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Abstract— This paper presents a mechanism and a control
strategy that enables automated non-contact manipulation of
spherical objects in three dimensions using air flow, and demon-
strates several tasks that can be performed with such a system.
The mechanism is a 2-DOF gimbaled air jet with a variable
flow rate. The control strategy is feedback linearization based
on a classical fluid dynamics model with state estimates from
stereo vision data. The tasks include palletizing, sorting, and
ballistics. All results are verified with hardware experiments.

I. INTRODUCTION

Our long-term goal is to enable automated, parallel ma-

nipulation of multiple objects with air flow. Two key control

challenges are presented by this type of manipulation, in

contrast to traditional robotic manipulation with a mechanical

gripper. First, the dynamics of the flow field itself are difficult

to model. These dynamics are typically governed by systems

of partial differential equations and may exhibit behavior that

is both uncertain and chaotic. Second, the dynamics of the

manipulated objects are strongly coupled, since the presence

of an object in a flow field changes the structure of that field

for other objects.

To make progress, this paper considers the particular

example system shown in Fig. 1, for which it is possible

to simplify the above two control challenges. In this system,

the objects are spheres and the air flow is generated by a

single axisymmetric air jet. This air jet has a variable flow

rate and is mounted on an actuated 2-DOF rotary motion

stage. Our control inputs are the angles θ1, θ2 of the stage

and the velocity u of the nozzle flow.

The steep velocity gradient outward from the air jet’s axis

of symmetry creates a stable equilibrium point at a distance

that depends on the nozzle velocity and on the physical

characteristics of the sphere. By changing the orientation and

flow rate of the jet, we can move spherical objects to any

point within a three-dimensional workspace.

Although the underlying physics of this equilibrium point

are well known for a vertically mounted jet and make for a

classic demonstration in the classroom [1], transient behavior

is less well understood. Being able to model and control this

transient behavior is necessary for automated point-to-point

manipulation. In particular, adjusting the flow rate excites

low-frequency, high-amplitude oscillations along the axis of

symmetry of the jet. These oscillations take a significant
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Fig. 1. A spherical object hovering in stable equilibrium above a 2-DOF
gimbaled air jet with a variable flow rate. Our control strategy enables
automated manipulation of this object in three dimensions.

amount of time to settle, tend to have a destabilizing effect

on the system, and would preclude rapid manipulation.

In this paper we apply feedback linearization based on a

classical fluid dynamics model in order to dampen these axial

oscillations more quickly. Our approach depends on having

a good state estimate, in this case provided by stereo visual

feedback from a pair of low-cost cameras.

This control strategy enables a number of manipulation

tasks. For example, we can palletize spheres, lifting them

on and off a perch and moving them through obstacles in

3D. We can sort spheres without sensors according to their

physical characteristics, either stacking several of them in the

same flow field or depositing them in bins on the ground.

Long-range ballistic positioning is also possible, using a

rapid increase in the flow velocity to fire an object to a remote

location.

Our hope is that some of these manipulation tasks can

be transitioned out of the laboratory and into real-world

situations. For instance, because air flow avoids the need

for mechanical contact, it is particularly appropriate for

applications in the textile, printing, and foodstuffs industries

that involve the conveyance or rearrangement of flexible,

porous, or delicate objects. Examples include the handling

of clothes [2], [3], paper [4], sliced fruit and vegetables [5],

and biscuits [6]. Similarly, this type of manipulation can

move many objects at the same time, and may increase the

throughput of systems for industrial parts handling.
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Fig. 4. Measured free air velocity v in the flow field for varying distance
from the jet’s centerline d. Each line represents a different axial distance r.
The red line corresponds to r = 0.232 m and the blue line r = 0.187 m.

The solid lines are fits of the form v(u, r, d) = v(u, r, 0) sech2
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where c2 is a constant. Notice that the nozzle velocity decays significantly
for d > 0.02 m.

3) Flow field: It is important to note that the dynamics

of flow itself can have a significant effect on the system.

Changes to the nozzle pressure take time to propagate to

objects in the flow. In addition, the volume of air in the

system can store and output energy over time. These effects

are part of the complex dynamics of the overall system that

make a precise model impractical. For our model, we assume

changes to the fluid are instantaneous and memoryless, so

changes to u have an immediate and time invariant effect on

objects in the flow.

Flow is also assumed to be in the turbulent regime with

Reynolds number Re = vβ
ν

in the range of 104
− 106,

where β is the radius of the sphere and ν is the kinematic

viscosity of the fluid. In this regime, the relationship between

air velocity and drag has a nonlinear dependence on Re [10].

By assuming the sphere is always near the equilibrium point,

this relationship can be neglected. While flow through and

near the nozzle may be supersonic, the models here assume

that flow around the sphere is subsonic and incompressible.

4) Perpendicular motion: Because of the steep velocity

gradient at small distances from the nozzle axis (Fig. 4), the

position of a spherical object in the direction perpendicular to

this axis is stable about d = 0. A position offset from d = 0
causes a velocity, and therefore pressure, difference across

the cylinder. This pressure difference makes the sphere stable

in the direction perpendicular to the flow, as shown in Fig.

5.

5) Axial motion: The axial dynamics r of a spherical

object are governed by the standard drag equation and

gravity.

r̈ =
1

2

Cd

m
ρA(v(u, r, d) − ṙ)2 − geT

3
Rn

b e3 (2)

Here, Cd is the coefficient of drag, m the mass of the sphere,

ρ the density of the fluid and A the sphere cross sectional
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Fig. 5. Dependence of equilibrium perpendicular distance d on the angle
of the nozzle away from vertical for several nozzle velocities u. This raw
position data shows that for any configuration, the equilibrium position of
a 6.7 g 40 mm diameter sphere is within 25 mm of the nozzle axis. By
assuming that the perpendicular position is stable, the modeling is greatly
simplified.

area. In writing this equation of motion, we assume that the

angular velocity of the nozzle frame is small relative to the

dynamics of axial motion. For the applications we consider

in this paper, this assumption is reasonable. Substituting

equation 1 into equation 2 and solving for zero acceleration

and velocity gives the axial equilibrium position

req(θ1, θ2, u) = u

√

Cd

m

ρA

2g cos θ1 cos θ2

+ c3 (3)

where c3 is a fixed constant. In other words, for a given θ1,

θ2, and u, the following configuration is stable:

pb = Rb
n





0
0
req



 .

It is easy to invert this relationship to find the values

of θ1, θ2, u required to achieve a given configuration pb.

6) Frequency response: Figure 6 shows the helical motion

of the sphere in three dimensions about this equilibrium con-

figuration. It traces elliptical patterns around the centerline of

the nozzle, but the dominant motion is in the axial direction.

To characterize the stability of this equilibrium configura-

tion, we measured the frequency response of the system from

the nozzle velocity u to sphere position, in both the axial and

perpendicular directions (Fig. 7). In each case, there are two

resonant frequencies, and the corresponding low-frequency

oscillations are lightly damped.

Notice that the amplitude of these oscillations is much

larger in the axial direction than in the perpendicular direc-

tion. The large-amplitude axial oscillations make the settling

time for a step response large, precluding rapid manipulation.

It is this problem that we will correct with our control design.

C. Control design

Based on our fluid dynamic model, we applied feedback

linearization to control the axial position of the sphere. Given
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Fig. 6. Recorded 0.7 s trajectory of a sphere in Cartesian coordinates. Top
left, r oscillations vs. time. Bottom left, x-axis oscillations over time. The
perpendicular amplitude is an order of magnitude less than the r amplitude
and oscillates at roughly four times the frequency. Right, 3D plot of sphere
trajectory.
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Fig. 7. Input to output Bode analysis with sinusoidal nozzle velocity input
and the amplitude of oscillations in r (top) and d (bottom) recorded for a
vertically oriented air jet. Note that the oscillations in the axial direction
are an order of magnitude larger than in the perpendicular plane.

a desired axial acceleration a of the sphere (provided by an

outer PID loop), we compute the desired nozzle velocity of

our controller

udes =
r + c1

sech2
(

c2
d
r

)

(
√

2a
Cd

m
ρA

+ ṙ

)

, (4)

where c1 and c2 are constants determined by the free fluid

flow. Through this choice of udes, we try to eliminate the

nonlinear dependence of r̈ on r and ṙ. For this approach

to work, we need an accurate state estimate. Our cameras

only sample at 55 Hz, so we use an extended Kalman filter

to estimate the state between each image capture (Fig. 8).

Occasionally the camera provides spurious measurements.

The Kalman filter provides a robust method to handle sensor

noise.
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Fig. 8. State tracking using a Kalman filter. The Kalman filter propagates
the past state according to the system model, and combines the model with
imperfect sensor data to produce a robust state estimate. With these estimates
the controller can use the predicted position of the sphere (blue dot) instead
of the measured position of the sphere (green circle) from the previous time
step.

D. Performance

We compared an open-loop strategy to our control strategy

both with and without predictive estimation. Figure 9 shows

the results for an open-loop strategy. As expected, the axial

position of the sphere is stable when rref is changed.

However, this position differs significantly from the reference

position, due to imperfections in our model. In addition,

there is significant steady-state oscillation. The second plot

shows the results for feedback linearization, and the third the

results for feedback linearization with predictive estimation

using an extended Kalman filter. The last controller shows

the fastest settling time and damping (Table I). Moreover,

feedback linearization exhibits these responses over a larger

range of r than the PID controller, because of the nonlinear

dependence of the control effort on r.

III. APPLICATION TO MANIPULATION TASKS

A. Sphere sorting

When spheres with differing drag to mass ratios are

introduced to the same fluid jet, the spheres quickly arrange

themselves in order of increasing drag to mass, barring

TABLE I

QUANTITATIVE RESPONSE COMPARISON

Control Estimation tr(s) ts(s) ess(mm) Mp%

OL No 1.31 11.18 −10 34.0
u No 1.29 > 20 8 35.5
u Yes 1.21 7.95 −2 32.2

FL No 1.23 11.99 0 28.7
FL Yes 1.34 1.21 0 18.5

Comparison of controllers: OL, open loop; u, PID control on nozzle
air velocity u; and FL, feedback linearization on force. Here tr is
the 10-90% rise time, ts is the time to steady state within 25% of
the step input, ess is the mean steady state error and Mp is the
maximum overshoot as a percentage of the step size.
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