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Abstract— In this paper, we present the use of
complementarity-based dynamic simulation algorithms for
kinodynamic motion planning. Dynamic simulation algorithms
are used as local planning methods in sampling-based motion
planning algorithms to find inputs that ensure the resulting
trajectory satisfies the dynamics constraints. However, the
inputs are not guaranteed to give collision-free path segments.
The inputs, chosen either by random sampling or from a
discretization of the available inputs, are rejected if the path
segment is not collision free. In cluttered environments, finding
a feasible input is difficult and sensitive to the duration ∆t of
application of the input, and to the discretization resolution
of the input set. When the collision constraints (or any
inequality constraints on the state of the robot) are modeled as
a set of complementarity constraints, the dynamic simulation
algorithm gives a path segment that touches the obstacles and
a set of contact forces whenever the robot makes contact with
the obstacles. The sum of the chosen input forces and the
contact forces transformed to the input space gives a control
input that guarantees a collision-free path segment (provided it
is within the actuator bounds). Thus in cluttered environments,
using a complementarity-based dynamic simulation algorithm,
we can find a feasible input that is relatively insensitive to
the choice of ∆t and the discretization resolution of the
input set. We present simple simulation examples showing the
advantages of our algorithm in cluttered environments.

I. INTRODUCTION

The motion planning problem for a single robot subject

to kinematics, dynamics, and collision constraints can be

formulated as an optimal control problem [11], [6]. However,

in practice it is possible to solve this problem only for

very simple cases. Finding an exact time-optimal trajectory

for a point mass (with bounded velocity and acceleration)

moving among polyhedral obstacles in R
3 has been proven

to be NP-hard [5]. Therefore, sampling-based randomized

techniques [7], [12], [13], [11] that try to provide inputs

such that the robot’s state satisfies differential constraints

(kinematic and dynamic constraints) and collision constraints

are now prevalent. The basic idea is to form a graph-based

representation of the state space starting from some state that

satisfies the constraints. In the basic algorithm, an input is

randomly chosen from the set of inputs to act for some time

∆t, the equations of motion are integrated by calling the

dynamic simulation module, and the state at time t+ ∆t is

obtained. If the entire path is collision free, the state is added

as a node to the graph and the input is stored; otherwise,

another input is chosen at random from the input set. The

process is then repeated until the start and goal states belong

to the same connected component of the graph. Any path on

this graph from the start to the goal state gives a feasible

motion plan. Note that the sampling is done over the space

of possible inputs (or actions) to the system and the output of

such sampling-based algorithms is a sequence of piecewise

inputs.

In this paper, we present the use of complementarity-

based algorithms for dynamic simulation and point out the

advantages of such methods in the context of sampling-

based kinodynamic motion planning problems where col-

lision avoidance is a key requirement. The role of the

dynamic simulation algorithms in current sampling-based

motion planning methods is to ensure that the state tra-

jectories obtained satisfy the differential constraints. Our

approach, in addition to ensuring satisfaction of differential

constraints, also ensures that we obtain state trajectories and

inputs that satisfy collision constraints. The complementarity

conditions encode the physical constraint that two objects

cannot interpenetrate. If we use complementarity-based mod-

els for dynamic simulation, and simulate for a time ∆t1

using a given input we will get non-zero contact force values

when the objects touch in that time interval; we can use a

prescribed safety distance so that the forces become non-zero

when the objects are a safe distance apart. The end state

at time t + ∆t is collision free. Moreover, we can obtain

the input that ensures that the whole path is collision-free

by adding the (suitably transformed) virtual contact forces

to the input forces. This has the following advantages: (a)

We always get a collision-free path segment along with the

corresponding input forces (provided the input forces do not

violate actuator force constraints). Thus when the path is not

collision free, we do not waste any computation unlike in the

conventional method. (b) Using our method, we can obtain

feasible inputs that are outside the set of primitives, thus

essentially enhancing the input set available for planning,

even when we start with a simple set of hand designed

primitives. When the input set is just the set of motion

primitives, there may be no input in this set of primitives

1This is not the same as the time step used in the dynamic simulation
module, i.e., numerical integration of the differential equations which may
be much smaller than ∆t.
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that gives a feasible path for that time step.

The outline of the rest of this paper is as follows: In Sec-

tion II we provide a brief overview of the literature on robot

motion planning with differential constraints. In Section III

we provide a brief description of the complementarity-

based dynamic state evolution models and sampling-based

motion planning algorithms with differential constraints. In

Section IV we describe the changes we propose to the

basic RRT (rapidly exploring random tree) algorithm and

discuss its advantages. In Section V we present two simple

simulations to illustrate the key features of our algorithm.

Finally, we present our conclusions and outline future work.

II. RELATED WORK

The problem of finding an exact time-optimal trajectory,

from a given start state to goal state, for a point mass with

bounded velocity and acceleration moving among polyhedral

obstacles is NP-hard [5]. Approximation algorithms have

been proposed for systems with decoupled dynamics that are

polynomial in the combinatorial complexity of the number of

obstacles [4], [3]. However, these algorithms are exponential

in the dimension of the configuration space. For practical

purposes there are three basic approaches for kinodynamic

motion planning problems: (a) Decoupled approach [18] (b)

Potential field based methods [8], [9], [16] (c) Sampling-

based approaches [12], [7]. In the decoupled approach the

problem is divided into a path planning and a trajectory

planning problem. In the path planning stage a path is

obtained for the robot that satisfies the geometric (collision)

constraints and in the trajectory planning stage this path is

converted to a trajectory while satisfying the dynamics con-

straints. Both the path planning problem and the trajectory

planning problem have been studied extensively [1], [11].

The limitation of this method is that it may not be possible to

convert the path into a trajectory satisfying all the dynamics

constraints.

In potential field methods, an artificial attractive field

is generated in the configuration space with the goal as

its minimum and repulsive fields are generated around the

obstacles. The robot then follows the steepest gradient on the

resultant field to reach the goal. However, the robot may get

stuck in local minima and there is no guarantee that the robot

will reach its goal (except for a class of environments called

star-shaped environments [16], where the potential function

is called a navigation function). In other words, neither of

the two approaches described above are complete, i.e., they

may not find a feasible solution even though one exists.

Sampling-based approaches build a graph-based represen-

tation of the free state space such that the start and goal states

belong to the same connected component of the graph. There

are two main approaches (notable exception being [10])

in the sampling-based randomized algorithms literature: (a)

Rapidly Exploring Random Tree (RRT) algorithm [12]2 and

2Lavalle distinguishes between RRTs and rapidly exploring dense trees
(RDT) in [11] where the distinction takes into consideration deterministic
sampling. This distinction is not important here and we will discuss in the
context of RRTs. All of the discussion holds for deterministic sampling.

(b) Expansive space tree algorithm [7] (terminology adopted

from [1]). The basic difference between the two methods is

in the procedure used to bias the connectivity graph (tree)

towards unexplored regions of the state space (i.e., choice of

the node to expand). The RRT algorithm generates a random

sample and tries to connect the nearest node on the existing

partial tree towards the random node. The algorithm in [7]

maintains a weight at the nodes of the tree based on the

number of samples that lie within a certain radius of the

node. The algorithm then tries to expand the nodes having

lower weight. There are various variations of these two

basic approaches [15], [13], but all of these are concerned

with heuristics on the choice of nodes to be expanded and

the number of trees to be maintained in the exploration of

the state space. For example, bi-directional RRT [13] is a

variation of RRT in which two trees are grown, one from the

initial state and one from the goal state. The common feature

of all these algorithms is that they choose a random input

and use numerical integration of the differential constraints

followed by collision checking when expanding a node. In

our work we propose a modification to the local planning

step of expanding a node and not the decision of which

node to expand. We will present our discussion based on

the basic RRT algorithm. The changes that we propose to

the basic RRT are also applicable to all the other variations.

III. BACKGROUND AND PROBLEM FORMULATION

In this section, we present the complementarity-based

model of collision-free dynamic state evolution of a robot

and pose the kinodynamic motion planning problem in a

formal setting. Let Q be the configuration space of dimen-

sion d, X be the state space, and U be the input (or action)

space of the robot. We assume X to be a smooth manifold

and U ⊂ R
m to be a bounded set. Let x = (q, ννν) be the state

of the robot where q is the configuration of the robot and

ννν = q̇ is the generalized velocity. The Lagrangian equations

of motion of the robot are [14]

M(q)ν̇νν + C(q, ννν)ννν + V(q) = τττ (1)

where M(q) is the mass matrix of the robot, C(q, ννν) is

the coriolis matrix and V(q) arises due to gravity and other

potential forces acting on the robot. If the robot is a rigid

body, ννν may be chosen to be the concatenated vector of

linear and angular velocities, whereas q may contain some

parametrization of orientation like euler angles, quaternions,

etc. In that case q̇ = G(q)ννν , where GTG is always a

multiple of the identity matrix. The generalized force, τττ ,

is the vector of all external forces on the robot and can be

written as

τττ = τττapp + τττ con + τττoth (2)

where τττapp are the actuator inputs to the robots, τττ con are

the contact forces (transformed to actuator space) acting on

the robot, and τττoth is the vector of any other types of forces

acting on the robot. Note that inequality constraints on the

states of the robot can be implemented by applying a virtual

force τττoth.
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The contact forces are usually unknown and have to be

determined as part of the simulation process. The magnitude

of the normal component of the contact forces is zero if the

distance between the two objects is greater than zero and

non-zero if the bodies are in contact. Thus, at each potential

contact, the product of the magnitude of the normal contact

force and distance between the two objects is always zero,

or they are orthogonal to each other. This is encoded by

the following equation (also known as a complementarity

constraint)

0 ≤ λin ⊥ ψin(q, t) ≥ 0 (3)

where ⊥ denotes orthogonality, ψin is a signed distance

function or gap function for the ith contact with the property

ψin(q, t) > 0 for separation, ψin(q, t) = 0 for touching, and

ψin(q, t) < 0 for interpenetration. The wrench due to the

normal contact force acting at any point on the body (say the

center of gravity of the link) is wiλin, where wi is a 6× 1
concatenated vector of the negative of the unit normal at the

contact point,−n̂i, and −ri×n̂i, ri being the vector from the

center of gravity to the contact point. The generalized contact

forces can be written as a sum of the generalized normal

forces and the generalized friction forces, i.e., τττ con = τττn+τττ f .

Since we shall be dealing with only virtual contacts in this

paper, we can disregard the friction forces. The generalized

normal forces at each contact i, i = 1 . . . nc, where nc is the

number of contacts are given by τττ in = JT
i wiλin where Ji

is the Jacobian upto ith contact point.

The state evolution model that satisfy the dynamics con-

straints and take into account the constraints on the state like

collision avoidance, joint limits, and velocity limits is:

M(q)ν̇νν + C(q, ννν)ννν + V(q) = τττapp +

nc
∑

i=1

JT
i wiλin + τττoth

0 ≤ λin ⊥ ψin(q, t) ≥ 0

f(q,ν, t) ≤ 0
(4)

The evolution of the state as a function of time, t, denoted

by x(t) = (q(t), ννν(t)), is called the state trajectory of the

robot and the time history of the applied control input, τττ (t),
is called the action trajectory. The state trajectory is called

a feasible state trajectory if it satisfies Equation 4, i.e., it

satisfies the equations of motion and avoids collision with

obstacles at each time instant. We denote the workspace of

the robot by W ⊆ R
n, n = 2, 3, the set representing the

robot by A, and the set representing the obstacles by O.

The motion planning problem with differential constraints

can be formally stated as:

Input: The sets W ,A,O, X, U as defined above, feasible

initial state xI , feasible set of goal states XG, and a possibly

unbounded interval T = [0, Tf ].
Output: An action trajectory τττ (t) for which the state

trajectory x(t) is feasible, i.e., satisfies Equation 4,

x(0) = xI , and there exists some t > 0 such that τττ (t) = τττT

and x(t) ∈ XG, where τττT is the termination input.

A. Discrete-time collision-free state evolution model

We now write down the discretized equations of motion for

numerical integration. We use a velocity-level formulation

and an Euler time-stepping scheme to discretize Equation 4.

Let tℓ denote the current time, and h be the time step. Use the

superscripts ℓ and ℓ+1 to denote quantities at the beginning

and end of the ℓth time step respectively. Using ν̇ ≈ (νℓ+1−
ν

ℓ)/h, q̇ ≈ (qℓ+1 − qℓ)/h, and hλn = pn we get the

following discrete time system. The discretized equations of

motion (considering only the collision constraints here for

exposition) to be satisfied at each time step are [17]:

Mν
ℓ+1 = Mν

ℓ + h(Wnλ
ℓ+1
n + λ

ℓ
app + λ

ℓ
vp)

qℓ+1 = qℓ + hνℓ+1

0 ≤ pℓ+1
n ⊥ ψn(qℓ+1) ≥ 0

(5)

where λn is the concatenated vector of contact forces and

each row of Wn is JT
i wi, with i = 1 . . . nc, nc being the

number of contacts. We note that in Equation 5, if we approx-

imate the distance function ψn(qℓ+1) with a Taylor’s series

expansion, we will have a (mixed) linear complementarity

system (i.e., (M)LCP, see [2] for a formal definition) to be

solved at each step. The variables to be solved for at each step

are qℓ+1, νννℓ+1 and λλλℓ+1
n . Since the mass matrix is positive

definite, the matrix defining the LCP is positive definite. This

implies that there exists a unique solution to the LCP at each

time step that can be obtained in polynomial time (in contrast

to general LCPs where the time taken for finding a solution

may be exponential in the number of variables [2]).

B. Sampling-based kinodynamic motion planning

Algorithm 1 RRT algorithm

BUILDRRT(xI )

Γ.init(xI );

for k=1 to K do

xrand ← RANDOMSTATE();

EXTEND(Γ,xrand);

end for

EXTEND(Γ, x)

xnear ← NEARESTNEIGHBOR(x,Γ);

if NEWSTATE(x,xnear,xnew,u) then

Γ.addvertex(xnew);

Γ.addedge(xnear,xnew,u);

if xnew = x then

return Reached;

else

return Advanced;

end if

end if

return Trapped;

The basic RRT algorithm is given in Algorithm 1 [12].

The tree representing the free configuration space is denoted

by Γ. The algorithm starts from the initial node and at each

iteration a new state that is biased towards a random state
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xrand is attempted to be added to the RRT (by calling the

function EXTEND). The choice of the nearest vertex on the

already existing tree xnear in function NEARESTNEIGH-

BOR depends on the definition of a metric in the state

space. We propose to make modifications to the function

NEWSTATE, which typically consists of the following steps:

1) An input u ∈ U is applied to the robot at state

x(t) = xnear for time ∆t (note the difference between

h and ∆t, h = N∆t, where N is the number of

integration steps) and the equations of motion of the

robot are numerically integrated to obtain the state

trajectory from x(t) to x(t + ∆t). The time ∆t is an

input parameter to be chosen. The geometric collision

constraints are checked after each step in the numerical

integration and the simulation is terminated if there is

a collision.

2) The input u may be chosen at random, or if the set

U is finite then step 1 can be repeated for all possible

inputs. In the former case, the state at time t + ∆t
is added as a node to the tree and u is stored if the

trajectory is collision-free. In the latter case, among

all the collision-free trajectories, the one where x(t+
∆t) is nearest to the random state is chosen and the

corresponding input is stored.

Although the different kinodynamic planners differ on the

details of which node to expand, the dynamic simulation

subroutine in function NEWSTATE is virtually identical in

all kinodynamic planners. Irrespective of the details, the

performance of all sampling-based algorithms are limited by

the following:

1) The geometric constraints (or collision constraints) are

not considered during the dynamic simulation step (i.e.,

during each step of the numerical integration).

2) A finite set of inputs and a time of application of the

input (∆t) is usually used in the dynamic simulation

step. At each step, the results obtained will be depen-

dent on ∆t and the input set chosen; thus the algorithm

may not give a collision-free trajectory for the step

even if one exists.

In the next section, we argue that the use of complementarity-

based dynamic simulation (i.e., using Equation 4 instead of

Equation 1) can help in mitigating the above limitations.

IV. COMPLEMENTARITY-BASED PLANNER AND ITS

ADVANTAGES

In this section we propose the use of Equation 4 as the

discrete-time dynamic state evolution model that takes into

account the collision constraints. Since we want the bodies to

avoid collision we can rewrite the complementarity constraint

for collision in Equation 5 as

0 ≤ pℓ+1
n ⊥ ψn(qℓ+1)− ǫ ≥ 0 (6)

where ǫ ≥ 0 is a parameter specifying the safety distance to

the obstacle that the robot must satisfy. Conceptually, we can

think of this as a virtual obstacle that the robot can just touch.

This ensures that any trajectory that satisfies Equation 5 with

the collision constraints modified as above is collision free.

During the numerical integration of the equations of

motion (i.e., from the solution of Equation 5) we obtain the

contact wrenches (wiλλλin for the ith contact) that arise when

the robot comes in contact with the virtual obstacle. Thus, at

the end of the simulation we have a time history of the virtual

contact wrenches over the interval [t, t + ∆t] along with a

trajectory where the robot maintains a safe distance from

the obstacle boundary. If we transform the virtual contact

wrenches to the actuator space and add it to the input, then

we obtain an input (τττapp +
∑nc

i=1 JT
i wiλλλin) that produces

safe trajectories. If the input is within the set U , then we have

a feasible input. Usually the set U is defined by simple upper

and lower bound constraints. Moreover, in the equations of

motion we have the values of contact wrenches transformed

to the actuation space (i.e., JT
i wiλλλin). Thus, after each step

of the numerical integration process, we can check if the

input required to satisfy the safety distance is feasible or not

at very little computational cost and terminate the simulation

if the input becomes infeasible. Moreover, we can also check

at each step of the numerical integration if the state of the

robot is changing; if not, we can terminate the simulation

because a stationary state implies that the robot is stuck when

using the chosen input. Thus our proposed modification (of

considering the geometric constraints during the dynamic

simulation step) to the sampling-based algorithms has the

following advantages:

1) We either get a collision-free path and corresponding

feasible inputs at the end of the dynamic simulation

step, or can terminate the simulation early if the

input required to obtain a collision-free trajectory is

infeasible. Moreover, we also get the information of

whether the robot gets stuck (i.e., its state does not

change over two consecutive iterations) for the chosen

input and can terminate the simulation after the robot

reaches that state. At this state, any input in the conic

hull of the negative contact wrenches will not change

the state of the robot. Thus, we can easily check if

a chosen input vector changes the state of the robot

when it gets stuck. Alternatively, we can easily find

a vector that releases the robot from the stuck state

by checking if it lies in the conic hull formed by the

contact wrenches.

2) When the input set of primitives is a finite set that

is a subset of the feasible input set obtained by

discretization (say), there may be no input in the

discretized set that provides a collisionfree trajectory

in the conventional algorithms. However, with our

algorithm, we may be able to obtain feasible inputs

that lie outside the set of the primitives. Thus, we are

not limited to the set of inputs that we start out with.

Effect of choice of ∆t and input: As is evident from the

discussion on sampling based algorithms in Section III-B the

simulation time ∆t is a parameter to be chosen. Moreover,

when the input set is given as a compact set, the number of

possible inputs is infinite. Thus, at each simulation step it is

not possible to check all possible inputs, and a subset of the
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Fig. 1. Schematic sketch of a situation where it is difficult to find a path
using motions only along two directions.

available inputs is chosen at each step. This subset may be

randomly drawn or formed by discretizing the available input

set. We illustrate the effect of this with a simple example

shown in Figure 1(a). We consider a point particle that has

to move from the start position S to goal G. The particle can

be independently actuated along the x and y axis (horizontal

and vertical directions in the figure). As can be seen from

Figure 1(a), if we use Equation 1 for the dynamics the

planning algorithms will find a solution if and only if the

value of ∆t is chosen small enough and the input is small

enough such that an end state lies in the dashed triangular

area. In contrast, the solution from our algorithm (shown by

the bold line) is independent on the choice of ∆t. In our case

the choice of ∆t determines how fast the solution is found

but not whether the solution can be found or not.

We also note that in our algorithm there is also more flex-

ibility to the choice of inputs. In the example in Figure 1(a),

we will get a solution if we choose the maximum possible

inputs along the two directions and an input directly towards

the goal. This is what we use in our implementations; an

input along each of the independently actuated coordinates

and an input directly towards the goal. Using the inputs

along the coordinates only is not enough as can be seen

in Figure 1(b). When the normal to the obstacle at the point

of impact directly opposes the input the robot gets stuck.

When we have an input that takes the robot directly

towards the goal, in our algorithm, the robot may reach the

goal even if the line joining the start and goal intersects an

obstacle. This happens if the obstacles are arranged such

that the line joining the robot’s current state to the goal is

not normal to any of the obstacles it is intersecting with.

For example, in Figure 1(b), if the robot moves along the

line joining S and G it will reach the goal. However, in

Figure 1(a), the robot will not reach the goal. Note that if

the projection of the motion of the robot in a time-step on

the line joining the start and goal is always positive then the

robot always moves toward the goal. When the line joining

the robot’s state and goal is not normal to the surface of the

obstacles it intersects, the above condition is true. Hence the

robot always reaches its goal. The input required to reach the

goal is obtained from the applied input plus the transformed

contact wrenches.

Implication for Cluttered Environments: The choice of

the simulation time ∆t and the input set becomes critical in

cluttered environments because the probability of collision

is high. In such environments, it is difficult to find a fea-

sible input, and sampling-based algorithms for kinodynamic

planning can perform poorly in such environments. Thus, in

cluttered environments, i.e., environments characterized by

the presence of narrow passages, our modification would im-

prove the performance of sampling based algorithm since it

always finds a collision-free trajectory and the corresponding

input. More specifically, if we arrive near a narrow passage

during the construction of the graph, then we can easily find

inputs that will take us through the passage. Our algorithm

does not say anything about how to get near the narrow

passage, which is an open problem.

Completeness properties of our algorithm: The change

we are proposing to the existing sampling-based randomized

planning techniques enhances the reachability set at each

point. In other words, for any variation of the randomized

sampling-based techniques, the set of reachable points from

any given state, using our complementarity-based dynamic

simulation algorithm is a superset of the set of reachable

points using the conventional dynamic simulation. Thus all

the probabilistic completeness [7], [12] results proved for

sampling-based algorithms still hold for our variation.

V. SIMULATION RESULTS

In this section we present some simulation examples

illustrating our method. The first example shows a scenario

where a point robot reaches the goal under the action of a

single force directed towards the goal. The obstacles hinder

the motion along the direction of motion. The environment

in this case is not a star shaped environment and hence it

is not possible to design navigation functions that ensure

that the goal can be reached. The second example is that

of a 2R planar manipulator moving among three obstacles.

The problem is hand-designed so as to contain two narrow

passages in the free configuration space connected by a

relatively large free space region. The start and the goal

configurations are placed at the two ends of the narrow

passage. In this case we use our modified version of the

RRT algorithm to obtain the solution trajectory.

A. Example 1: Planar point robot

0 1 2 3 4 5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

S 
G

Fig. 2. Path of a point robot moving through a narrow passage formed by
the sawtooth shaped obstacles.

This example illustrates planning with a single force

towards the goal (obtained with a potential field with minima
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at the goal) in the presence of obstacles. We consider a

2D point robot moving in a rectangular environment with

sawtooth shaped obstacles (see Figure 2). The sawtooth

shaped obstacles form a narrow passage in the environment

and the start and goal configuration are located on opposite

sides of the obstacles. Let q = (x, y) be the configuration

and ν = q̇ be the velocity of the robot. The discrete time

dynamic model for state evolution of the system is

0 = −Mν
ℓ+1 + Mν

ℓ + Wnpn + papp

0 ≤ pn ⊥ ψn(qℓ) + WT
n ν

ℓ+1 ≥ ǫ
(7)

where M is a 2 × 2 diagonal matrix with the mass m of

the robot as the diagonal entries, Wn is a 2 × 1 vector

giving the normal at the contact point, ψn(qℓ) is the distance

of the robot to the obstacle at time ℓ, and ǫ is the safety

distance from the obstacle. Both the distance and the normal

at time ℓ are obtained from a collision detection algorithm.

The applied impulse is given by:

papp = −h(Kp(q
ℓ − qg) +Kdq̇

ℓ) (8)

where Kp and Kd are diagonal matrices with positive entries,

h is the time step, and (q,ν) = (qg,0) is the goal state. The

unknowns in Equation 7 are ν
ℓ+1 and pn. Thus, we have a

system of 3 equations and 3 unknowns.

For generating the results, we have used the following

data: m = 1, ǫ = 0.01, h = 0.01, each diagonal entry of Kp

and Kd is 1, initial state is (0.4, 0.9, 0, 0) and goal state is

(5, 0.5, 0, 0). We simulated the system in Equation 7 using

papp given by Equation 8. The contact impulse obtained

from the simulation Wnpn is then added to the applied

impulse to obtain the collision-free input impulse. The path

taken by the point robot to reach the goal under the action

of the collision-free input impulse is shown in Figure 2. The

approach of the robot to the goal state (when the x-coordinate

of the robot is greater than 4.5) clearly shows the effect of

dynamics. The robot does not go straight to the goal because

of its non-zero momentum orthogonal to the goal direction.

Ignoring the dynamics would give a solution path straight

to the goal at the end. Figure 3 shows the velocities of the

robot as it moves towards the goal. When the robot reaches

the safety distance from the wall, the x-component of its

velocity drops to 0 and then becomes less than 0 as the y-

momentum carries it downward along the obstacle. Near the

end, when there are no obstacles, the velocities decay to 0
because of the damping term in the applied force. The basic

RRT method could not find a solution to this problem with

∆t = 0.1 seconds and the input set consisting of a random

vector, a force towards the goal given by Equation 8, and

u = {

(

1
0

) (

−1
0

) (

0
1

) (

0
−1

)

} (9)

Note that this is an illustrative example only, and it is easy

to find start and goal positions in this example that cannot be

reached by only a single force towards the goal. However,

using the force towards the goal along with the input set in

Equation 9 we can reach the goal.

B. Example 2: 2R Manipulator

r1

r2

q2

q1
y

x

l1

l2

Fig. 4. A planar manipulator with 2 revolute joints (2R manipulator).

The second example is that of a 2R manipulator (a planar

manipulator with 2 revolute joints, see Figure 4) that has

to move from a start to goal configuration in a gravity free

environment with three circular obstacles (see Figure 9). The

free space of the manipulator relevant to the problem along

with the start and goal configurations is shown in Figure 5.

The joint angles q = (q1, q2) are the configuration of the

robot and ν = q̇ are the joint angle rates. The discrete time

dynamic model for state evolution of the system is

0 = −Mν
ℓ+1 + Mν

ℓ − pvp + Wnpn + papp

0 ≤ pn ⊥ ψn(qℓ) + WT
n ν

ℓ+1 ≥ ǫ
(10)

where the mass matrix and Coriolis force term are given by

M =

[

α+ 2β cos(q2) δ + β cos(q2)
δ + β cos(q2) δ

]

pvp =

[

−β sin(q2)q̇
ℓ
2 −β sin(q2)(q̇

ℓ
1 + q̇ℓ

2)
β sin(q2)q̇

ℓ
1 0

] [

q̇ℓ
1

q̇ℓ
2

]

α = Iz1 + Iz2 +m1r
2
1 +m2(l

2
1 + r21)

β = m2l1r2

δ = Iz2 +m2r
2
2

(11)

where mi, li, ri, Izi, i = 1, 2, are the mass, length, distance

of center of gravity (cg) from joint frame, and moment of

inertia about an axis passing through the cg and perpendicu-

lar to the plane for the two links respectively. The vector of

contact impulse magnitudes in Equation 10 is of size 6 × 1
and that of Wn is 2×6. Each column of Wn is JT

k ŵk where

ŵk is the 2 × 1 unit normal vector at the contact point and
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Jk is the 2× 2 Jacobian up to the contact point. Depending

upon the link in contact the Jacobian is

J link1 =

[

xc1 0
yc1 0

]

J link2 =

[

xc2 xc2 − l1 cos(q1)
yc2 yc2 − l1 sin(q1)

]

The input set consists of a force directed towards the goal

given by Equation 8 and those given by Equation 9. From the

initial state, we apply these 5 inputs. We repeat this procedure

starting with the states obtained at the previous level till the

robot reaches the goal. If the robot gets stuck and a particular

input does not move it from that state, we reject the input

after two time-steps of dynamic simulation. Note that this

is a very basic version of RDT where we are growing the

tree by expanding all the nodes. We obtain a solution to

our problem in three iterations. The number of nodes in the

tree is 27. In our simulations we have used the following

data: m1 = m2 = 1, l1 = l2 = 1, r1 = r2 = 0.5,∆t =
2s, h = 0.01s, initial state [0.22π, 1.94π, 0, 0], and goal state

[0.5π, 0.1π, 0, 0]. The proportional and derivative gains, Kp

and Kd, in Equation 8 are assumed to be 2 × 2 diagonal

matrices. Each diagonal entry of Kp is 3 and Kd is 4. The

basic RRT could not find a solution to this problem with

∆t = 0.1 seconds.

Figure 5 shows the collision-free path of the robot in

configuration space that we obtained. Figure 6 shows the

variation of joint angle rates in our solution as the manipula-

tor moves from start to goal state. Figures 7(a) and 8(a) show

the input torques at joint 1 and joint 2 respectively, during the

search stage. The contact impulses projected to the actuator

space are shown in Figures 7(b) and 8(b). The final collision-

free input impulses at each joint that takes the manipulator

from start to goal state are shown in Figures 7(c) and 8(c).

Figures 5, 9, and 10 show some snapshots of the path of the

manipulator in configuration space and work space.

q
2

q
1

S 

1 

G 2 

3 

4 

5 

6 7 

8 

Fig. 5. Configuration space of the 2R manipulator. The white region
shows the free space. The black squares show configurations along the
collision-free trajectory. The positions of the manipulator in the workspace
corresponding to the configurations are shown in Figures 9 and 10. The
points S and G are the start and goal configurations respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have shown the use of complementarity-

based dynamic simulation in kinodynamic motion planning
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Fig. 6. Variation of the joint angle rates of the 2R robot for motion from
start to goal configuration in Figure 5.
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Fig. 7. (a) The applied torque at joint 1 used for dynamic simulation
(b) The contact impulses transformed to joint 1 obtained from dynamic
simulation using the input in subplot (a). (c) The final collision-free input
torque impulse for joint 1.

problems and pointed out its advantages in solving motion

planning problems in cluttered environments. Since the con-

tact constraints are directly incorporated in complementarity-

based dynamic models, the numerical integration always

provides us with a collision-free trajectory and the contact

forces when “contact” occurs. We can thus transform the

contact forces to the actuator space and obtain an input that

gives us a collision-free trajectory by adding it to the input

applied for the simulation. This observation can be used for

kinodynamic planning in cluttered environments to reduce

the sensitivity of the planning algorithm to the choice of

the initial discrete input set and duration of application of

the input (∆t). We have illustrated this using two simple

examples. We are currently working on an implementation

to illustrate our algorithm in 3D environments and to perform

detailed comparison with existing algorithms.

Future Work: There are various directions for extending

the current work. Firstly, we note that the point particle

example in our paper also shows that even in the presence of

obstacles along the direction of steepest gradient, using our

algorithm, we can reach the goal by using a single attractive

potential function at the goal. This problem cannot be solved
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Fig. 8. (a) The applied torque at joint 2 used for dynamic simulation
(b) The contact impulses transformed to joint 2 obtained from dynamic
simulation using the input in subplot (a). (c) The final collision-free input
torque impulse for joint 2.
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Fig. 9. The first four configurations in the path of the 2R robot for motion
from start to goal configuration in Figure 5.

by the method of [16] since the environment is not star-

shaped and it may not be possible to design a navigation

function. Intuitively, the complementarity constraints in the

dynamic model can be thought of as a non-smooth repulsive

potential that is activated only when the point reaches the

boundary and is zero otherwise. Even in this example, there

are start and goal positions for which our algorithm will

get stuck if we use just a single attractive potential. An

interesting question is the connection of our method to

potential field methods. Secondly, we note that we have

restricted our attention to problems without contact (or for

problems involving collision avoidance only). In principle

our method also applies to applications where the robot

may be in contact with other objects (such as in assembly

planning). We also want to explore this avenue further.
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