
  

  

 
Abstract—Recent investigations show that compliant 

systems can be more safe and energy-efficient than 
conventional stiff actuated systems. As a result, 
researchers are increasingly implementing compliance 
within actuation systems using a variety of mechanisms. 
In general, these actuators can be grouped in 2 main 
categories. The first category includes all the actuation 
systems with a compliant element connected in series 
(SEA), while the second group contains all those systems 
that employ two actuators placed antagonistically. In 
both designs the ability to regulate the stiffness is 
essential in order to meet safety and/or performance 
demands. Energy consumption is a very important 
aspect to be considered, especially in autonomous robots. 
This paper presents a theoretical study on the energy 
consumption of variable stiffness actuators, comparing 
the amount of energy required in order to perform a 
certain task. 

 

I. INTRODUCTION 
USCLES and tendons change their stiffness as a 
function of the motion/task they have to perform.  
Arm muscles assume a stiff configuration when the 

arm has to perform an accurate task, while they are 
compliant when they are performing the “loading” phase of 
a throw. Similarly, if we analyze jumping we see that leg 
muscles are compliant during the “loading” phase of the 
jump or during the landing phase where they absorb the 
shock [1], while during the “pushing” phase, they are stiff. 
There are several reasons for this variation in stiffness but 
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among the most pressing is the exploitation of the elastic 
energy stored within the muscles and tendons [2]. This 
enables compliant actuators to achieve performance which is 
not possible with a conventional stiff robotic system.  In [3] 
it has been shown that there is a clear difference between the 
velocities of the links and the throw distances obtained in 
the two cases. Clearly the introduction of compliance may 
have very significant effects on the performance of an 
actuation system relative to the classical stiff design.  

As a result robotics researchers are starting to investigate 
these effects and include compliance within robots. 
Sometimes energy saving is considered as a non-priority 
issue, even though, if autonomous robots are of concern, this 
feature is one of the most important. In this paper a study on 
the energy consumption of elastic joint actuators is 
presented. 

This paper is structured as follows: Section II reports on 
the two main configurations of a compliant actuated joint 
and Section III presents the models of these two 
configurations. The simulation methods are presented in 
Section IV, while in Section V the value of the stiffness of 
the human elbow during a throwing task is determined. 
Section VI reports on the design of the nonlinear spring used 
in the models of the elastic actuated joints with simulation 
results presented in Section VII. Finally Section VIII 
addresses the conclusion.  
 

II. CLASSIFICATION OF COMPLIANT JOINT ACTUATORS 
Compliant actuation systems can be categorized into two 
main groups: so-called Series Elastic Actuators (SEA) [4], 
[5], [6], and the antagonistically-actuated joints [7], [8], [9].  

A. Antagonistic Design 
Antagonistically-actuated joints employ two compliant 
elements to provide power to the joint. This design is 
biologically-inspired, since mammalian anatomy follows the 
same concept, i.e. a joint actuated by two muscles arranged 
in an antagonistic manner. The muscle-tendon cooperation 
gives the driven link (arm, leg etc) a controllable and 
variable compliance. In addition to biological muscle this 
type of antagonistic compliance controlled can be achieved 
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using both conventional two motor electric drive designs 
and other more biologically inspired forms such pneumatic 
Muscle Actuators (pMA). In the latter case compliance is an 
inherent characteristic of the actuator, while for an electrical 
design compliant elements (generally springs) have to be 
embodied into the system [7-10]. 

B. Serial Design (SEA) 
The series elastic actuator is characterized by the 
mechanical series, motor–gear–compliant element and has 
been implemented both in linear and rotational designs [4], 
[5], [6]. This paper will study a rotational SEA.  
 

III. THE MODELS OF THE ELASTIC JOINT ACTUATORS 
This section presents the dynamic models of the two 

elastic joint configurations discussed in the previous section. 

A. Antagonistic configuration  
An antagonistically-actuated joint uses two driving 
elements. The stiffness of the joint and the angular 
displacement of the driven link are set by means of a 
combination of the actuation inputs q1, q2 (see Fig. 1). By 
co-contraction of these actuators, preloading and, thus, 
tuning of the stiffness is achieved, while the rotation of the 
joint is obtained by the antagonistic motion of the drives.    

 
 

Fig.1 Antagonistic setup.  

The static equilibrium equation for the torque at the joint, 
excluding gravitational forces, is:  

)( 21 FFrT −⋅=  (1)

 
For the first drive: 

),()( 1111 θθ qkqrF ⋅+⋅=  (2)

 

The equilibrium equation at the second actuator is: 
),()( 2222 θθ qkqrF ⋅+⋅−=  (3) 

Now, assuming a quadratic relationship between the 
compression and the force generated by the spring  

Differentiating (1) with respect to the angle θ, the torsion 
stiffness of the joint is obtained: 

2
21 2)( rkqkqk

d
dTk offsetrateratetors ⋅⋅+⋅+⋅==
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(6) 

 
Assuming J as the moment of inertia of the output link, the 
dynamic equation for the output link is: 
 

0)( 21 =⋅−+⋅ rFFJ θ&&  
 

(7) 

From (6), q1 as a function of q2 and ktors is obtained: 
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Finally, by substituting (8), (2), (3) in (7), the motion to 

be generated by the actuator input q2, as a function of  θ  ,θ&&  
and ktors, is obtained. 
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From (8) and (9), it is possible to obtain q1, q2 as a function 
of θ and ktors (Fig. 2). 

 

 
Fig. 2 – calculation of q1, q2 

 

B. Serial configuration 
The design of a SEA can be represented by the series 
combination “motor–gearbox–elastic element–link” where 
the stiffness varies as a function of the preload on the 
compliant elements. Figure 3 shows conceptually a SEA 
with adjustable variable stiffness. The effort needed to drive 
the link is given by Tin, while θin is the angle of the input 
pulley. The torque generated by the motor that adjusts the 
stiffness of the joint is Tktune, and θktune is the preload of the 

offsetrate krqkqk +⋅+= )(),( 111 θθ  (4) 

offsetrate krqkqk +⋅−= )(),( 222 θθ  (5) 
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compliant element. The output angle is θout. As with the 
antagonistic setup, this design presents three control 
variables: the driving shaft angular displacement θin, the 
driven shaft angular displacement θout and the angular 
displacement of the stiffness tuning system θktune which 
adjusts the preload of the spring.  

 
Fig. 3 Serial setup concept scheme. 

To provide a fair comparison with the antagonistic 
configuration, a series rotational compliant element which is 
inspired by the antagonistic setup is simulated where the 
springs like the output pulley characteristic do not change, 
Fig. 4. 

 

 
Fig. 4 From the antagonistic to the serial configuration. 

 
From the kinematics of the system outSin θθθ =+ , 

where Sθ  is the deflection of the compliant element. 
Writing the Newton-Euler equation for the serial system as 
in Fig. 3, the equilibrium equation for the driving pulley, 
excluding gravitational forces, is obtained: 

 
),()( outintorsoutin kT θθθθ ⋅−=  

 

(10) 

To ensure fairness when compared with the antagonistic 
setup, and to make the energy consumption independent of  
the system design, a mass-less driving pulley is considered. 
The driving pulley, thus, has to work only against the torque 
generated by the spring. For the outer link: 

0),()( =⋅−+⋅ inouttorsinoutout kJ θθθθθ&&  (11) 
 
Substituting (10) in (11), the equation of the torque required 
by the system to achieve a given output motion is: 

 

outJT θ&&⋅=  (12) 
 

To tune the stiffness, a certain preload has to be applied to 
the springs. The resultant preload force is 
 

tunetune xxkF ⋅⋅= )(2  
 

(13) 

Where k(x) is the stiffness of the springs. The torque 
developed due to the input-output angle difference is: 
 

( ) 2)(2 rxkT outin ⋅⋅⋅+−= θθ  (14) 
 

For an infinitesimal input-output angle difference, (14) 
becomes θdrxkdT ⋅⋅⋅= 2)(2 and the torsional stiffness 
of the system is then: 
 

2)(2)( rxk
d
dTxktors ⋅⋅==

θ
 

(15) 

 
From this equation the desired linear stiffness of the 

spring can be calculated as a function of the torsion 
stiffness: 

22
)(
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r

xk
xk tors

⋅
=  

(16) 

 
The equation that models the behavior of the stiffness 

during spring compression (see also section VI) is 
 

offsetrate kxkxk +⋅=)(  (17) 
 

This assumption is almost correct if the spring is 
preloaded to work in its quadratic region. The displacement 
to be imposed on the system to achieve a required stiffness 
can then be obtained as follows. 
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Substituting (16) in (18) the spring preload is obtained. 
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(19) 

 
The force developed to reach the preload calculated in 

(19) is given by (13). From these equations the work done 
due to the stiffness tuning is computed, while from (12) the 
torque to calculate the work done for the dynamic task is 
obtained. 
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IV. SIMULATIONS 
This section describes how the simulators for the two 
designs are implemented. In order to make a comparative 
study that is independent of the physical characteristics of 
the actuator and the design, the torque and the velocity 
generated are unlimited, with infinite bandwidth, and the 
driving pulleys are mass-less. The transmission bodies are 
rigid while friction and damping are not considered in this 
study. These assumptions are obviously far from reality, but 
are made to make the model independent of the design of the 
system. We can summarize the characteristics of the models 
as follows: 

 
i) Linear (no saturations, no dead zones, no friction). 

ii) No damping. 
iii) Massless actuators. 
iv) Rigid and massless transmission bodies. 

The models used for the simulations take into account the 
variation of the moment of inertia due to the releasing of the 
ball during the throw. The following moments of inertia are 
computed assuming that the bodies are pointmasses. The 
moment of inertia calculated at the elbow, due to the 
complex forearm is computed as:  

222
_ )11.0(254.1 mkglmJ forearmCOGforearmforearm ⋅⋅=⋅= . 

The position of the center of mass, the weight and the 
dimensions of the forearm are reported in [11], [12]. 
The moment of inertia at the elbow, due to the hand 
is ( ) 222

_ )095.0257.0(47.0 mkgllmJ handCOGforearmhandhand ⋅+⋅=+⋅=  

While the moment of inertia computed at the elbow, due to 
the ball, assuming that the center of mass of the ball is 
aligned with the center of mass of the hand, is 

( ) 222
_ )095.0257.0(15.0 mkgllmJ handCOGforearmballball ⋅+⋅=+⋅=   

When the ball is held by the thrower, the total moment of 
inertia is 

ballhandforearmbeforetotal JJJJ ++=_
  while when the ball is 

thrown the inertia becomes handforearmaftertotal JJJ +=_  

The value of the moment of inertia with respect to the joint 
is set equal to the value of Jtotal_before during the first phase, 
when the ball is grasped with the hand, while after the 
release it is set to Jtotal_after. The models from section III are 
implemented in simulation to compute the physical variables 
of the systems during the task execution and the results are 
used to compare the two design configurations. 

A. Antagonistic Setup  
The model of the antagonistic setup receives the trajectory 
of both the angle and the stiffness of the joint as input and 
outputs the work done by the system. In Fig. 5, the block 
called “Inverse Kinematics - ODE” obtains q1, q2 as a  
function of a desired output trajectory and stiffness as in (8), 
(9). The “Inverse Dynamics” block implements (2), (3). The 
work due to each actuation input is computed, and the total 
work is obtained as the sum of each work. 
 

 
Fig. 5 Concept block diagram for the antagonistic setup simulator. 

The work performed by the driving link “1” is: 
 

∫∫ ⋅⋅=⋅= dtqFdtPW qq 1111 &  (20) 

 
Similarly, the work for the driving link “2” is: 

 

∫∫ ⋅⋅=⋅= dtqFdtPW qq 2222 &  (21) 

 
The total work is the sum of (20) and (21)  

 
21 qqtotal WWW +=  (22) 

B. Serial Setup 
Figure 6 shows the block diagram of the serial setup 
simulator, using the trajectory of both the angle and the 
stiffness of the joint as inputs, and returning the work done. 
 

 
Fig. 6 Concept block diagram for the serial setup simulator. 

The block called “Preload calculation” computes the spring 
preload to deliver certain stiffnesses, according to (19). The 
block called “Force calculation” implements equation (13). 
The block called “Work calculation (1)” computes the 
energy consumption by integrating the power.  
 

∫∫ ⋅⋅=⋅= dtxFdtPW tunetunetunetune &  (23) 

 
The block “Inverse Dynamics” implements the inverse 
dynamics of the joint as in (12). Hence, the work to perform 
the motion is 
 

∫∫ ⋅⋅=⋅= dtTdtPW dyndyn θ&  (24) 

 
The total work is the sum of (23) and (24).  
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dyntunetotal WWW +=
 

    (25) 

V. STIFFNESS AND ANGLE TRAJECTORY 
The trajectory of the elbow of the dominant arm of male 
subjects during fast baseball throws can be found in [13]. 
This trajectory, which is shown in Fig. 7, is one of the inputs 
given to the simulator.   
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Fig. 7 Elbow rotation during a fast baseball throw. 

It can be seen that in the loading phase (0÷0.16s) the 
elbow performs a backward motion. The ball is pushed 
forward until the instant in which the ball is released 
(0.225s). In the last phase the elbow rotation velocity 
decreases in order to stop the forearm after the throw. In this 
paper, the motion of the elbow in the space during the 
execution of the task is not considered. The calculation of 
the stiffness of the joint is therefore related to a baseball 
pitch performed with the elbow kept fixed to rotate around a 
fixed axis. 

A. Stiffness trajectory  
The stiffness of the joint is the second input given to the 

simulator. For the case of a fast baseball pitch, the elbow 
rotation data have been used to compute the torque applied 
to the joint during the execution of the task by computing 
the inverse dynamics as in (12). Plotting the torque versus 
the angle of the elbow joint, the stiffness of the joint during 
the different phases of the pitch is obtained, Fig. 8. This 
method for the stiffness calculation has been used in 
[14].Three different phases can be observed in Fig. 8:  
 
i. Pushing phase with increasing torque (positive power) 

ii. Pushing phase with decreasing  torque (positive power) 
iii. Braking phase (negative power) 

For each phase, a value of the stiffness of the joint has 
been obtained. These three values, for the fast throw case are 
shown in Table I. The first phase can be interpreted as a 
compression spring that is being loaded (positive increasing 
effort and positive flow), the second phase can be 
considered as a compression spring that is releasing its 

energy (positive decreasing effort and positive flow), while 
the third phase can be seen as a tension spring that is pulling 
(negative decreasing effort, positive flow). The profile of the 
stiffness as a function of the time is then imposed as a 
piecewise-constant function that assumes constant values 
during each section described.  

 
TABLE  I 

STIFFNESS VALUES FOR THE FAST THROW CASE 
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Fig. 8 Torque vs angle for a fast throw. 

VI. SPRING DESIGN 
The spring to be used in the models has to be nonlinear in 
order to allow the tuning of the stiffness of the joint. In order 
to achieve this characteristic, conical helical springs were 
designed to provide stiffness variability within the range 
computed for the human elbow. Considering a radius of 

mmr 50=  for the driven pulley for both models, the range 
of stiffness that the spring has to provide in order to emulate 
the human elbow stiffness in the task execution is obtained 
using (16). 
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A spring that can achieve these values of stiffness has 

been designed. FEM simulations have been performed to 
characterize the spring force-compression relationship. The 
spring parameters are reported in Table II while the force-
compression curve is shown in Fig. 9  

The stiffness of the spring as a function of the 
compression can be obtained by differentiating the force 
with respect to the compression, Fig. 10.  It can be noticed 

Phase Stiffness[Nm/rad] 
Phase 1 124 
Phase 2 252 
Phase 3 549 
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that the last part of the range of compression of the spring 
makes the stiffness almost linear with the compression. This 
means that the force is approximately quadratic with the 
compression. This assumption has also been made in [15]. 

 The linear regression applied to this section returns the 
following values, referring to (17):  

 
1527 104.3- ;102.4  −− ⋅⋅=⋅⋅= mNkoffsetmNkrate  

 
TABLE  II 

SPRING PROPERTIES 
 

Elastic Modulus of the material [MPa] 206000  
Poisson Coefficient 0.33 
Wire diameter [mm] 3 
D0 [mm] 13.5  
Du [mm] 29.5 
L [mm] 42 
Maximum Compression [mm] 22.5 
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Fig. 9 Force-Compression relationship of the conical spring. 
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Fig.  10 Spring Stiffness as a function of the compression. 

VII. SIMULATION RESULTS 
The results obtained from the simulation study of the two 

models show that there are differences between the models 
in terms of energy consumption. This difference can be 

observed in Fig. 11, after the ball releasing instant. The 
input work is calculated as the sum of the work required to 
execute the motion and the work required to adjust the 
stiffness.  
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Fig. 11 Work required from the different designs to compute the task. 

The energy consumption levels for the antagonistic and the 
serial setup are reported in Table III. 
 

TABLE  III 
ENERGY CONSUMPTION 

Setup Energy consumption [J] 
Antagonistic setup  26.5 
Serial setup 19 
 
In the case of the antagonistic setup the energy consumption 
is about 40% more than that of the serial setup. This implies 
that the serial setup is a more efficient configuration than the 
antagonistic setup. 

In Fig. 12 it is possible to notice that the power provided 
to the system is positive until approximately 0.01s before the 
releasing of the ball. After releasing the ball the power given 
to the system decreases suddenly to its minimum. This 
occurs because the releasing of the ball is followed by a 
braking phase. 

In Fig. 13 the energy stored in the two actuator designs is 
shown. The energy stored is obtained as the difference of the 
energy provided to the system and the work done by the 
link: outinstored WWW −= . What is interesting to notice is 
that in both cases the energy stored reaches the maximum at 
time t=0.203s and after that it is transferred to the output just 
before the release of the ball. A difference of energy 
(required, Fig. 11 and stored, Fig. 13) is noticeable only 
after the ball releasing instant. It is possible to see that the 
energy provided to the serial system is exploited entirely to 
perform the motion of the outer link (the energy stored into 
the system is zero at the final time), while, at the end of the 
task, an amount of energy is stored into the antagonistic 
setup. This difference is equal to the difference of the 
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required energy from the two systems at the final instant. 
This is equal to JW 5.7≈Δ . This means that the extra 
energy required for the antagonistic setup is retained in the 
system and more specifically in the springs of the 
antagonistic setup.  
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Fig. 12 Power provided for the different designs. 
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Fig 13 Energy stored into the different actuator designs. 

VIII. CONCLUSIONS AND FUTURE WORK  
In this paper a study of the energy consumption of two 
designs of elastic actuators was presented. In particular, an 
antagonistically-actuated joint and a series elastic actuator 
joint were evaluated. Models of the two configurations were 
presented. The value of the stiffness of the elbow during the 
execution of a task (i.e. the elbow performs a fast throw of a 
baseball) was obtained to tune the stiffness of the two joints 
emulating the biological behavior of the elbow during the 
throwing of the ball.  

Simulation results were presented, comparing the 
differences of the two configurations in terms of the energy 
required and the energy storage. These results reveal that the 

antagonistic setup requires more energy with respect to the 
serial in order to execute the same task.  
Future work include the evaluation of the influence of the 
parameters of the systems, e.g. moment of inertia of the 
actuator, friction, viscous damping, in terms of energy 
efficiency. Further studies encompass the analysis of the 
energy consumption of the articulation of the upper limbs 
for other tasks. The same investigation will be done for the 
lower limb articulations for gait/jumping task. 
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