

wrenches W , I be the set of strictly interior points of

CH(W ), and Hk be a supporting hyperplane of CH(W ) (i.e.

a hyperplane containing the facet k of CH(W )). The origin O

of the wrench space satisfies O ∈ I if and only if ∀k any

point P ∈ I and O lie in the same half-space defined by

Hk.

In this paper Lemma 1 is used selecting P as the centroid

of the primitive contact wrenches, which is always an interior

point of CH(W ). Then, the test used to verify the FC

property for the grasp G checks whether the centroid P and

the origin O lie on the same side of Hk ∀k.

D. Independent contact regions

Let Fk denote a facet of CH(W ) that contains at least

one primitive wrench for a particular grasp point pi. The

proposed approach builds hyperplanes H ′′

k parallel to each

facet Fk and containing the origin O of the wrench space.

These hyperplanes define the search zone Si, containing

the wrenches associated with physical points that belong to

the ICRi corresponding to pi. Si is the intersection of the

open half-spaces H ′′

k
+

that contain the point pi. ICRi is

determined by the set of neighbor points of pi such that at

least one of its primitive wrenches ωij falls into Si. The

algorithm is:
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Fig. 2. Search of the ICRs for a discretized ellipse: a) Initial FC grasp, b) FC grasp in the wrench space, c) Search of ICR2 for the point p
2

, d) ICRs
on the ellipse.

Algorithm 1: Search of the independent contact regions [12]

1) Find a starting FC grasp G = {u1, . . . , up} and compute

its corresponding wrench set W

2) Compute the convex hull CH(W )
3) For i = 1 to n (i.e. for each contact point pi ∈ C) do

a) For each facet Fk of CH(W) that has at least one

vertex ωij , build the hyperplane H ′′

k parallel to Fk

and containing the origin O. Let H ′′

k
+

be the open

half-space such that ωij ∈ H ′′

k

+
, and let Si be the

search region such that Si =
⋂

k H ′′

k
+

b) Initialize ICRi = {pi}
c) Label pi as open

d) While there are open points ph ∈ ICRi do

i) For all the neighboring points ps of ph do

If ∃j such that ωsj ∈ Si then

ICRi = ICRi ∪ {ps}
Label ps as open

ii) Label ph as closed

4) Return the ICRs

Fig. 2 illustrates the search of the ICRs for a 2D object (in

order to obtain 3D visualizations) using a 4-finger frictionless

grasp of an ellipse discretized with 64 points. The initial FC

grasp is shown on the ellipse and in the wrench space (Fig. 2a

and 2b); continuous lines join the neighbor points. The

computation of the ICR for the grasp point p2 is illustrated in

Fig. 2c; three hyperplanes H ′

k determine the search zone S2,

and the wrenches corresponding to the neighboring points

of p2 that fall in S2 are depicted as stars. Fig 2d shows the

ICRs for the 4 grasp points; 3,920 different FC grasps can be

obtained from the possible combinations of finger positions

inside the ICRs.

E. Sets of non-graspable regions

The computation of the sets of non-graspable regions

(NGRHs) starts with a non-FC grasp. First, the hyper-

planes H ′′

k , parallel to each facet Fk and containing the

origin O of the wrench space, are built. Then, the subset T of

hyperplanes H ′′

k that completely leave CH(W ) in the same

open half-space are determined (i.e. if a plane H ′′

k intersects

with CH(W ) then it does not belong to T ). Every hyperplane

in T defines a search zone ST (open half-space) that fully

contains CH(W ). The NGRHi is determined by the set of

neighboring points of pi such that all its primitive wrenches

lie in ST . The algorithm is:

Algorithm 2: Search of the sets of non-graspable regions [12]

1) Find a starting non-FC grasp G = {u1, . . . , up} and

compute its corresponding wrench set W

2) Compute CH(W )
3) For each facet Fk of CH(W) build the hyperplane H ′′

k

parallel to Fk and containing the origin O. Let T be the

set of hyperplanes T =
{

H ′′

t = H ′′

k | CH(W) ⊂ H ′′

k

+
}

(i.e. a hyperplane H ′′

k belongs to T if and only if

ωi1 ∧ . . . ∧ ωim ∈ H ′

k
+

for every pi).

4) For j = 1 to t (i.e. for each hyperplane H ′′

t ∈ T ) let

ST |Hj= H ′′

j
+

For i = 1 to n (i.e. for each contact point pi ∈ C) do

a) Initialize NGRHi = {pi}
b) Label pi as open

c) While there are open points ph ∈ NGRi do

i) For all the neighboring points ps of ph do

If ωs1 ∧ . . . ∧ ωsm ∈ ST |Hj then

NGRHi = NGRHi ∪ {ps}
Label ps as open

ii) Label ph as closed

Return the NGRHs|Hj

Figure 3 shows a non-FC grasp on the ellipse and in the

wrench space; two hyperplanes H ′′

1 and H ′′

2 belong to the

set T and therefore are considered to compute the NGRHs.

Fig. 4a and 4c show the two hyperplanes separately and the

corresponding NGRHs|H1 and NGRHs|H2 in the wrench

space, and Fig. 4b and 4d show them on the ellipse. The

NGRHs|H1 and NGRHs|H2 allow 44,100 and 2,313,441

different non-FC grasps, respectively.

III. REGRASP PLANNING

The regrasp planning problem is formulated as follows:

given an initial and a final FC grasps, Gi and Gf respectively,

find a trajectory for each finger contact on the object surface

that allows the grasp change while keeping the FC property

(i.e. ensuring the resistance to any external disturbance

appeared during the regrasp process). The sequence of move-

ments corresponds to a path between the points Gi and Gf

in the grasp space G such that all the points in the path must

be FC grasps.
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Fig. 3. Example of a non-FC grasp for a discretized ellipse: a) Initial non-FC grasp, b) Non-FC grasp in the wrench space, c) Hyperplanes H′′

k
belonging

to the set T .
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Fig. 4. Search of the sets of non-graspable regions for the previous example: a) Hyperplane H′

1
and NGRHs in the wrench space, b) Sets NGRH|H1 on

the ellipse, c) Hyperplane H′

2
and NGRHs in the wrench space, d) Sets NGRH|H2 on the ellipse.

The regrasp algorithm uses the concepts of ICRs and

NGRHs to compute the path in the grasp space. The ICRs

and NGRHs define an axis-aligned box BI or BN in the

grasp space, respectively (Fig. 5); the projection of the box

along each of the axis corresponds to the ICR or NGRH for

each one of the fingers. An auxiliary regrasp graph (hereafter

called RG) is required to represent each BI box as a node,

and a pair of contiguous BIs in the grasp space is represented

as a pair of nodes with an arc between them. The regrasp

algorithm first computes the BIs for Gi and Gf . Then, the

algorithm takes a sample grasp from G, identifies whether it

is FC or not, and builds the corresponding box around it. If

it is an FC grasp, then the computed box BI (defined by the

ICRs) is added to RG, and the contiguity relations for the

new BI are tested, i.e. new arcs are added to RG between the

nodes representing BIs that intersect each other. If the sample

grasp is a non-FC grasp, then all the possible grasps included

in the box BN (defined by the NGRHs) are labeled as non-

FC grasps, and are discarded from the following sampling

steps. The iterative procedure goes on until a continuous path

is obtained in the regrasp graph (or, equivalently, in the grasp

space), or until all the grasp space has been explored and no

path has been found. The algorithm is

Algorithm 3: Regrasp planning

1) For the initial and final grasps, Gi and Gf respectively:

a) Compute the boxes BIi and BIf (using Algorithm 1)

b) Label all the possible grasps inside the BIs as

FC grasps

c) Add the boxes BI as nodes to the regrasp graph RG

2) Get a sample grasp Gs

3) If Gs is FC

a) If Gs has been already labeled as an FC grasp, go to

Step 2

b) Compute the box BIs (using Algorithm 1)

c) Label all the possible grasps inside BIs as FC grasps

d) Add the new BIs as a node in RG

e) Determine the contiguity relations between the new

BIs and the existing BIs in RG

Else (i.e. if Gs is non-FC)

a) If Gs has been already labeled as a non-FC grasp, go

to Step 2

b) Compute the box BNs (using Algorithm 2)

c) Label all the possible grasps inside BNs as non-FC

grasps

4) If there is a path in RG between the boxes BIi and BIf ,

compute the regrasp trajectory and return it

Else, go to Step 2

Figure 5 illustrates the algorithm for a hypothetical 2-

dimensional grasp space. It is considered that the order of

parameters in the grasps Gi and Gf respects a predefined

assignment of fingers, i.e. the first parameters, u1i and u1f ,

describe the position of finger 1 in the initial and final

grasp, respectively; then, the regrasp planner must provide a

sequence of positions to move each finger k from the position

uki to ukf . The sampling method used in Step 2 is based

on a structured grid that identifies each cell of G with a

unique numerical code [13]. The sample selection follows a

deterministic sequence that assures the completeness of the

method (a complete deterministic sequence covers the whole

grasp space). Even if it is not explicitly stated in Algorithm 3,

Step 2 returns “no solution” if all the grasp space has been

explored and no path has been found.
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Fig. 5. Regrasp planning: a) Hypothetical 2-dimensional grasp space with
the initial and final grasps and BIs, one sampled FC grasp and one non-FC
grasp, b) Regrasp graph RG with the contiguity relations between the nodes
that represent the BIs.

Step 4 checks whether there is a path between the initial

and final grasp; this is performed using a Dijkstra algorithm

applied to the regrasp graph RG. For a quicker convergence

of the algorithm (to a solution or to completely cover G
and decide that there is no solution at all), Step 4 could be

executed every certain number of generated samples. When

there is a path between the initial and final grasps, obtained

as a sequence of ICRs in RG, the regrasp trajectory must

be computed in G; different criteria can be used to compute

such trajectory (for instance, minimizing the number of grasp

changes). The regrasp trajectory that this planner provides

is based on one-at-a-time movements of the fingers, i.e.

the trajectory of the regrasp in the grasp space follows the

direction of the axis.

As it was stated before, the ICRs and NGRHs define an

axis-aligned box BI or BN in the grasp space. Each of them

is stored by using 2p parameters, representing the lower and

upper limit of the correspondent box in each axis of G. Note

that due to the symmetries of G, each BI or BN actually

corresponds to K = n! axis-aligned boxes in G (the total

number of possible permutations of the fingers on the object

while keeping the same contact points). Fig. 6 shows an

example of BIs and BNs obtained for a 3-finger frictional

grasp of a discrete ellipse. The initial FC and non-FC grasps

are also shown, as well as the corresponding boxes in the

grasp space.

IV. EXAMPLES

To illustrate the proposed approach, the algorithms were

implemented in Matlab on a Pentium IV 3.2 GHz PC. The

following examples show the regrasp planning process for

3-finger frictional grasps on 2D objects. 2D examples were

selected for ease of visualization, as the corresponding grasp

space is 3-dimensional and can be graphically represented.

A. Example 1

The first example uses an ellipse discretized with 64 points

(Fig. 1a); the FC and non-FC grasp space is shown in Fig. 1b

with dark and light colors, respectively. The FC grasp space

explored while searching for the regrasp sequence is shown

a) b)

c) d)

Fig. 6. ICRs and NGRHs for a discretized ellipse: a) ICRs for an initial
FC grasp, b) Corresponding boxes BI in the grasp space, c) Initial non-FC
grasp, d) Corresponding boxes BN in the grasp space.

TABLE I

RESULTS FOR THE REGRASP COMPUTATION IN EXAMPLE 1

Parameter Regrasp computation Total grasp space

time [s] 20.5 2,619
ICRs computed 102 564

% of the FC space 66.7 100
NGRHs computed 72 350

% of the non-FC space 95.7 100

in Fig. 7a. Figure 7b shows the regrasp path inside the

contiguous BIs that connect the initial and final grasp. As

a comparison, Fig. 7c shows the whole FC grasp space.

In 10 trials of regrasp computations between the same

initial and final grasp, the averaged total time ellapsed to get

the regrasp sequence is 20.5 s, and required 102 evaluations

of ICRs and 72 evaluations of NGRHs. Table I compares

these results to the averaged results for the total exploration

of the whole grasp space using the deterministic sampling

process [13]. Note that the regrasp computation provides

a feasible trajectory in a very short time when compared

to the time required for the total exploration of the grasp

space, because the deterministic exploration provides a fast

exploration of a large portion of the grasp space, but the

more space it covers the more slowly the percentage of the

grasp space covered increases.

B. Example 2

The second example uses an object defined by a closed

parametric curve presented in [18] and discretized with 128

points (Fig. 9a). The resulting grasp space is shown in

Fig. 9b; it contains 1283 = 2, 097, 152 grasps, with 12.2%

and 87.8% of FC and non-FC grasps, respectively.

Figure 10 shows the initial and final grasp used for a

regrasp planning. Figure 11 shows an example of regrasp

computation on this object. Fig. 11a show the FC grasp space

explored while searching for the regrasp sequence between
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a)
b) c)

Fig. 7. Regrasp planning for Example 1: a) FC space explored while searching the regrasp sequence; b) Contiguous BIs that provide the regrasp path
between the initial and final grasp; c) Total FC space for the example.

a) b) c) d)

Fig. 8. Sequence of grasps for Example 1: a) Initial grasp Gi; b) and c) Intermediate grasps; d) Final grasp Gf .

a) b)

Fig. 9. Example 2: a) Discrete object, b) Grasp space.

TABLE II

RESULTS FOR THE REGRASP COMPUTATION IN EXAMPLE 2

Parameter Regrasp computation Total grasp space

time [s] 840 172,740
ICRs computed 653 4,111

% of the FC space 67.5 100
NGRHs computed 669 2,649

% of the non-FC space 94.1 100

the initial and final grasp. Figure 11b shows the regrasp path

inside the contiguous BIs that connect the initial and final

grasp. Finally, Fig. 11c shows the whole FC grasp space for

this object. Table II compares the results for this example

with the averaged results for the total exploration of the grasp

space using the deterministic sampling process.

V. CONCLUSIONS

This paper has presented an efficient approach to generate

a regrasp trajectory in the grasp space, valid for 2D and

a) b)

Fig. 10. Example 2: a) Initial grasp, b) Final grasp.

3D discrete objects and for any number of fingers. The

proposed method is based on the concepts of independent

contact regions (ICRs) and sets of non-graspable regions

(NGRHs). The approach takes samples of the grasp space;

if a sample is an FC grasp then the ICRs are computed, if it

is a non-FC grasp then the set of NGRHs is computed. The

ICRs and NGRHs define an axis-aligned box BI or BN in

the grasp space, respectively. Each box BI or BN provides

a number of additional FC or non-FC grasps, and therefore

with a low number of samples a large portion of the grasp

space is covered. The search of a regrasp path is converted

into a graph search in a regrasp graph, that keeps trace of the

contiguity relations between different BIs in the grasp space.

The algorithms presented in the paper have been imple-

mented and some application examples are given. The pro-

cedures are fully valid for 3D objects with high-dimensional

grasp spaces, however, the application to 3D objects requires
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a)
b) c)

Fig. 11. Regrasp planning for Example 2: a) FC space explored while searching the regrasp sequence; b) Contiguous BIs that provide the regrasp path
between the initial and final grasp; c) Total FC space for the example.

a) b)

Fig. 12. Grasp quality in the grasp space for a discretized ellipse:
a) Q = 0.1, b) Q = 0.2.

an efficient way to save the data (the grasp space has high

dimensionality, for instance it is 8-dimensional for a 4-finger

frictional grasp on a 3D object); the development of an

efficient storage method to speed up the application of the

proposed algorithm to 3D discrete objects is an interesting

line of future work.

Another extension of the proposed approach is to tackle

the search of a regrasp path that assures a minimum grasp

quality Q. The algorithms that compute the ICRs assuring a

minimum grasp quality have already been developed [11],

using as quality measure the largest perturbation wrench

that the grasp can resist independently of the perturbation

direction [17]. However, it should be noted that if the grasp

quality increases there are more chances of not achieving a

regrasp path between two given configurations. For instance,

Fig. 12 shows the FC space with a grasp quality higher that

a certain threshold Q (as a comparison, Fig. 7c shows the

whole FC grasp space, with minimum quality Q ≈ 0). Note

that for Q = 0.2 there are several disconnected regions in

the grasp space, and if the initial and final grasp belong

to different regions, then there is no regrasp sequence that

connects them while assuring a minimum quality higher than

the defined threshold.
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