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Abstract—This paper presents a method for improving the
runtime of an optimal heuristic path planner (A*) so that it
can run repeatedly, in real-time, in a dynamic environment.
This is necessary for mobile robots navigating in dynamic
environments that have moving obstacles with associated costs,
such as personal space around people or buffer zones around
dangerous vehicles. Our approach is to modify the search space
used by the A* algorithm, increasing the size of grid cells
further from the robot. This approach relies on the notion
that only the area closest to the robot needs to be searched
carefully; areas further from the robot can be searched more
coarsely. Because the planner is assumed to run repeatedly as
the robot moves, the robot will always have a fine-grained path
defined for its next action. We have experimentally verified
in simulation that this algorithm can be run in real-time and
produces paths that are comparable to full-resolution planning.

I. INTRODUCTION

Robots that operate in the real world need to respond

rapidly to changes in the environment. A plan to the robot’s

goal, generated given available data, quickly becomes in-

validated as the environment changes or the robot receives

new information. A challenge in mobile robots, then, is

replanning paths as quickly as possible. Especially challeng-

ing are environments with dynamic obstacles and obstacles

with associated costs, such as personal space around people,

buffer zones around dangerous vehicles, or rough terrain.

Because sensors are imperfect, robots navigating in dynamic

environments must replan whenever they receive new sensory

data in order to ensure a safe, low-cost path.

Two main types of planners are currently used: heuristic

search algorithms and randomized planners. Heuristic search

algorithms, most notably A* [1], can find optimal paths, but

typically do not run fast enough to replan in real time, as

the robot receives new sensory data. Many variations on A*

exist in order to improve replanning time, typically by saving

and reusing portions of the search tree. Lifelong Planning

A* (LPA*) [2] can rapidly replan when the environment

changes, but only when planning from the same start state,

and thus cannot be used for a moving robot. The replanning

algorithms D* [3] and D* Lite [4] allow the start state to

change, but do so by planning in reverse—from the goal state

to the robot’s current position. This works in many cases,

but not with dynamic obstacles—the robot has no way of
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Fig. 1. A variable grid used for planning. The grid resolution decreases
with the distance from the robot (blue circle). Shown are three grid sizes: the
finest resolution is close to the robot (within the green circle), next largest
is between the green and red circles, and the largest resolution is furthest
away from the robot.

knowing where the obstacles will be at the time it reaches

the goal, so the state of the world when the robot reaches

the goal is unknown.

In contrast, Real-Time Adaptive A* (RTAA*) [5] and

Generalized Adaptive A* (GAA*) [6] both plan forward,

from start to goal, and allow for changing action costs.

RTAA* handles only increasing costs, such as an obstacle

perceived where the previous search assumed free space, and

thus it is unable to handle dynamic obstacles. GAA* allows

for action costs to increase or decrease; however, it is not

designed to handle moving obstacles with associated costs.

A different approach to real-time replanning uses random-

ization, rather than exhaustive search. One common approach

is to use Rapidly-Exploring Random Trees (RRTs) [7], [8],

which are designed to explore the environment quickly. RRTs

are guaranteed to find some path to the goal, but not necessar-

ily an optimal path. Methods exist to heuristically bias RRTs

to find the goal state more rapidly and partially account for

path cost (e.g. [9]). However, despite biasing, RRTs do not

find smooth or optimal paths. While the generated paths can

be post-processed to yield smoother paths, doing so may

eliminate legitimate avoidance maneuvers around moving

obstacles.

Thus, none of these existing search algorithms completely

account for real-time planning for a mobile robot in a

dynamic environment where traveling near moving obstacles
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may have associated costs. Our approach, using a variable

grid such as depicted in Figure 1, seeks to satisfy this need.

In the remainder of this paper, we will discuss our approach

and its implementation and will describe the tests we have

run to verify the advantages of the method over existing

search techniques.

II. APPROACH

Heuristic path planners rely on predictive heuristics, such

as the remaining distance to the goal, in order to guide the

search. Poor heuristics can cause the search to examine more

nodes than necessary. Costs associated with obstacles (e.g.

rough terrain)—and especially costs associated with dynamic

obstacles (e.g. people)—are difficult for heuristic planners

because these factors typically do not have useful predictive

heuristics. Thus, when a heuristic planner encounters such an

obstacle, it must expand a large number of nodes in order to

find an optimal path. Unfortunately, heuristic planners such

as A* typically have a run-time that is worse than linear

in the number of nodes expanded. Reducing the number of

nodes the search must expand thus improves the search time.

Our approach is to modify the search space used by the

A* planner. In this way, the planner can be used unchanged.

In particular, rather than performing the entire search on a

regular grid, as most planning algorithms do, we decrease

the resolution of the search further from the robot. That is,

only the areas near the robot are searched carefully; areas

further from the robot are searched more coarsely. Because

this results in fewer search nodes, planning can occur rapidly.

New plans can thus be generated repeatedly as the robot

moves, so that the robot will always have a fine-grained path

defined for its next action.

The most similar methods to our own are Quadtree

and Framed-Quadtree planners [10], and other planners

that quadtree-like hierarchical decompositions of space [11].

Quadtrees are irregularly-sized grids formed by recursively

subdividing regions into four quadrants until each region is

either free of obstacles or is the smallest allowed resolution.

In sparse maps, quadtrees reduce the memory requirements

(and thus search time) over regular grids. However, paths

found with quadtrees are usually sub-optimal as compared

to regular grids, particularly in large areas of free space.

Framed Quadtrees create more optimal paths by modifying

the quadtree data structure, but at the expense of greater

memory requirements. In particular, framed quadtrees per-

form poorly when the world is generally known in advance.

In contrast, our approach uses a variable grid that is com-

posed of regions of regular grids of decreasing resolution,

spanning outward from the robot’s position, as shown in

Figure 1. The key idea behind this method is that, if the

search can be done quickly enough, then the robot can

regenerate plans at each timestep (as it gets new sensor

information). Thus, the plan needs to be at a high resolution

only near the robot; a rough path is sufficient further from

the robot, because the robot will generate a new plan before

reaching those areas. This approach is significantly different

from the quadtree-based approaches in that the grid does not

remain static between searches; rather, the grid changes as

the robot moves, keeping the finest-resolution cells centered

over the robot’s position. In addition, by using an implicit

representation of the changing grid cells, our approach does

not require any additional memory over a typical A* search.

III. DESIGN CHALLENGES

Key design challenges in implementing the variable-grid-

cell planner include: selecting the grid variations, represent-

ing dynamic obstacles, and handling the boundaries between

resolutions.

A. Selecting the grid variations

One design consideration with this approach is how to

select the grid variations: what resolutions to use, and at

what distances to change the resolution. Close to the robot,

the planner should use the finest resolution available (e.g.

the map resolution). The distance at which the planner can

switch to a coarser resolution is dependent primarily on the

speed of the robot; the planner should always be able to

provide a detailed path for several timesteps. Further away

from the robot, a coarser resolution will yield faster path

computation, as long as the grid cells are not allowed to be

overly large for the environmental conditions.

An important consideration regarding this approach is that

dense environments make path-planning on a larger grid cell

size impossible. For example, suppose that the robot will

need to navigate through a 1-meter-wide doorway close to the

goal. If the grid cell size near the doorway is fairly large (say,

0.6m or 0.8m), then planning between cell centers may not

find a free path through the doorway. This shortcoming can

be avoided entirely if one has sufficient a priori knowledge

of the environment and tailors the grid cell size accordingly.

Unfortunately, this may not always be possible. In more

complex environments, it may be necessary to perform sub-

searches on some of the larger grid cells before declaring

them impassable due to obstacles, perhaps using a method

similar to the Framed Quadtree approach. Since our approach

assumes that the robot has a map of the environment (which

typically results in poor performance by Framed Quadtrees),

one could pre-label obstacle-dense regions on the map that

should always be searched at a fine resolution.

B. Dynamic obstacle representation

A common approach to planning with dynamic obstacles

is to add time to the state space, effectively adding another

dimension to the search space (e.g. [12]). Unfortunately, this

adds a great deal more complexity to the search. Some ap-

proaches to managing this complexity include using random

planners (e.g. [13]) or reducing the available action space

(e.g. the “canonical trajectories” of [12]). In contrast, our

approach is to include the dynamic obstacles, if present,

in the state space. This yields several benefits over the

state-time representation. To understand why, recall that the

A* planner, with an admissible heuristic, does not need to

examine a state more than once; if it encounters a previously

examined state, the new path to that state is guaranteed to be
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Fig. 2. A plan generated on the variable grid. Since plans are generated
between node centers, a “straight” path may appear to have turns in it.

more costly than the one found initially. Adding time to the

state space greatly decreases the chances of A* encountering

the same state more than once, thus greatly increasing the

search time. Adding dynamic obstacles to the state space

results in more overlap. In addition, if the robot is allowed

to ignore obstacles behind it or moving rapidly away from it

(since such obstacles are unlikely to affect the robot’s path),

the state space can be simplified further. This allows the

planner to consider dynamic obstacles with less complexity

than a state-time space search entails, while also not limiting

the robot’s available actions.

Obstacles are assumed to move in continuous space, even

though planning occurs on a grid. To account for this, two

world states are considered the same if the robot is in the

same state (position, orientation, and velocity) and if all

dynamic obstacles are “close enough” to the same positions.

We allow “close enough” to vary with the obstacles’ distance

from the robot, similar to the varying grid. Thus, when ob-

stacles are far from the robot, their positions are considered

more coarsely.

C. Resolution boundary challenges

The biggest implementation challenge in variable-grid

planning is handling the boundaries between resolutions.

Two problems arise: determining what actions occur at the

boundaries, and aligning the search to the grid. These are

illustrated by Figure 2. By assuming that the robot will

always always generate a new plan before it reaches a section

of the path that uses a larger grid cell size, both of these

challenges can be overcome.

1) Actions at boundaries: Because actions late in the

planned path are assumed never to be executed, the actions

across resolution boundaries need only be approximate.

Before the robot reaches any of the approximate actions

on the plan, it will have generated a new plan with high-

resolution initial actions. This can be guaranteed by simply

having the navigation algorithm stop the robot if too much

time has elapsed since generating the last plan. As we will

show in Section IV, this is typically not necessary with our

approach.

2) Grid alignment: Actions within each section of the grid

should move the robot to a neighboring cell of the same

resolution. As long as the coarser-resolution sections are

integer multiples of the initial grid resolution, computing the

within-section actions is trivial. However, at the boundaries

between resolutions, actions will not necessarily move the

robot to the center of the next grid cell. However, if we

assume that the actions are only approximate, as mentioned

previously, the path can be aligned to the grid by simply

rounding the position to the center of the nearest grid cell

(based on the distance from the start state). This allows

planning to continue on a discrete grid.

Furthermore, we must consider obstacles within each grid

cell. At the finest resolution available (near the robot), each

cell is either occupied or free. However, at coarser resolu-

tions, a grid cell may be only partially free, and partially

filled with obstacles. One approach for handling obstacles

would be to declare a cell that contains any obstacles to be

completely blocked, but this may result in planner failure

if even small obstacles appear as large blockades in coarser

resolutions. Our approach is to check for obstacle collisions

on the straight-line path between grid cell centers, using the

Bresenham Line Algorithm [14].

Since we are able to align the robot’s location to a grid

cell of any resolution and we are able to compute each cell’s

occupancy on the fly, we are able to keep the variable grid

implicitly defined over the given fine-grained map. That is,

the variable grid incurs no additional memory requirements

over the map itself.

IV. RESULTS

Experiments were run using the Carmen robot simulator1.

The situation simulated is shown in Figure 3 and is that

of a robot navigating through a hallway environment. The

hallway is quite wide: approximately 4m across, narrowing to

a 2m wide chokepoint. The cost function for the A* planner

is a linear combination of multiple costs, including distance

traveled, a preference for tending to the right side when

passing people, and how much the robot encroaches into

a person’s personal space. That is, the planner attempts to

find a path that minimizes travel distance while keeping the

robot away from a person. The cost function is more fully

described in [15]. Tests were run on an Intel Core2Quad pro-

cessor running at 2.4GHz, under the Ubuntu Linux operating

system. We simulate a 0.36m-diameter circular robot that has

a Hokuyo URG scanning laser rangefinder, which receives

data at approximately 10Hz.

At each state, the robot has three potential actions: move

straight forward, turn 45◦ and move diagonally left, or turn

−45◦ and move diagonally right, each constant speed (0.5

m/s). We compare the results of a standard A* planner along

with our variable-cell planner in two scenarios, as follows.

1Carmen software is available online at
http://carmen.sourceforge.net/home.html.

4915



Fig. 3. Path found on a constant grid cell size of 0.2m. Robot is in blue,
and the goal is in yellow. Search required 1547 node expansions.

A. Simple case: no moving obstacles

The first test required the robot to plan a path from start to

goal on a known map with no additional obstacles, as shown

in Figure 3. The shortest path is approximately 10m long,

and required the robot to make a left turn down a hallway.

For the base case, the planner searched on a static grid with

0.2m cells. This search expanded 1547 nodes, and took an

average of 0.050 seconds per search (over 10 trials).

Using our approach, we increased the grid cell size at 2m

and 4m from the robot. In particular, the cell size was 0.2m

from the robot to 2m out (as in the base case), doubled to

0.4m between 2 and 4m from the robot, and doubled again

to 0.8m beyond 4m. These regions are indicated by circular

outlines in Figure 4. The robot traveled at 0.5 meters per

second, so these resolution changes allowed for four seconds

of travel between each section.

In this case, the search required only 555 node expansions,

and took an average of 0.043 seconds per search. While

the variable-grid search expanded only about one third the

number of nodes used in the static-grid search, the search

time was similar. This is due to the overhead involved in

initializing the search.

The paths generated by both methods are similar, though

not identical due to the different grid resolutions. Figure 4

clearly demonstrates the changes in the path due to the

varying grid. However, because our method is intended for

use in rapid replanning, of note is that the first action

generated by both methods is the same. As the robot moves

and replans, the finest resolution of the grid also moves,

continually producing optimal first actions.

B. Dynamic obstacles: single case

The second test case, shown in Figure 6, included a person

moving directly toward the robot’s initial position. In this

model, a person is assumed to have a “personal space” buffer,

which takes the shape shown in Figure 5. The cost is based

on the relative velocity between the person and the robot,

Fig. 4. Path found with a varying grid cell size. Red circles indicate
distances at which cell size increased (2m and 4m from the robot). Search
required 555 node expansions.

Fig. 5. Personal space cost function for a person moving along the Y-axis,
with a relative velocity of 1m/s with respect to the robot. Greatest cost is
centered over the person at point (0,0). Cost is computed by composing two
Gaussian functions.

and the shape of the cost function is based on empirical

findings from human studies literature (e.g. [16], [17]). The

costs move with the person, requiring the robot to predict

the person’s path; currently the person is assumed to travel

in a constant direction.

On a constant grid, the search expanded 29894 nodes

and took an average of 0.73 seconds per search (averaged

over 10 runs). Obviously, this speed is sub-optimal for a

robot moving in real-time—in our example, the robot would

have traveled about 40cm before reacting to any unexpected

changes in the world.

As in the previous experiment, we performed the same

search using varying grid cell sizes of 0.2m, 0.4m, and 0.8m.

This setup is shown in Figure 7. This search expanded only

11724 nodes, taking an average of 0.26 seconds per search.

Note that this search required only about one third the search
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Fig. 6. Path found on a constant grid cell size of 0.2m. Robot is in blue,
goal is in yellow, and a person (with personal space cost) is in orange. The
person is moving toward the top of the image. Search required 29894 node
expansions.

Fig. 7. Path found with a varying grid cell size. Red circles indicate dis-
tances at which cell size increased. Search required 11724 node expansions.

time as the pure A* search. Furthermore, the planner is able

to run fast enough to replan 4-5 times per second.

As before, the two methods produce similar but not

identical paths; again, the first action is the same in both

approaches.

C. Dynamic obstacles: repeated tests

To determine whether the variable-grid planner would

produce the optimal first action in all cases, we ran a set

of 100 scenarios. Each scenario was similar to the ones

given above, but with random start and goal locations for

the robot and a single person with a random start location

and orientation. The various locations were constrained to

certain sub-regions of the map, as shown in Figure 8. Each

scenario was run using A* on a static grid and on the variable

grid set up as described above.

The variable-grid approach searched significantly fewer

nodes than the static-grid method (average ratio of 0.33,

Fig. 8. Regions from which scenarios were drawn. The robot always began
somewhere in the “Robot start” region, facing downward. The person began
with a random orientation in the “Person start” region.
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Fig. 9. Search times versus number of nodes searched, representing one
hundred complete runs (including planning and execution cycles) of the
scenario shown in Figure 7.

p < 0.01 in a one-way ANOVA) and took significantly less

time (average ratio of 0.63, p < 0.01 in a one-way ANOVA).

In 87% of the trials, the first action found using both methods

was identical. In all cases, the varying-grid approach took

less time than the identical static-grid search.

D. Navigation

Finally, we ran several complete simulations with the

robot planning and navigating to the goal, as in the scenario

shown in Figure 7. That is, the robot navigated to a goal

approximately 10m away, around a corner, while a person

traveled directly toward the robot. The simulator added noise

to the person’s traverse, so that each run of the simulation

was not identical. The robot generated new plans as quickly

as possible, while navigating at a default speed of 0.5m/s.

The robot followed the generated plans using the Pure Pursuit

path-following algorithm [18], which guides the robot back
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onto the path if it strays or if a new path is planned. Each

plan was followed until a new plan was received. Figure 9

shows the results of one hundred complete path traversals,

composed of 20,106 planning cycles (approximately 200

plans generated per traversal). The longest-running search

took 0.43 seconds, expanding 14,459 nodes. However, 92.8%

of the planning cycles were completed in less than 0.1

seconds (searching less than 3500 nodes), which corresponds

to the data rate of the laser sensor. Even with occasional

outliers of half-second searches, our planning method is

capable of reacting to real-time changes in the environment.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented a straightforward method

for improving the search speed of an A* planner. Our method

runs quickly enough to allow the algorithm to perform

repeated searches in real time, which we have verified in

simulation.

Our research focuses on situations where a robot is moving

toward a goal amidst moving obstacles and where the obsta-

cles may cause changes to the cost function (e.g. personal

space around a human). Typical replanning algorithms are

unable to handle these moving obstacles and complex cost

functions. Our approach is instead to replan from scratch

with each iteration of the planner, but by modifying the

search space, each search can occur rapidly. Rather than use

a regular grid, our approach is to increase the grid cell size

outward from the robot’s start state. This results in a coarse

path close to the goal, but a fine path near the robot. Since

this allows the planner to re-run rapidly, the coarse sections

of the path will never be executed. In this way, the planner

can keep up with a changing environment.

We have validated our approach in several simulated

scenarios, including planning and navigation cycles over a

10 meter traversal. We are currently beginning testing on a

physical robot operating in the real world.

Though our approach is straightforward, we feel that it is

a powerful solution to the complex problem of navigation in

dynamic environments.
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