
Heuristic Approach for Multiple Queries of 3D N-Finger Frictional
Force Closure Grasp

Nattee Niparnan, Thanathorn Phoka and Attawith Sudsang

Abstract— This work proposes a necessary condition for n-
finger force closure grasp which considers true quadratic force
cone without linearization. The condition finds its use as a
heuristic for multiple queries force closure test. The heuristic
works as a filtering criteria which improves the overall running
time of the entire set of queries. An empirical example shows
that our approach could speed up the force closure test be the
factor of four. This work improves our earlier works [1], [2] to
cover the case of n-finger grasp.

I. INTRODUCTION

In grasping research, one prominent goal is to have a
method that allows a robot to securely grasp an object. This
motivates extensive studies in the topic of grasp synthesis.
There exists several algorithms that follows classical ap-
proach where the description of an object is given and the
algorithms plan grasping solution. Recommended survey can
be found in [3], [4], [5]. Usually, a grasp synthesis problem
is formulated as an optimization problem on a continuous
domain, for example, as a linear programming or as a convex
optimization problem. This approach works beautifully in
a known environment where complete knowledge of an
object is can be obtained. However, as there are more and
more interests in introducing robot into everyday life where
only minimal, if any, information of the surroundings are
available, this classical approach which relies on complete
knowledge faces greater challenge of object information
acquisition.

Typically, sensors for object acquisition give information
in the form of discrete representation of the boundary of
an object, for example, as point cloud or discretized curves.
Though it is possible to fit the acquired information into a
particular model, the result is inaccurate. Thus, several recent
works are explicitly designed for discrete description of the
object (see [6], [7], [8], [9] for some examples).

Even though the nature of object representation are dif-
ferent, the underlying idea of the algorithms for the discrete
representation are still the same. The problem is formulated
as an optimization problem on a discrete domain where it is
solved by discrete approach such as exhaustive search. These
algorithms systematically search for an optimal grasping
configuration in the finite discrete space. Each candidate
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configuration is tested for desirability by a grasp analysis
module. Different methods under this scheme vary by ap-
plying different search policy. For example, a method based
on hill climbing or branch and bound search is presented in
[10]. Other optimizers such as evolutionary computation as
in [11], [12], or generate-and-test approach as in [13] are
also adopted.

An interesting property of these discrete algorithms is
that a the search strategies and the grasp analysis modules
of the algorithms are loosely integrated. Usually, we can
conveniently incorporate any grasp quality criteria to the
search. By developing a matching grasp analysis module,
the user can compute a grasp that meets the requirement of
their grasping task at hand without having to derive from
scratch a new grasp synthesis method for the particular
requirement. This advantage, however, arrives with the cost
for assessing quality of every candidate grasp by the grasp
analysis module. To maximize the benefit of this scheme, the
grasp analysis module need to be computationally efficient.

In this work, we propose a method to speed up the grasp
analysis module specifically in the situation where multiple
grasp queries are to be performed. The proposed method can
be easily applied to the aforementioned search approach.

For most grasp analysis methods, it is required that a grasp
can securely hold the object. This property is formalized as
the force closure property. Our proposed method utilizes a
novel necessary condition for force closure. A grasp is tested
by our method whether it satisfies our filtering criteria. If it
does not, it is then rejected. However, if the grasp satisfies,
it must then be analyzed by the grasp analysis module of the
search approach.

At the surface, it seems that our method introduces addi-
tional workload to the process, since a satisfying grasp must
undergoes two analysis modules: our criteria and the original
grasp analysis. However, our method is derived such that it
can be computed very efficiently compared to the original
analysis module. Thus, the speed up is the time gained by
quick rejection of non-satisfying grasps. This approach can
be described as a filtering approach where our condition
is considered as a filter of another grasp analysis module.
This approach is proposed earlier in our work [1], [2]. In
particular, this work extends the our previous works [1], [2]
which considers the same problem in the special case of four
finger grasp. In this work, we propose a more generalized
algorithm which work on an arbitrary number of fingers.

Additionally, it should be noted that an interesting issue in
force closure testing is the nonlinearity of the representation
of the grasp. Unfortunately, majority of force closure tests

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1817



do not directly deal with the issue but choose to avoid this
hindrance by introducing linearity into the problem at the
cost of some noticeable incompleteness. See for example
the condition of θ-positively span in [14], [15] or several
conditions based on the linearization of the friction model
[16], [17]. It is the work of Han et al. [18] that tackles
this nonlinearity problem directly using convex optimiza-
tion method. However, it comes with the cost of running
time since convex optimization takes considerable amount
of computation power. Our proposed condition considers
directly the nonlinear friction cone without linearization thus
providing additional completeness, i.e., its necessity is indeed
complete.

the main contribution of the paper is a new necessary
condition of 3D n-finger force closure which considers
directly the nonlinear friction cone without simplification
into m-sided pyramid. The condition, geometrically derived
from the nonlinear friction model, can be reduced to the
existing problem of 2D n-finger force closure where several
existing algorithms have been proposed. It is based on the
fact that a force closure grasp must be able to exert wrenches
that positively span the torque space (the reverse is not
necessarily true).

The rest of the paper is organized as follows. Section II
briefly describes past background of grasping In Section III,
we describe the novel necessary condition that is used as the
heuristic for our force closure test. The implementation of
the condition is discussed in Section IV. In Section V we
present numerical examples comparing efficiency gained by
our approach. Finally, Section VI concludes our work.

II. GRASPING BACKGROUND

A grasp is defined by a set of contact points, each of
which is represented by a position and an inward normal
vector. Force closure is a binary property for a grasp that
is able to counter any external disturbance to the grasped
object. Effect of contact points or external disturbance on the
object is represented by a force vector and a torque vector.
To represent a force and a torque simultaneously, a force
f = (fx, fy, fz) and a torque τ = (τx, τy, τz) are combined
into an entity called wrench w = (fx, fy, fz, τx, τy, τz) ∈
R6.

We associate each contact point with a set of wrenches
exertable by the contact point. A grasp is said to achieve
force closure when its contact points are able to produce any
wrench in the wrench space R6. Usually, it is assume that a
contact point can exert arbitrary magnitude of force. Thus, a
set of wrenches are said to achieve force closure when their
positive linear combination can produce a wrench in every
direction in the space. The term Rn-positive span is used to
represent such property.

Definition 2.1: A set of n wrenches {w1, . . . ,wn} pos-
itively spans Rn if and only if, for any vector v in Rn,
there exists nonnegative constants α1, . . . , αn such that v =
α1w1 + . . .+ αnwn.

This work assumes hard contact with Coulomb friction
model. A torque from a hard contact must be the result of the
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Fig. 1: Example of vectors that satisfied Proposition 3.1. (a)
the vectors do not positively span the space. (b) the vectors
positively span the space.

applied force only. As a result, a contact point at p that exerts
a force f can be represented by a wrench w = (f ,p× f).
Coulomb friction model indicates that a contact point can
exert some tangential force without slippage. The maximum
ratio between the magnitude of tangential force and the
magnitude of the force in the normal direction is indicated
by the frictional coefficient µ between the object and the
contact point of the grasping finger. In other words, the net
force exerted by a non-slipping contact must lie in a cone at
the contact point whose axis lies in the normal direction and
its half angle 1 is given by θ = tan−1(µ). This force cone
is referred to as friction cone.

A. Preliminaries and Notations

We denote by int(·) the interior function. Let P be an
arbitrary plane through the origin in R3. The plane P can
be described by its normal vector n. Formally, P = {x|x ·
n = 0}. We say that a vector x is on the positive (resp.
negative) side of P when the sign of x ·n is positive (resp.
negative). Two vectors are said to be on different sides of P
when one of them is on the positive side and the other is on
the negative side. Additionally, let us refer to the set of all
positive combinations of members in a vector set W (i.e.,
{
∑
αivi|αi ≥ 0,vi ∈W}) as a positive span of W .

III. NECESSARY CONDITION FOR N-FINGER
FORCE CLOSURE GRASP

In this section, we present a necessary condition of force
closure for an n-finger grasp. First, we introduce a propo-
sition which is the basis of our condition. This proposition
considers the property of positively span.

Proposition 3.1: A necessary condition for a set of vectors
to positively span Rn is that the projection of the vectors on
any subspace Rk<n must positively span the subspace.

It is clear that the condition is necessary. Figure 1 illus-
trates two examples that satisfy the condition in Proposition
3.1 where the first one actually does not achieve force closure
while the second one does.

Our condition for n-finger is the application of Proposition
3.1 on the wrench space. One interesting subspace of the

1the angle between the normal and the vector on the boundary of the
cone
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wrench space is the torque space which is R3. Our condition
checks whether the set of wrenches associated with the
contact points positively span the torque space. When the
wrenches fail to positively span the torque space, Proposition
3.1 the wrenches definitely fail to achieve force closure.

It should be noted that any subspace can be used in
Proposition 3.1. Intuitively, a larger subspace more closely
represent the actual wrenches set thus there is a strong
preference on a large subspace. However, larger subspace
requires more computational effort. One must select an
appropriate trade-off between the choice of the subspace and
the time required to determine the positively spanning of the
projection of the wrenches. In this work, the torque subspace
is chosen mainly because the torques of force cones exhibit
a special property which allow us to efficiently test whether
they positively span the torque space. The property of the
torque and the test are described in Section IV.

An interesting property of a torque is that its varies
according to the choice of the origin, although the force
closure property as a whole is invariant to the relocation of
the origin. It is possible that for some choice of the origin,
a non force closure grasp may have its wrenches positively
span the torque space. See for example the planar case in
Figure 2. In the figure, it is clear that the contact points
generate only counterclockwise torques when the origin is
located at A. However, when the origin is located at B, the
contact points generate both clockwise and counterclockwise
torques, thus positively span the torque space. When there
exist any choice of the origin such that the respective torque
set does not positively span the torque space, the grasp
definitely does not achieve force closure.

This implies that a torque should be tested respect to
several choices of origins to improve the chance that the non-
positively spanning of torque space is detected. However, any
additional choice of origin requires additional computational
effort. In our work, we limit the test to two choices of
origin which are the points coinciding with two contact
points. By making the origin coincide with a contact point,
the torque associated with that contact point is null. This
further increase the chance that we can detect non force
closure grasp and also reduce the number of vector we have
to considered. The two contact points chosen as the origin
are the point lying closest to and the point lying furthest
from point q. The point q is an arbitrary point lying outside
the convex hull of all contact points. The point q can be
simply computed by taking the coordinate of a contact point
with minimal x coordinate and minus that coordinate with
(1, 0, 0).

Here we describe our necessary condition for force clo-
sure. Let the contact point be located at p1, . . . ,pn and let
Ti be the set of torques associated with the contact point at
pi. Let q be the point lying outside the convex hull of all
contact points. We define pnear and pfar to be the contact
point being closest and furthest to q. Our necessary condition
for n-finger force closure grasp is as follows.

1) Let the origin be located at pnear; {T1, . . . , Tn}\Tnear

must positively span the torque space.

f1 f2

A B

Fig. 2: Choices of origin resulting in different torque.

2) Let the origin be located at pfar; {T1, . . . , Tn}\Tfar

must positively span the torque space.

IV. R3-POSITIVE SPAN OF TORQUE
COMPONENTS

This section examines the geometric relationship between
the torque space and the friction cones. We also introduce
a novel method to test whether torque sets of an arbitrary
number of force cones positively span the torque space. This
is the implementation of our condition given at the end of
the previous section.

A. Torque Sets of Force Cones

The content in this section simply retells the essential
result from our previous work [1].

Let us denote by Ti the set of all torques generated by
all forces in Fi (which is the friction cone of pi), i.e., Ti =
{pi × f |f ∈ Fi}. Since any torque pi × f is obviously
perpendicular to pi, Ti must lie on the plane through the
origin and perpendicular to pi. Let us call this plane Pi.

To describe how Ti occupies Pi, let us consider a plane
Pf through the origin that contains pi and intersects with
Fi. Observe that a torque generated by any force in Pf ∩Fi

(a slice of Fi on Pf ) must lie in the direction parallel to
the normal of Pf . The idea is to consider all possible planes
Pf so that all forces in Fi can be taken into account (see
Figure 3a). With this idea, it can be shown that Ti lies on Pi

in two different ways: 1) pi is not in int(Fi). As the plane
Pf rotates around pi and continuously sweeps through Fi,
correspondingly generated torques continuously sweep Pi.
As a result, the resulting torques, Ti, form a fan of torques,
i.e., the set of all positive combinations of two boundary
torques. 2) When pi is in int(Fi), Ti covers the entire plane
Pi. This is the case because for each possible Pf , resulting
torques span two opposite directions on Pi. Since Pf in this
case intersects with Fi in all orientations around pi, resulting
torques cover all directions in Pi.

To compute the resulting fan of case 1, it is necessary
to identify the two boundary torques of the fan. Since
each of these torques is generated when Pf touches Fi,
let us describe how to compute the corresponding forces
fa,f b ∈ Fi at which this event occurs. Let Π be the plane
lying perpendicular to ni at the distance pi · ni from the
origin. Consider the intersection of Π with Fi and the lines
through the vectors ni,pi,fa,f b. Figure 3b illustrates this
intersection as observed on Π. From the figure, fa and f b

can be determined from the angle φ. Let A and B be the
intersection on Π of the line through pi and the line through
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Fig. 3: (a) A force cone Fi and its position vector pi. The
curved line represents plane Pi which is perpendicular to
pi. The plane Pfa, . . . , Pfd are planes through the origin that
contains pi and intersects Fi. Pfa and Pfd tangentially touch
Fi and the intersection of which is fa and f b, respectively.
Vector τa, . . . , τd represents the direction of torque generated
from Pfa, . . . , Pfd, respectively. (b) The plane Π, lying
perpendicular to nf at the distance pi · ni from the origin.
The radius of the boundary of the cone is r = tan(θ)(pi·nf ).
The angle φ equals to arccos(r/|AB|).

ni, respectively. The angle φ is equal to arccos(r/|AB|)
where r is the radius of the circle from the intersection of
Fi and Π, i.e., r = tan(θ)(pi · ni).

B. Positively Span of Torque Sets

In section IV-A, it is established that a torque set of a
force cone is either a fan (a positive span of two vectors)
or a plane, both in 3D torque space. This finding is very
crucial because it indicates that, in the case that all torque
sets are fans, there are finite number of vectors that describes
the torque set of the grasp. Even though the original force
cone is a quadratic cone, the associated torque set is simply
a linear fan.

When all torque sets are fans, the problem is simply to
test whether a finite number of boundary vectors of the
fans positively span the space. It should be noted that this
problem is exactly the same as the problem of 2D n-Finger
force closure test. This means that we can utilize several
methods that are proposed for positively spanning test. For
example, the GJK algorithm [19] which was suggested for
force closure test in [20], the Q-Distance method [16],

the ray shooting method of Liu [17] or the Quick Hull
algorithm [21], all can be used to solve this problem. From
our preliminary study, the ray shooting algorithm yields best
performance for our framework.

The remaining case is when some torque sets are planes.
When a torque set is a plane, if there are at least one other
torque lying on each side of the plane, they positively span
the space. Hence, for each torque set that is a plane, we
simply test whether the other torque sets which are fan have
their boundary vectors lying on the different side of the plane.
and whether the other torque set which a plane . For the other
torque sets that are also planes, we simply test whether they
are not parallel to the original plane.

As a final note to this section, we provide analysis on the
computational complexity of this implementation. It should
be noted that computing the torque set requires constant
time for each finger. In the case of torque fans, each fan
is described by two vectors. So, the time to compute the
vectors of torque fans is O(n), where n is the number of
finger. To actually test these vectors, the time depends on
the plug-in method. For the case that some torque set is a
plane. Let k ≤ n denote the number of a torque plane. We
have to test every other torque set with each plane using a
constant time. Hence, the time used in this case is O(kn).
Notice that, usually, the time used to perform the plug-in
method dominates this small time complexity.

V. NUMERICAL EXAMPLE

Our presented condition and implementation are intro-
duced as a filtering criteria which guarantees that a non-
satisfying grasp does not achieve force closure while the
force closure property of a satisfying grasp is undetermined.
An additional complete method is therefore needed to test
these satisfying grasps. We will refer to a satisfying grasp
that turns out to be non-force closure grasp as a false
positive. Our condition sacrifices completeness in favor of
an efficiency in rejection. To benefit from the condition, the
time additionally taken by our condition in the case of false
positive must be offset by the time saved from the reduced
number of performed complete methods.

To help justify the benefit of our approach, we com-
pare two grasp analysis frameworks: a canonical framework
which uses a complete method to assert force closure and
our filtering approach which uses the same complete method
together with our presented condition as a filtering criteria.
We select a complete test for force closure presented by Han
et al. [18] for comparison. The method in [18] is selected
because it considers directly the quadratic friction cone with-
out linearization, yielding most theoretical accuracy. Figure
4 illustrates the flowchart of both methods.

A. Method for Force Closure Test by Han et al. [18]

Briefly speaking, the method of Han et al. formu-
lates the problem as an LMI feasibility problem. A
grasping configuration is described by a vector x =
{x11, x12, . . . , xij , . . . , xnm} and a mapping matrix G. The
component xij of vector x ∈ Rmn indicates the magnitude
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Fig. 4: Flowchart of force closure testing method. (a) The
method of Han et al. (b)The method of Han et al. with our
condition (described at the end of Section III) as a filtering
criteria.

of jth component of intensity vector at ith contact point and
n,m indicates the number of contact point and the number of
components of intensity vectors. In the case of a hard contact
with friction, the intensity vector is the force vector which
has three components. The matrix G ∈ R6×mn transforms
x into a wrench. The resulting wrench is equal to Gx. A
nontrivial solution to Gx = 0 indicates an equilibrium grasp.
We let V be a matrix whose columns are basis vectors of the
null space of G. Hence, an equilibrium grasp can be written
as x = V z where z is a free variable.

Based on the work of Buss et al. [22], the Coulomb
Friction model can be represented in the form of LMI as
P (x) � 0 where � 0 denotes semi-positive definiteness.
When the inequality is written as positive definite condition,
i.e., P (x) � 0, the force is restricted to lies in the interior
of the friction cone. Since non-marginal equilibrium implies
force closure, force closure test can be asserted from whether
P (V z) � 0 has an admissible solution. This inequalities can
be solved by a traditional convex optimization technique.

B. Comparison and Result

We provide an empirical comparison in the scenario of
force closure grasp identification: given an object described
by a set of discrete contact points, the task is to identify

TABLE I: Result of the Experiment

Objects Time (seconds)
Unfiltered Filtered Speedup Factor

(a) 1,174.06 395.82 2.97
(b) 1,342.35 262.37 5.12
(c) 1,365.37 451.52 3.02
(d) 466.73 98.18 4.75
(e) 1,065.49 278.31 3.83
(f) 442.11 82.98 5.33

Avg 976.02 261.53 4.17

force closure grasps randomly generated from the object.
The comparison is conducted on the six test objects shown

in Figure 5. For each object, we randomly generate 100,000
configurations of 6 fingered grasp. The friction coefficient is
assumed to be tan(10◦). Both methods are implemented in
C++ using the convex optimization package maxdet [23] and
the linear algebra package LAPACK [24]. The comparison
is run on Intel Core 2 Quad Q6600 machine with 2GB of
memory.

The result of the comparison is shown in Table I. The
second and the third column show the actual running time
of the method in [18] and the filtered version, respectively.
Speedup factor is given in the forth column. It can be seen
that by using our method as a filtering criteria, we could
speed up the running time by the factor of approximately
four on average.

(a) (b) (c)

(d) (e) (f)

Fig. 5: Test Objects.

Analysis shows that the benefit of our method on filtering
approach is affected by three subjects. The first is the
difference of the time used for our filtering method and
that of the complete analysis method. This difference is the
time saved for each rejected non force closure grasp. The
second subject is the ratio between the number of grasps
not satisfying the condition and the total number non force
closure grasps, i.e., the specificity [25] of our method. A high
specificity indicates that a large fraction of non force closure
grasps are correctly identified by the filtering criteria, and
the computational effort is saved by the difference between
that of the criteria and that of the complete method. Finally,
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TABLE II: Analysis of the Experiment

Objects #Solutions #False Positives Specificity
(a) 25,164 28,132 0.727
(b) 16,584 19,112 0.814
(c) 14,038 30,273 0.740
(d) 35,665 40,720 0.612
(e) 23,613 28,605 0.728
(f) 36,778 39,713 0.614

Avg 25,307 31,093 0.706

the number of non force closure grasps being tested. This
number varies according to the situation that the condition
is integrated into and the nature of the object. The more non
force closure grasps, the more chance that our method can
reduce the running time. To further analyze the method, these
subjects are measured and shown in Table II.

The time used per query of our condition and of the
method of Han et al. is approximately 0.05ms and 2.62ms,
respectively. This indicates that, for each true negative solu-
tion, a running time is reduced to approximately 1.89%. In
the case of false positive, the running time is increased to
101.89%.

The second column of Table II indicates the number of
force closure grasps from the method in [18]. The third
column shows the number of false positives while the speci-
ficity of our method are given in the forth column. From
the average value of specificity, approximately 70.6% of the
negative solutions is correctly identified by our condition. In
other words, the time used for 70.6% of non force closure
grasps are reduced to 1.89% while the time for the 29.4%
remaining non force closure grasps are increased to 101.89%.
These empirical data at least suggest that our method exhibits
the favorable properties of a good filtering criteria.

VI. CONCLUSIONS

We extend the filtering approach presented in [1], [2]
which originally consider only the four finger force closure
grasp to be applicable for an arbitrary number of fingers.
This filtering approach should find its use in several grasp
synthesis algorithm especially when dealing with a large
number of discrete contact point representation.

The underlying idea of the filter is similar to our earlier
work with the additional modification to cover the case of
n-finger grasping. The essential idea of this work is that a
grasp does not achieve force closure when the projection of
its associated wrenches does not positively span the torque
space. It has been shown that the torque associated with a 3D
frictional hard contact is either a fan or a plane thus allowing
us to utilize several methods to test whether they positively
span the torque space. We also present numerical example
which confirms that by incorporating our method, we can
significantly improve the time used to compute multiple
queries of n-finger force closure test.
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