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Abstract— In this paper we present a new vision-based SLAM
approach for multi-robot formulation. For a cooperative map
reconstruction, the robots have to know each other’s relative
poses, but estimating these at the start of operation puts a
limit on real applications. In our study, the robots start the
single SLAM with their own global coordinate, and merge
their maps during the operation by detecting the overlapped
region of their maps. The robots automatically recognize the
occurrence of map overlapping by matching their current frame
with the maps built by other robots. With the robust data
association technique from the ceiling-vision based SLAM, the
proposed algorithm robustly detects the overlapping regions
and estimates the accurate transformations for map alignment.
In our experiment, we have verified that our algorithm suc-
cessfully enables the multi-robot SLAM without any initial
correspondence or encounter of robots.

I. INTRODUCTION

In real applications of mobile robots, robots sometimes
have to organize themselves into a team and cooperate with
one another to perform their tasks. Here, the robots need to
know the position of the others. This can be achieved by
measuring the relative position of each robot, or by having a
common map for all robots and exchanging the information
of their global position. In the case of a general sensor such
as laser and vision, it is difficult to measure the position of
robots that are located at a distance due to the limitation of
the sensor range or obstacles between the robots. Therefore,
having a common map is more efficient than estimating the
relative position of robots every time. This cooperative map-
building problem is known as the multi-robot SLAM, or the
cooperative SLAM [1], [2]. Recently, the multi-robot SLAM
has also received considerable attention in robotics.

There are two important issues in the multi-robot SLAM
problem. The first issue is how to simultaneously estimate the
position of the multiple robots and their map. The position
estimation in the multi-robot SLAM is more complex than a
single-robot’s estimation. We have to localize each robot si-
multaneously and, in map building the sensor measurements
from all the available robots, have to be consistent with the
estimated result. However, the multi-robot operation has the
ability to give a more accurate estimation as compensation
for this complexity. In [3], [4] it has been demonstrated that
the error of a landmark position decreases in the case of the
multi-robot SLAM when compared to that of the single-robot
SLAM. Generally, the estimation of a landmark position with
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multiple observations can be integrated by EKF, and our
system also uses this approach.

The second issue in the multi-robot SLAM is how to put
the robots together in a common global map. It is necessary
to have a global coordinate for every robot in order to
perform the cooperative SLAM operation in the common
map. This global map can be obtained at the start of operation
or during the operation. To start SLAM operation with
the common global coordinate, the robots have to estimate
one another’s relative positions before starting the SLAM
operation. To estimate the relative position, the robots have
to start at a location where their sensors can observe one
another.

Without this initial correspondence between the robots,
another possible way to obtain a common map is to find
a relationship between the maps during the operation and
merge the maps that have been independently built by each
robot. In [5], the encounter of the two robots provides the
transform which performs the map merging operation by
moving one map to the others. When the two robots meet
each other, using the image containing the appearance of the
other robot, the robots estimate the relative pose between
them and calculate the transform for map merging using
this relative pose. However, this encounter does not occur
frequently, leading to the low probability of map merging.

In contrast, our proposed algorithm does not require the
encounter of the robots. Our algorithm finds the relation
between the maps not by using a direct observation of each
robot but by using a matching between the map itself and
current observations from the robot. Each robot automatically
detects the overlapping of its map with others and, if there is
map overlapping, the relation between the maps is estimated
and is followed by map merging. We utilize the robust data
association method from the ceiling vision-based SLAM
(CV-SLAM) [6], which uses ceiling scenes as observations.
This enables very stable result of the map overlap detection
and an accurate estimation of the relation between the maps.

Ceiling scenes from a planar robot motion have little scale
change and affine deformation, so the scene matching is
easily done just by using local feature matching based on
the correlation window such as NCC (normalized cross cor-
relation) [7] or SAD (sum of absolute difference). Therefore,
we do not have to calculate a complicated feature descriptor
like SIFT [8] and a handling rotational changes of scene is
sufficient to match the features.Thus, fast feature matching
is possible. Ceiling scenes, however, can suffer when there is
a similar structure on the ceiling; this can cause an incorrect
scene matching. To overcome this problem, we tested a
sequence of the scene matching results of each step and
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confirmed the consistency of the sequence. The matching
with one ceiling scene is error prone, but the series of tests
gives robust detection of map overlapping even though there
are some similar patterns on the ceiling.

As our algorithm does not require an encounter of the
robots, it is possible to obtain the global map early and with
more chances. Moreover, map merging strategy based on the
relation of the map, not on the robots’ relation, enables the
reuse of maps that were previously built by other robots.
Suppose a robot enters the new region to perform its task. If
the map of the new environment is available, then the robot
can merge its map and obtained map after a short SLAM
operation in the new area. This leads to fast adjustment in a
new region.

II. FORMULATION OF MULTI-ROBOT SLAM

A. Modelling of robots and maps

The observation models of our algorithm for a single
robot follow those of ceiling vision-based SLAM. Each robot
is equipped with a single camera pointing in an upward
direction to view the ceiling. With a wide field of view, the
camera can capture scenes not only on the ceiling but also on
the wall near the robot. From these scenes, the robot detects
feature points on the ceiling and on the wall. If the robot
moves in a plane, then the features on the ceiling and on
the wall have the characteristics of scale invariance because
the distance from the feature to the robot remains almost the
same. If the robot leaves the position under the landmark,
then the landmark disappears in the observed image and
we do not need to consider it. This results in only sheer
deformations on the feature appearance by the motion of
the robot. With this property, we merely have to handle the
rotation changes of the feature appearance to match them.

Although we use this scale invariant property of ceiling
vision, it does not restrict the ceiling’s height as a constant.
We extract the features on the wall, use them as landmarks
and estimate the height of the landmark position. However,
the robot should remain in a plane motion to estimate the
height of the landmarks. The pose of the robot at time index
t can be represented as rt = [rx,ry,rθ ]Tt , and the landmarks
in the 3D map can be represented as L = [Lx,Ly,Lz]T .

The observation of landmarks is performed using a single
2D image captured at the current position. The observation zt

for one landmark is composed of a distance zr and a direction
zθ from the image center, so zt = [zr,zθ ]T . To predict the
projected position ẑt for the landmark in 2D image, we use
the relation between the robot pose rt and landmark position
L given by the following equation:

[
ẑr

ẑθ

]
=

[ √
(Lx − rx)2 +(Ly − ry)2 × f

Lz

tan−1 Ly−ry

Lx−rx
− (rθ −90)

]
. (1)

Where f is the focal of the camera. Using the difference be-
tween the observed position on the image and the landmark’s
projected position, we can update the estimated 3D position
of the landmark.

B. Particle filtering for Multi-robot SLAM

We employ the Rao-Blackwellized Particle Filter (RBPF)
[9], which is widely used in the SLAM algorithm, to
simultaneously estimate the posterior probability of poses
of the multiple robots and a map of the environment. Each
robot estimates the posterior of its pose by sampling from
the motion information ut , and for each sample the position
of the landmarks is estimated by EKF. When the two robots
share the common map m to perform the cooperative SLAM,
we have to estimate the posterior of both robots r1

t , and r2
t ,

and the one common map m. This entire posterior can be
factorized as follows [10]:
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The first term, the distribution over the map, is estimated
using EKF, and the second term is estimated by sampling the
robot poses. More accurate motion information is available
than from a monocular SLAM [11] or visual odometry
system [12] such that the camera moves freely in 3D space
because our robots always move on a plane. Therefore, in
the last two terms, the robot pose rt is independent from the
map m because we do not use observations to estimate the
robot pose. After we get samples of the robots’ pose, we
marginalize the distribution of the map by applying EKF for
each landmark.

In an EKF update for a landmark, the state vector is Xt =
Lt = [Lx,Ly,Lz]Tt and the sensor input is only the observation
images which give the projected 2D position information of
landmarks. In our case, the number of observations vary
according to the number of robots which can view the
landmark at current position. The dimension of the mea-
surement residual vector ṽt is also changed with the number
of observations. As our measurement vector is composed of
zr and zθ , the dimension of ṽ should be 2k, where k is the
number of robots which can view the landmark. From this
measurement residual ṽt and error covariance matrix Rt , we
can calculate the innovation covariance St = Jht PtJht + Rt

using the Jacobian Jht given by:

Jht =

⎡
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, (3)

where h(Xt ,r1
t ,r2

t , · · · ,rk
t ) = [ẑ1, ẑ2, · · · , ẑk] is the project func-

tion which calculates the 2D projected position of the 3D
landmark. We can obtain a more accurate estimate of the
landmark’s position when we have larger number of k.
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Robot 2

Robot 1

Robot 3

Fig. 1. When a robot enters the region of which map is already built
by other robots, the robot recognizes the map overlapping and performs
the map alignment. Shaded rectangle represents the observed image by the
entering robot.

III. MULTI-ROBOT SLAM WITH UNKNOWN INITIAL
POSES

To perform the multi-robot SLAM, our method does not
require the known initial relative poses and gradually esti-
mates them. Our scenario is as follows. Each robot starts the
single-robot SLAM operation independently with unknown
initial relative poses. When map overlapping occurs, the
robot in the overlap region automatically recognizes that a
map overlap has occurred, and the transformation between
two maps is estimated to align the two maps. In this process,
the critical problem is how to detect the overlapped region
of the maps and find the transformation for map alignment.
In this section, we discuss this problem in detail.

A. Finding overlap regions with a single frame

Initially, each robot knows only the number of other
robots. Each robot starts the SLAM operation with its own
coordinate system as it has no information about its relative
pose at all. For convenience, we set the initial pose of
all robots as r0 = [rx,ry,rθ ]T0 = [0,0,0]T . For each SLAM
iteration the robot obtains an observation image, updates its
map, and searches the overlap region using this observation
image. If one robot is in a region where the other robot
has reconstructed the map, the ceiling scenes of the robot
which has entered the overlapped region and the already
reconstructed map by the other robot would thus have
some common landmarks. Figure 1 illustrates this situation.
The landmarks in the shaded region would have been seen
by robot2, and now it is observed by robot1. To search
these common landmarks, we employ robust data association
technique of the CV-SLAM.

In CV-SLAM, as the data association of landmarks with
ceiling scenes is performed under the condition of no scale
and no view point change, robust matching can be performed
very fast. We modify the global localization algorithm of the
original CV-SLAM in order to apply it to the map alignment
process in multi-robot SLAM operation.

When each robot performs single robot SLAM, it collects
image patches around observed landmarks as a descriptor for
data association. We store a new patch of the landmark when
the appearance changes significantly because the landmark’s

Fig. 2. Examples of cropped image patch from landmark. Due to the
variation of patch orientation by view point changes, each landmarks is
represented by several difference appearances.

appearance changes every time that the robot moves. For
every patch, we estimate its orientation and normalize the
patch using this orientation. This process removes duplicate
patches induced by the rotation of a patch. In our experiment,
the required number of patches does not exceed 20. These
appearance patches are used in SLAM operations and overlap
region detection of multiple robots. Figure 2 shows the
example of landmarks patches.

Our multi-robot formulation can be applied to a system
composed of an arbitrary number of robots. We may assume
that we have two robots, R1 and R2. For each observed image
frame, the robots perform the single-SLAM operation first
and make a decision whether the current location is already
mapped by other robots or not. This can be achieved by
comparing image patches of landmark in the current frame
with patches in the data base (i.e., the map built by other
robots). For the given image frame I1

t , the robot extracts
the set of landmarks Ł1 = {L1

1,L
1
2, · · · ,L1

N} and attempts to
search its matching landmarks from the map built by other
robots, where N is the number of observed landmarks in
I1
t . We use height values of landmarks to reduce the search

range.
We use the normalized cross correlation as a similarity

measure of two image patches of landmarks. From the
landmarks in the map of R2, one landmark L2

m, which has
the highest similarity patch with the patches of L1

n ∈ Ł1, is
selected as a matching landmark of L1

n unless the similarity
is lesser than the threshold Tsimilarity. For every landmark
in I1

t , we find the matching landmark from the map of R2.
In the case of a small number of matching landmarks, we
terminate the overlap detection process for the current frame
and continue on to the next SLAM iteration. If there are
sufficient matches, then next we need to confirm the map
overlapping more strictly.

We cannot determine the pose of robot because it is
difficult to determine the direction of robot with one cor-
respondence of a landmark. Therefore, we use multiple
correspondences of the landmark rather than use the bearing
information of the landmarks. Similar to the global local-
ization algorithm of [6], we estimate the pose of R1 based
on voting of multiple landmarks using Hough clustering.
The observation of landmark using ceiling image provides a
distance measurement zr between the robot and landmarks.
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Map of Robot 2Map of Robot 2

Correct poses

Robot 1

Real motion of Robot 1

Estimated position of Robot 1 

in the map of Robot 2

Fig. 3. Before the occurrence of map overlapping, the real motion of Robot
1 and the estimated trajectory in the map of Robot 2 are not matched. After
the map overlapping and map alignment, they become consistent.

We can draw a circle with a radius zr around the landmark
which represents possible robot position. For each landmark
in the current frame I1

t , we draw these circles. As more
circles intersect at a certain point, the probability of R1

existing at that point goes higher. If the most probable robot
position does not have enough intersecting circles, then we
reject the position and the overlap detection process fails.

B. Robust overlap detection using sequential frames

As discussed in the previous section, by using one ob-
served image frame we can determine the occurrence of map
overlapping with some confidence. In this process, however,
setting a sufficient number of the intersecting circles can be
a problem. Let the threshold of the number of intersecting
circles which determines the occurrence of map overlap as
Tintersect . If Tintersect is too small such that it strictly rejects the
intersecting point, we may fail to detect the map overlapping.
On the other hand, if Tintersect is too large, then a wrong
detection result may occur. One way to solve this problem is
to use several consecutive frames for map overlap detection.

Let the estimated position of R1 in m2 from the result
of Hough clustering be r̂∗ = [x,y]T . When R1 enters the
region where R2 has already reconstructed the map, the
estimated motion of R1 must be consistent with the trajectory
of the estimated position r̂∗ on m2, as illustrated in Figure 3.
When R1 is outside of m2, the real motion estimated by a
particle filter differs from the trajectory of r̂∗, while they are
consistent when R1 goes through m2.

To measure the consistency between the motion of R1

estimated by SLAM operation and the trajectory of r̂∗,
we calculate the difference of incremental position for a
sequential SLAM iteration only when Hough clustering is
successful. The incremental position is calculated by dr̂1

t =
r̂1

t − r̂1
t−1 for the real motion and dr̂∗t = r̂∗t − r̂∗t−1 for trajectory

of the estimated pose in m2, where r̂1
t represents the x, y

component of r1
t . The difference between dr̂1

t and dr̂∗t would
be quite large in the case of wrong pose estimation of r∗t . By
calculating the incremental positions for a few consecutive
frames, we can robustly determine the occurrence of map
overlapping. Testing for more frames provides a more robust
determination result, and the minimum number of frames

required is two (i.e., one incremental position). According
to this procedure, we define the function that estimates the
confidence of a map overlapping as

con f idence = exp

[
1
M

M

∑
i=0

‖dr̂1
t−M −dr̂∗t−M‖
‖dr̂1

t−M‖

]
, (4)

where M is the number of previous frames that we used to
check the consistency of incremental position. The difference
is normalized by the motion of R1. When this confidence
value becomes larger than 0.5, we conclude that map overlap
has occurred.

C. Estimate map transform

A map merging process is performed after the overlap
region detection. Again, we assume that R1 is entering
the map of R2, m2. We merge the maps m1 and m2 by
transforming m2 into m1. Let T12 be the transformation
matrix which transforms the coordinate of R2 into that of
R1, then T12 is given by

X∗ = T12 ·X2, (5)

where x2 is the original coordinate of R2 and x∗ is the
mapped position. X2 and X∗ are in the form of 3D ho-
mogeneous representations. Due to the assumption of plane
motion, the transformation is composed only by translation
and rotation in an xy plane. Thus T12 is given by

T12 =

⎡
⎢⎢⎣

R 0 tx
0 ty

0 0
0 0

1 0
0 1

⎤
⎥⎥⎦ , (6)

where R is a 2 × 2 rotation matrix, and tx and ty are the
translation factors in x and y coordinate, respectively. As
mentioned in the previous section, a possible robot position
r̂∗ from Hough clustering is not an optimal solution and does
not give rotation information. Thus we cannot estimate T12
using the robot poses. Instead, by using correspondences of
landmarks, we can achieve a more accurate solution for T12.

Finding the optimal solution that satisfies all these cor-
respondences is required since we have a number of corre-
spondences of landmarks. We find the map transform T12 by
minimizing error function

Nobs

∑
i=1

∥∥∥L̄1
i −T12 · L̄2

i

∥∥∥2
, (7)

where L̄1
i and L̄2

i are the matching landmarks in current
frame I1

t with homogeneous representation, and Nobs is the
number of correspondences observed in I1

t . We can easily
find the solution to this equation by solving a linear equation.
With this transformation T12, we put the set of landmarks in
m2 into the coordinate of R1 using relation given by

L̄′2
n = T12 · L̄2

n. (8)

For every landmark L2
n in m2, we apply this transformation

and finally get the merged map. Unfortunately, there may
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Fig. 4. The uncertainty of each landmark is transferred according to the
map transformation.

exist errors in T12, especially since even a small error
in rotation brings more severe errors in the transformed
landmark position when the distance between the overlap
region and the landmark increases. To handle this amplified
error, we search the duplicate landmark [5] in the map of R1

and correct this error using newly found correspondences.
We introduce an uncertainty range for the transformed
landmark to find the duplicate landmark. Originally every
landmark has the uncertainty of its position given by the
covariance of Kalman filter estimator. When performing the
landmark transformation, these covariance matrices are also
transformed by the equation given by

P′2
n = S(r2 −L2

n,φ)R(θ)P2
n, (9)

where S(r2 − L2
n,φ) stretches the position uncertainty of

landmark in a direction of rotational error. In Figure 4,
the shaded ellipse in the map of R2 is the landmark’s
original uncertainty. Its principal axis is parallel with the line
passing through R2 and the landmark. When this landmark
is transformed by T12, the uncertainty range is increased
in a tangential direction of the line which passes through
the landmark and the axis of the rotation transform. Thus,
S(r2 −L2

n,φ) is of the form

S(r2 −L2
n,φ) =

[
c‖r2 −L2

n‖2 0
0 1

]
R(−φ). (10)

The matrix R(θ) rotates the stretched ellipse to adjust the
transformed map. Using this covariance, we set the uncer-
tainty range of the position of the transformed landmarks.
Within this range, we search a landmark L1

n ∈ Ł1, which
is possible to be matched with the transformed one. If the
matched landmark is found, then we add this correspondence
to Equation 7 and re-estimate the transform T12. We can
expect a more accurate T12 in this re-estimation because
more distant landmarks are involved.

IV. EXPERIMENTAL RESULTS

We have tested our multi-robot SLAM algorithm in a real
indoor environment composed of a long corridor and many
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Fig. 6. Confidence of map overlapping versus frame sequence. The
confidence value is high when the map overlapping occurs.

rooms along the corridor. The experiments were performed
with the pre-recorded scenes obtained from the human con-
trolled mobile robot. The obtained scenes had 640 × 480
resolution, and 180 degrees FOV. We corrected the radial
distortion of images and resized it to 320 × 320 size. Harris
corner detector [13] was used to obtain landmarks. In the
PBRF, we used 200 particles.

In the experiment, we drove the two robots independently
with unknown initial correspondences. One robot, specified
R2, moved along with the corridor. The other robot, R1,
started by building the map of the room near the corridor,
then exited the room and entered the corridor where R2

had already built the map. Figure 5 (a) and (b) are the
results of the single-robot SLAM operation performed by two
robots independently. The orange and violet lines represent
the estimated trajectory of each robot, and the ellipses are
uncertainty of the landmarks. The red circles in (a) and
(b) represent the same region where the map overlapping
is going to occur. By applying our proposed map overlap
detection and merging procedure, we could align the maps
as Figure 5 (c). When R1 was located at the region indicated
by the red circle, it recognized the map overlap between
the two robots and performed a map alignment procedure.
The landmarks in magenta represent the matching landmarks
used in overlap detection.

Figure 6 is the graph that shows the confidence map
overlapping explained in Section 3.2. At frame 360, this
confidence value is increased rapidly due to the map overlap.
This confidence values differ largely according to whether a
map overlap occurs or not, which enables accurate decision
for map overlap.

After map alignment of the two maps, the two robots
continue map building and finally obtain the result as shown
in Figure 5 (d).

V. CONCLUSIONS

We have presented a technique for multi-robot SLAM
which can operate with unknown initial relative poses be-
tween robots. The robust data association algorithm using
ceiling vision provides accurate detection of map overlapping
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(a) (b)

(c) (d)

Fig. 5. (a) and (b) are the maps built by two robots independently. (c) shows the result of the map alignment. (d) is the final integrated map by the two
robots.

without an encounter of robots, leading to the early and
frequent chances for map merging with very low error rate.

In future work, we intend to apply an efficient landmark
management algorithm which will efficiently perform the
data association of the landmark from different maps. We
expect this will improve the computational speed of overlap
detection process. In addition, investigating the probabilistic
approach for estimating the map alignment transform would
be helpful. If we determine the map transform as soon as
map overlap occurs, then recovery or correction for wrong
estimation of transform will be impossible. The probabilistic
approach will lead to a more flexible result of map alignment.
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