
 
 

  

Abstract—This paper introduces a method for computing the 
shape of a continuously-flexible (continuum) robot in 3-D space 
which includes gravity loading by applying Cosserat rod theory 
to a continuum robot. With this theory, the shape of the rod can 
be determined using force-torque balance equations obtained 
from a simple free body diagram that represents the continuum 
robot. Real-time performance of 125 Hz makes this approach 
viable for the control of a continuum robot, enabled by avoid-
ing boundary-value conditions in the solution. 

I. INTRODUCTION 
ontinuum robots, unlike traditional rigid-link robots, 
find their inspiration in the arm of an octopus, the trunk 

of an elephant, and the curl of the mammalian tongue. These 
biological structures, termed muscular hydrostats [1], rely 
entirely on soft, muscular tissue to grasp, manipulate, and 
explore a wide variety of objects. Similarly, continuum ro-
bots consist of a flexible structure whose shape is deter-
mined by all forces and moments experienced by the robot, 
in contrast to traditional rigid-link robots which exhibit large 
bending only at joints and whose shape can be determined 
by kinematics. Like an elephant trunk, these robots can per-
form whole-arm grasping [2] to grasp and manipulate ob-
jects over a wide range of sizes [3]. Like the mammalian 
tongue, they curl and stretch to deliver sensors to hard-to-
reach areas [4]. Just as octopi use their arms to strike with 
amazing speeds in order to catch their prey [5], so conti-
nuum trunks can perform open-loop grasping [3]. 

This wide variety of abilities results in a number of unique 
applications for continuum robots. In the medical field, ap-
plications include use as active cannulas [6, 7], endoscopes 
[8], colonoscopes [9], in minimally-invasive surgery [10], 
and much more. They also find use in hot-cell decontamina-
tion [11, 12], undersea manipulation [13, 14], and disaster 
relief [15]. 

However, despite a number of prototypes constructed 
[16], models which ignore the non-linear effects of gravity 
loading produce significant errors when calculating a conti-
nuum robot’s shape. This makes shaping these robots to per-
form useful tasks difficult with the current methodology, 
while models which incorporate gravity loading have not 
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been applied to real-time control because these more accu-
rate models require a significant amount of time to compute 
trunk position [17]. This paper seeks to close this gap by 
applying modeling techniques which account for all forces 
and moments applied, such as gravity-induced sag, yet retain 
the efficiency to be applied to real-time control of a conti-
nuum robot. 

II. BACKGROUND AND RELATED WORK 
A model which predicts the shape of a continuum robot 

with high accuracy enables fine control of that robot’s shape. 
The difficulty in determining this model and in computing it 
in real-time, in order to shape a continuum robot, leads to 
several approaches. 

One widely-adopted approach [6-9, 18, 19] simplifies the 
problem by neglecting the effects of gravity in determining 
the shape of the continuum robot, yielding shapes composed 
of piecewise circular arcs. The resulting analytical solutions 
produce excellent real-time performance at the expense of 
accuracy. Experiments with continuum robots whose shape 
is calculated based on this approach demonstrate significant 
errors in predicted verses actual trunk tip location [17, 20]. 

Pioneering work investigating the locomotion of snakes 
[21] developed two curves (clothoid and serpenoid) which 
approximates the shape of a snake’s 2-D trajectory. While 
helpful, it does not provide a method for modeling the shape 
of a continuum trunk, which differs significantly in mechan-
ical construction when compared to a snake. A second me-
thod [22] involves first choosing a curve with convenient 
mathematical properties, then fitting a robot to that curve. 
However, the difficulty of performing this matching for a 
continuum robot equipped with a finite number of actuators 
and constrained by sag due to gravity results in few applica-
tions of this method. 

A third choice involves modeling a continuum robot as a 
curve in space shaped by shear, extension, and bending. An 
orientation assigned to each point along this curve gives the 
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Fig. 1 Prototype continuum robot. The approach described in this paper 
should describe its shape. 
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plane in which the cross-section of the rod lies. This formu-
lation is termed a special Cosserat rod. While a continuum 
robot is not physically composed of a set of infinitesimally 
small points in space which comprise a curve, the slender-
ness of the robot compared to its length suggests this as a 
reasonable approximation, which is experimentally validated 
later in this paper. More detailed models which track the 
location of each point composing the rod exist; however, the 
increased accuracy of these models is unlikely to justify the 
higher computational effort required to use them. Rather, 
this paper builds upon the theory of Cosserat rods which has 
been refined through centuries of development by eminent 
mathematicians and physicists and is successfully applied in 
the fields of mechanical, civil, and structural engineering. 

In particular, as described in [23], James Bernoulli began 
in the late 1700s the development of a theory which de-
scribes the bending of a rod in two dimensions under the 
influence of forces and moments. Later work by Euler and 
Daniel Bernoulli led to their classical theory of rod deforma-
tion in 2-D. Contributions by Kirchhoff, Love, and others led 
development of the theory to 3-D, which the Cosserats gene-
ralized in the early 19th century. Shear forces incorporated by 
Timoshenko and contributions by many others led to its 
present form in Antman’s seminal work. 

All works which apply rod theory to continuum robots 
likewise define a continuum robot as a series of points and 
associated orientations which define a curve in space, though 
not all make use of special Cosserat rods. Specifically, a 
series of papers by Ivanescu (see e.g. [24]) derive the dy-
namics of linear, elastic rods in 3-D based on an energy-
work relationship developed by the author, which then pro-
vide the basis for various control techniques applied to the 
trunk. In contrast, work in [25] utilized variational methods 
for Cosserat rods founded in classical mechanics developed 
by Love to determine the dynamics of linear, elastic rods in 
2-D actuated by cables, then uses this formulation to prove 
the stability of an associated control system. Finally, [17] 
applies Antman’s work in Cosserat rods [23] to a continuum 
trunk in 3-D, which provides significantly improved agree-
ment with a physical trunk when compared to simpler mod-
els. 

However, no attempt was made to apply these results to 
control a robot, or investigate real-time performance. This 
paper presents the development of this theory in a form 
amenable to real-time control of a multi-section continuum 
robot in 3-D through analysis of the statics of rod deforma-
tion. 

III. STATICS OF ROD DEFORMATION IN 3-D 
Defining the shape of a rod and therefore the shape of a 

continuum robot requires consideration of three topics. First, 
rod kinematics provide a general method for defining a 
space curve with an associated orientation. Next, a section 
on mechanics presents a force and moment balance, which 
provides an opportunity to include the deformation due to 
gravity in the equations. Finally, constitutive equations relate 
forces and moments to kinematic displacements, while ini-
tial and boundary conditions provide information necessary 
to complete the solution of the problem. 

A. Kinematics 
A special Cosserat rod is parameterized by its reference, 

unstretched length by the variable s as shown in Fig. 2(b).  
Choosing the three-element vector ( ) 3s ∈r \  to specify the 
location of a point on the rod, ( )0 cmr  gives the rod’s loca-
tion at its origin while ( )40 cmr  gives the location of a point 
40 cm from the origin, measured before the rod’s length 
changes due to stretching or compression. In addition, a rota-
tion matrix ( ) ( )3s SO∈R  specifies the orientation of the rod 
with respect to a global coordinate frame by establishing a 
local coordinate frame attached to the rod at ( )sr . Therefore, 
for any vector a, l=a Ra  and Tl =a R a provides transforma-
tion between local and global frames. The appearance of the 
superscript l indicates specification in local coordinates; 
vectors or matrices with no superscript remain in the global 
frame. Finally, recording only local changes in translation 

( )l sv  and changes in orientation ( )l su  for an infinitesimally 
small section of the rod significantly simplifies the problem 
by postponing knowledge of overall, global rod shape until a 
final integration step. 

Physically, the spatial velocity vector 
T

1 2 3
l l l lv v v⎡ ⎤= ⎣ ⎦v  

as shown in Fig. 2(c) specifies shear along the local x and y 
axes in 1 2

lv…  and rod stretch or compression in 3
lv , where 3 1lv =  

denotes neither stretch nor compression, 30 1lv< <  compres-
sion (note the case 3 0lv =  of infinite compression is not al-
lowed), and 3 1lv >  stretch. Likewise, the spatial angular ve-
locity vector 

T

1 2 3
l l l lu u u⎡ ⎤= ⎣ ⎦u  pictured in Fig. 2(a) speci-

fies bending of the rod, where positive values indicate bend 
in a counterclockwise direction. Specifically, 1 2

lu…  specifies 
bending about the local x and y axes. By convention, the rod 
extends along the local z axis, so 3

lu  gives twist about the rod. 
This linear velocity causes changes to the rod’s position of 
( ) ( )l ls s=r v� , where a dot indicates derivatives according to 

s. In the global frame, 
 

 ( ) ( ) ( )ls s s=r R v� . (1) 
 
Likewise, angular velocity causes changes to the orienta-

tion of the rod of ( ) ( ) ( )ˆs s s=R u R�  where the hat indicates 
placing an angular velocity vector into a skew-symmetric 
matrix. Transforming to local coordinates for bending, 

 
  ( ) ( ) ( )ˆ ls s s=R R u� . (2) 

B. Mechanics 
A free-body diagram provides both force and moment 

(torque) balance equations. The force balance precedes the 
moment balance, since an essential substitution in the mo-
ment balance requires reference to results from the force 
balance. 

 
1) Force balance 

Consider a segment of the rod from point c to a point s on 
the rod illustrated in Fig. 3. Internal rod forces due to stret-
ching and shearing the rod, termed contact forces, are 

( ) ( )s c−n n , where ( ) 3s ∈n \  specifies the force applied to 
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this segment by the distal section of the rod (from s to the 
rod’s tip) while ( )c−n  gives the force applied to this seg-
ment by the proximal section of the rod (from the beginning 
of the rod to c). All other forces are termed body forces; 
gravity loading is one such force. Assuming these body 
forces applied at some point a on the rod are captured in 

( )af , then summing these forces over all points in the seg-
ment gives a total force of ( )

s

c
dξ ξ∫ f . Therefore, the overall 

balance is 
 
 ( ) ( ) ( )

s

c
s c dξ ξ− + =∫n n f 0. (3) 

 
Computing the partial derivative of  with respect to s, 

 
 ( )( )s s+ =n f 0� . (4) 
 

2) Moment balance 
The moment balance incorporates the effects of all forces 

applied at a distance and of applied moments (torques). Like 
the force balance, one moment results from bending of the 
rod ( ) ( )s c−m m . Forces in the rod applied at a distance 
produce the moment ( ) ( ) ( ) ( )s s c c× − ×r n r n . Body couples 
(analogous to body forces f, but for moments) are ( )

s

c
dξ ξ∫ l , 

and moments due to body forces applied at a distance pro-
duce ( ) ( )

s

c
dξ ξ ξ×∫ r f . Collecting terms produces 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(s

c
s c s s c c ξ ξ− + × − × + × +∫m m r n r n r f

( ))dξ ξl . Taking a partial derivative according to s then 
substituting (4) and noting that these terms must balance by 
summing to zero, ( ) ( ) ( ) ( ) 0s s s s+ × + =m r n l� � . Typically, 
there are no body moments, so ( ) 0s =l , producing an overall 
moment balance of 

 
 ( ) ( ) ( )s s s+ × =m r n 0� � . (5) 

 
Next, the constitutive equations relate the force 

T

1 2 3
l l l ln n n⎡ ⎤= ⎣ ⎦n  the rod exerts along the local x, y, and z 

axes at a specific point s, termed the contact force, to the 
displacements lv  defined above. Likewise, constitutive equa-
tions also relate moments (torques) 

T

1 2 3
l l l lm m m⎡ ⎤= ⎣ ⎦m  to 

bending lu  about the local x, y, and z axes. 
 

C.  Constitutive equations 
Constitutive equations define the deformation of a specific 

material resulting from an applied force or moment. Linear 
materials, such as many types of steel, obey Hooke’s law 
( )F k x= Δ . The nickel-titanium alloy Nitinol used for expe-
rimental validation in Section IV is Hookean at a constant 
temperature and low strain (< 1%), motivating a linear con-
stitutive equation which relates the shear force ( )l sn  applied 
by the rod at a specific point on the rod s to the change in 
shape ( )l sv  at that point.  

 
Fig. 2 In (a), a graphical definition of u, with local axes shown. A rod may bend about the local x or y axis or twist about the local z axis. Illustration (b) 
shows that a rod consists of a position ( )sr  and orientation ( )sR  defined at every point along the rod. Definition of ( )sR  creates a local coordinate frame at 
each point on the rod. In (c), shear strains lv  and bending strains lu  referenced to this coordinate system shape the rod. 

 
Fig. 3 The force balance considers a section of the rod from c to s, summing 
contact forces applied by that section to the remainder of the rod 

( ) ( )s c−n n  with body forces (such as gravity) ( )
s

c
dξ ξ∫ f . 
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Because the rod extends along one axis ee  (in the 3-D 
case, the local z axis), 1l

ev =  indicates the rest state (neither 
compressed nor stretched), whereas 0l

iv >  indicates defor-
mation for the other two axes. The constitutive equations are 
therefore 

 
 ( ) ( )( )l l

es s= −n D v e  (6) 
 
where [ ]( )1 2 3diag D D D=D . Likewise, constitutive equ-
ations which relate moments ( )l sm  in the local frame to 
local bending ( )l su  are 
 
 ( ) ( )l ls s=m Cu  (7) 
 
where [ ]( )1 2 3diag C C C=C . The kC  and kD  constants 
relate forces or moments to linear or angular displacements. 
Specifically, these constants are 1 1C EI= , 2 2C EI= , 3C =
GJ , 1 2 ,TD D GA= =  and 3 TD EA=  where E specifies the 
modulus of elasticity, G the shear modulus, I the second 
moment of area, J the polar moment of inertia, and TA  the 
cross-sectional area of the rod. 

D. Substitution and solution 
First, the choice of gravity as body force defines f in (3)-(4); 
note that dependence on s from this point forward is dropped 
to present more compact equations. The mass per unit length 
of the rod at some point c depends both on the density ( )cρ  
of the rod at that point and on the cross-sectional area ( )A c  
of the rod at c. Following convention, this is notated 
( )( )A cρ . Given an acceleration due to gravity g and a unit 
vector ge  specifying its direction, gravity then exerts a force 
of ( ) ( )( ) ga A a gρ=f e  to a point a on the rod. When neither 
A nor ρ  vary, this simplifies to ( ) ga Agρ=f e . Therefore, 
substituting this body force and (6) into (4), 

( )( )l
e gs Agρ∂ ∂ − + =RD v e e 0. Solving, 

 
 ( )( )1 T ˆl l l

g eAgρ−= − − −v D R e u D v e� . (8) 
 
Likewise, substituting (7) and (1) into (5) gives 

( ) ( )l l l
es∂ ∂ + × − =RCu Rv D v e 0. Solving, 

 
 ( )( )1 ˆ ˆl l l l l

e
−= − − −u C u Cu v D v e� . (9) 

 
Conveniently, use of (3) allows inclusion of a tip force F, 

such as a mass located at the end of the robot, through the 
initial condition for lv . Choosing fs s=  (where fs  specifies 
the unstretched length of the rod) and 0c =  (the beginning of 
the rod), the equation becomes ( ) ( ) ( )

0
0 fs

fs dξ ξ= + ∫n n f . 
Substituting (6) for ( )0n , choosing tip force ( )fs≡F n , re-
calling ( ) gs Agρ=f e , then solving, 
 
 ( ) ( )( )1 T0 0l

f g eAgsρ−= + +v D R F e e . (10) 

E. Evaluation using an ODE solver 
Table I summarizes the equations derived in this section 
which are needed by an ODE solver. Any arbitrary initial 
conditions can be chosen for r and R. Typically, the origin of 
the rod lies at the origin of the coordinate system, so that 

( ) [ ]T0 0 0 0=r . Likewise, R specifies the initial rod 
orientation. For example, if the rod is mounted so that it ex-
tends along the global x axis, then [ ]2 3 1=R е е е  where ie  
vectors represent vectors along the x, y, and z axes. In con-
trast, the initial bending ( )0lu  must produce a moment ap-
plied to the trunk’s tip, resulting in a boundary condition. 
From the constitutive equations, the tip moment 

( ) ( ) ( )l
f f fs s s=m R Cu . Therefore, after running the ODE, 

the error ( )fs−τ m  where τ specifies the applied tip moment 
allows a root-finding solver to guess a new ( )0lu  initial val-
ue until the error between computed and applied tip moment 
is sufficiently small. 

IV. IMPLEMENTATION AND EXPERIMENTAL VALIDATION 
A rod composed of a nickel-titanium alloy termed Nitinol 

provides a good candidate for the backbone of a continuum 
robot, due to its ability to flex a large amount (up to 1% 
strain) without a permanent (plastic) deformation. However, 
its temperature-dependent modulus requires measurement of 
E and application at a constant temperature. A rod of diame-
ter 1.56 mm, 40 cm in length, with a mass density of 6.80 
g/cc as shown in Fig. 4 provided an experimental platform 
on which to validate the theory presented in this proposal. To 
determine the modulus of elasticity of the rod, the data (tip 
mass vs. deflection) was fit to the model, yielding E = 54 
GPa. For a circular cross-section rod, 4 64I dπ=  and 

4 32J dπ=  where d specifies the rod diameter. In this case, 
40.291 pmI =  and 40.581 pmJ = . Choosing Poisson’s ratio 

0.3ν = , the shear modulus ( )1 20.8 GPaG E ν= + = . 

A. Experimental procedure 
Fig. 4 shows the experimental setup, in which this rod was 

mounted horizontally on a sheet of acrylic with a laser-cut 1 
mm grid. A friction-fit assembly located precisely with re-
spect to the grid securely held the rod. A mass was attached 
to its tip with a string; 1 cm of the rod was used to fix the 
rod, leaving 39 cm of bending length. The measured position 
of the tip was compared to its predicted value; the distance 
between the two as a percentage of rod length gives the per-
cent error. Table II summarizes the results, showing high 
accuracy in the model’s predictions with an average tip posi-
tion error of 2.1 mm (0.54% of the rod’s length). 

In contrast, analytical models define continuum robot 
shape as an arc of a circle tangent to the rod at its mounting 

TABLE I 
ODE SUMMARY 

Initial condition Meaning Derivative to 
integrate 

( )0r Location of trunk origin r�  from (1) 
( )0R Initial trunk orientation R�  from (2) 
( )0lu  Initial bending (found iteratively) lu�  from (9) 
( )0lv  from (10) Initial stretch and shear lv�  from (8) 
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point. To simplify the comparison, the endpoint of the ana-
lytical model was placed exactly on at the tip of the physical 
rod; even with this exact placement, this analytical model 
poorly fits the physical rod as shown in the figure. 

V. APPLICATIONS TO ROBOTICS 
Several minor modifications to the theory presented thus 

far enable the use of these equations in the control of a con-
tinuum robot. Identifying an alternative to measuring tip 
torque significantly simplifies sensing the robot’s position. 
The use of some basic real-time techniques, including a me-
thod which recasts the boundary-value problem into an ini-
tial-value problem, shows promise for real-time control. 
Finally, techniques to determine the Jacobian numerically 
allow for straightforward end-point control. 

A. Alternatives to tip torque measurement 
The solutions produced therefore determine a rod tip posi-

tion r and orientation R based on a force F loading the tip 
(such as a tool located at the tip) and on a torque τ applied to 
the tip by actuators such as cables or pneumatic bellows. 
Although tip torque can be easily determined by measuring 
current driven to a DC motor or by attaching a load cell, 
mechanical considerations make this a less-desirable option. 
In particular, the loss inherent in most gear-reduction 
schemes necessary for motor operation reduces the accuracy 

of torque measurement or requires the adoption of low-loss 
transmissions such as cables or harmonic drives while the 
additional cost and complexity of a load cell make it a less-
attractive alternative. In addition, the cable guides deliver 
some but not all force applied to the cables to the tip, with 
some forces lost as cables pass through the guides as dis-
cussed in [26], making it more difficult to accurately deter-
mine the tip torque based on cable force. 

In the case of a cable-actuated robot, it is therefore often 
simpler to determine cable length (using, for example, inex-
pensive and widely-available encoders) than force applied to 
the cables which produces the torque τ. The necessary cable 
lengths can be easily determined based on the intermediate 
points ( )0 fsr …  and ( )0 fsR …  produced by the ODE solv-
er, a vector ll  from the rod center to the cable guides, and the 
location 1 ns…  of the n cable guides along the rod. Specifical-
ly, noting that the homogenous transformation matrix 

( ) ( )
1

i i
i

s s⎡ ⎤
= ⎢ ⎥

⎣ ⎦

R r
T

0
 maps from local coordinates of cable 

guide i to global coordinates and that that the location of the 
cable guides is at ll  in the local coordinate frame, then the 
location of the cable guide in the global coordinate frame is 

l
=l Tl , where the over bar indicates use of homogenous 

coordinates. Summing the distances between each guide 
determines the overall cable length, which produces the cal-
culated rod shape: 

 
 1

12 2

n l l
j i j i ji

l −
−=

= −∑ T l T l  (11) 
 

where jl  represents the length of the jth cable. 

B. Jacobian calculation and application 
While the Jacobian for rigid-link robots can be derived 

analytically by computing the relevant derivative (or by 
standard schemes which obviate the need for computing 
these derivates [27, 28]), these derivates cannot be likewise 
computed for rod statics, because the rod tip position and 
orientation do not depend directly on the tip force or mo-
ment. However, a numerical approach suffices to determine 
the derivatives. 

This Jacobian will be computed based on ( )0lu  rather 
than τ, improving computational efficiency while also avoid-
ing discontinuities arising from multiple solutions which 
exist for the boundary-value problem. For notational con-
venience, define ( )fsr  calculated with initial conditions of F 
and ( )0lu  to be ( )0, l

fr F u . The Jacobian is then 
 

 
( ) ( )

( ) ( )

1
1 3 0 0

0 1 3 0

, ,

, ,

l l
f f

l l
f f

δ δ

δ

− ⎡= + −⎣
⎤+ − ⎦

J r F e u r F u

r F u e r F u

…

…

 

 
where ( )1 3 0, l

f δ+r F e u…  serves as shorthand for three evalua-
tions of ( )0, l

fr F u  and δ  provides a small value over which 
the Jacobian is assumed to be nearly linear. An analogous 
procedure allows computation of angular velocity, with the 

TABLE II 
EXPERIMENTAL RESULTS 

  Predicted Observed Error 
Mass (g) x (cm) y (cm) x (cm) y (cm) In mm In % 

0.00 38.93 -2.16 39.00 -2.30 1.5 0.39
13.80 34.87 -15.94 35.00 -15.90 1.4 0.35
16.90 33.64 -17.98 33.90 -17.80 3.2 0.82
20.00 32.43 -19.71 32.50 -19.50 2.2 0.55
23.10 31.28 -21.16 31.40 -21.20 1.2 0.31
26.20 30.20 -22.40 30.30 -22.40 1.0 0.26
29.30 29.18 -23.47 29.50 -23.30 3.6 0.92
32.40 28.24 -24.38 28.50 -24.40 2.6 0.68
35.50 27.35 -25.17 27.40 -25.40 2.3 0.58
38.60 26.53 -25.86 26.50 -26.20 3.3 0.85
41.70 25.77 -26.48 25.80 -26.90 4.2 1..07

Average 2.4 0.61
The (x, y) locations give predicted versus measured tip positions. Percent 
error = error / rod length. 

 
Fig. 4 Experimental results showing a plot of predicted versus actual rod 
shape using a model, which incorporates gravity versus one without gravity. 
The top line shows the analytical model which does not include gravity, 
while the bottom line shows the proposed model, offset vertically to make 
the physical rod visible. 
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added complexity of transforming the resulting matrix deri-
vates R�  into angular velocity vectors Tˆ =ω RR� . 

C. Real-time considerations 
Real-time computation of the statics derived above is es-

sential when operating a continuum robot. Several simple 
approaches enable computation of the statics for a single-
section trunk in 3-D (equivalent to forward kinematics for 
rigid-link robots) at ~125 Hz on a 2.60 GHz AMD Athlon 
x64 dual-core CPU. First, solution of an initial-value prob-
lem rather than the boundary-value problem and its asso-
ciated iterative root-finding significantly lowers the compu-
tations burden. Due to the procedure outlined above, only 
cable length, not tip torque, is necessary to shape the robot. 
Therefore, initial values for lu  can be used when determining 
the statics solution. Second, lowering the error tolerance of 
the ODE solver speeds computation. Specifically, choosing a 
relative error tolerance of 31 10−⋅  and an absolute error toler-
ance of 61 10−⋅  provides accuracy which meets or exceeds the 
accuracy of which the trunk is capable while also providing 
good real-time performance. This speed could be improved 
by implementing the code in a compiled language; all per-
formance results reported rely on m-file programs executing 
in MATLAB. 

VI. CONCLUSION 
In conclusion, this paper presents an accurate 3-D statics 

model for a continuum robot based on Cosserat rod theory, 
which incorporates the significant effects of gravity loading 
on the resulting shape of the rod. The model demonstrates 
excellent accuracy with an error of 0.61% in the predicted 
versus measured tip position when compared with a physical 
rod, providing initial validation of the technique. Real-time 
performance of 125 Hz makes this approach a viable candi-
date for control of a continuum robot. Future work includes 
the use of this model in the control of a prototype continuum 
robot as shown in Fig. 1. 
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