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Abstract— Relating information originating from disparate
sensors observing a given scene is a challenging task, partic-
ularly when an appropriate model of the environment or the
behaviour of any particular object within it is not available.
One possible strategy to address this task is to examine whether
the sensor outputs contain information which can be attributed
to a common cause. In this paper, we present an approach to
localise this embedded common information through an indirect
method of estimating mutual information between all signal
sources. Ability of L1 regularization to enforce sparseness of
the solution is exploited to identify a subset of signals that are
related to each other, from among a large number of sensor
outputs. As opposed to the conventional L2 regularization,
the proposed method leads to faster convergence with much
reduced spurious associations. Simulation and experimental
results are presented to validate the findings.

I. INTRODUCTION

The world market for sensors and wireless communication

technologies is ever growing, prompting the rapid deploy-

ment of wireless sensor networks [1]. Therefore, it is not

unreasonable to assume that sensors will be omnipresent in

the near future. With the presence of large number of sensors

and signals, there is a growing interest in cross-modal signal

analysis. The objective is not necessarily to geometrically

relate the sensors, the emphasis is rather placed on relat-

ing parts of the sensor signals. The following fundamental

concept in perception is exploited extensively in this paper:

motion has in principle, greater power to specify properties

of an object than purely spatial information. Thus, relating

signals could generally be carried out through comparison

of vectors of signals, which have been monitored over time.

One important aspect of such signal processing is to localize

some components of a particular signal to that best correlate

with the other signal, which also originated from the same

source.

This type of analysis is reported in various fields including,

biomedical engineering, climatology, network analysis and

economy. In biomedical research, heart rate fluctuations are

examined against several interacting physiological mecha-

nisms including visual cortex activity, respiratory rate etc

[10] in order to determine the neurological status of infants.

In climatology, dynamic weather patterns in a particular loca-

tion are correlated to synoptic meteorological data gathered

over time [13]. In economy, revenue performance of a market

is correlated with a large set of economic and social criteria

[15].
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There a number of techniques that are suitable for detect-

ing the statistical dependence of signals. Techniques such as

Canonical Correlation Analysis and Principle Components

Analysis rely on correlation, a second order statistic. Alter-

native non parametric techniques are Kendall’s tau, Cross

Correlograms, Mutual Information (MI) and Independent

Component Analysis. The selected metric is required to

identify a non-linear higher (than second) order of statis-

tical dependence between signals. The measure of statistical

dependence should be valid without any assumptions of

an underlying probability density function and should be

extendible to high dimensionality of input signals. Mutual

information is identified as the most promising metric, ful-

filling all requirements.

The methods for mutual information (MI) estimation can

be classified into two broad categories, based on whether

mutual information is computed directly or the condition for

maximum MI is obtained indirectly through an optimization

process that does not involve computing MI [2], [7]. The

most natural way of estimating MI via the direct method is

to use a nonparametric density estimator together with the

theoretical expression for entropy. However, the definition

of entropy requires an integration of the underlying PDF

over the set of all possible outcomes. In practice, there is

no closed form solution for this integral. Combining the

nonparametric density estimator with an approximation of

theoretical entropy has been widely described in the literature

to overcome this problem [16]. However, this requires pair

wise comparisons of all permutations of input signals to find

the most informative statistically dependent pairings, which

is not feasible for large number of signals, such as images.

The indirect MI estimation method determines the most

mutually informative signal pairings through mapping of the

signals into a two dimensional space. The key to obtaining

the most informative mapping is in a technique that computes

the effect of the mapping parameters on the information

content in the lower dimensional space. Fisher et. al. [8]

demonstrate a linear mapping of the signals that maximise

MI by defining an objective function that operates on the

resulting two dimensional space.

This paper builds upon Fisher’s work [8] and our previous

research on indirect MI estimation [2] by introducing the

L1 norm to obtain a sparse linear mapping. L1 norm has

found extensive use recently in solving convex optimisation

problems from arbitrary signals estimated from incomplete

set of measurements corrupted by noise [5] and also exhibits

a very useful property, which is the preservation of the

sparsity of the relationship between the multidimensional

random variables. The L1 norm as a penalty function on
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the magnitudes of the mapping coefficients is shown to be

suited to the applications examined in this paper where the

mutually informative signals are usually embedded in a large

number of non informative signals.

The remainder of this document is organised as follows,

Section II outlines an indirect estimation algorithm for MI.

Section III describes the process of finding the maximum

MI with L1 penalty norm and optimization parameters.

Experimental results are presented in Section IV. Section V

concludes the paper providing future research directions.

II. INDIRECT ESTIMATION OF MUTUAL INFORMATION

THROUGH NON-LINEAR MAPPINGS

Mutual information between two random vectors X1, X2

can be defined as follows.

I(X1; X2) = H(X1) + H(X2) − H(X1, X2) (1)

Where, H(X1) and H(X2) are the entropies of X1 and

X2 respectively, H(X1, X2) is the joint entropy term. Direct

estimation of MI requires calculation of entropy terms in (1).

Entropy H(X1), also referred to as Shannon’s entropy of

random variable X1 with density p(x1) is given by,

H(X1) = −

∫

Ω

p(x1) log(p(x1))dx1 (2)

where Ω is the set of possible outcomes.

There are two distinctive problems that need addressing

when calculating entropy in this form, firstly calculating the

underlying unknown PDF of the random variable to obtain

p(x1) over the entire space Ω, and second, the integration

over the set of all possible outcomes. Both are addressed

through indirect estimation.

Mutual information between two high dimensional signals

X1 and X2 can be indirectly estimated by mapping the

signals into a lower dimensional space, by exploiting the

data processing inequality [6] that defines lower bounds on

mutual information. The inequality states

I(g(α1, X1); g(α2, X2)) ≤ I(X1; X2) (3)

for any random vectors X1 and X2 and any function

g(α, ·) defined on the range of X1 and X2 respectively.

The generality of the data processing inequality implies that

there are no constraints on the choice of transformations

g(·). Furthermore, as the functions g(α, ·) map the input data

into a lower dimensional space, computing the information

content I(g(α1, X1); g(α2, X2)) is significantly easier.

The mappings Y1 = g(α1, X1) and Y2 = g(α2, X2)
can be achieved through any differentiable function, such

as hyperbolic tangent [11] or multiple layer perceptrons [8].

However, linear projections are preferred due to the fact that

the linear projection coefficients themselves can be used as

a measure of MI of each individual signal in random vectors

X1, X2 to the resulting lower dimensional Y1, Y2 mutual

information. We now present how to select the parameters of

linear mappings Y1 = α1X1 and Y2 = α2X2, thus, selecting

subset of the most mutual informative signals from sets of

signals X1 and X2 without the need to estimate MI on all

permutations of signal sets.

III. OPTIMIZATION OF MAPPINGS VIA

INFORMATION MAXIMISATION PRINCIPLE

Finding the optimal projections α1 and α2 would require

solving a complex non-linear optimization problem. It is

generally not feasible to obtain a closed form solution to

this problem without numerical methods such as Powell’s

direction set method [3]. However, the high cost of comput-

ing MI, together with the fact that the parameter vector α is

in the dimension of the input signals in the case of a linear

map makes direct optimization intractable.

An entropy estimation measure proposed by Fisher et.

al. [8] allows for obtaining the gradient of the measure

with respect to the mappings parameters. They proposed an

unsupervised learning method by which the mappings g1(·)
and g2(·) can be estimated indirectly, without computing

mutual information. The maximisation of MI is achieved by

maximising the entropies H(Y1) and H(Y2) and minimising

the joint entropy, H(Y1, Y2) in (1). The entropies H(Y1)
and H(Y2) can be maximised by selecting the mapping

parameters to make the data on the lower dimensional space

resemble a uniform distribution. Likewise, joint entropy

H(Y1, Y2) can be minimised by selecting the mapping pa-

rameters to reflect the joint distribution, (Y1, Y2) is furthest

away from a uniform distribution.

Thus, maximisation of MI can be achieved by maximising

the objective function J ,

J = JY1
+ JY2

− JY1,2
(4)

where each element of JY1
, JY2

, JY1,2
are of the form,

1

2

∫

Ω

(

f(u) − f̂(yu)
)2

du (5)

Where Ω indicates the nonzero region over which the

integration is evaluated. Therefore (5) is the integrated square

distance between the output distribution (evaluated by a

parzen density estimator, f̂(yu) at a point u over a set of

observations y) and the desired output distribution f(u).
It can be shown that the gradient of each element of J

with respect to the mappings parameters α can be computed

as follows [8].

∂J
∂α = ∂J

∂f̂

∂f̂
∂g(α,x)

∂g(α,x)
∂α

= − 1
N

∑

i ǫi
∂

∂αg(α, x)

Note that
∂g(α,x)

∂α is a constant as we have assumed g(·)
is a linear projection. The term ǫi is [8],

ǫ
(k)
i = br(y

(k−1)
i ) −

1

N

∑

j 6=i

κa(y
(k−1)
i − y

(k−1)
j , Σ) (6)

br(yi)j ≈
1

d

(

κa(yi +
d

2
, Σ)j − κa(yi −

d

2
, Σ)j

)

(7)
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κa(y, Σ) = G(y, Σ) ∗ G
′

(y, Σ) (8)

expanding G and G
′

κa(y, Σ) = −
1

2M+1πM/2ΣM+2
exp(−

yT Σ2y

4
)y (9)

where, κa(.) is a kernel: a Gaussian PDF with standard

deviation of Σ = σ2I is assumed here. yi symbolises a

sample of either Y1 or Y2 or the concatenation, Y1,2 =
[Y1; Y2] for JY1,2

, M is the dimensionality of the output space

and is M = M1, M2 or M1 + M2 based on the term of (4)

that is considered. The jth element of br(yi) in (7) is defined

as br(yi)j , d is the support of the output space and N is the

number of samples.

For systems where the dimensionality of the input space

N is more than the number of samples n, the mapping

can be arbitrary. To obtain a single solution a penalty on

the projection co-efficients α1 and α2 can be imposed. The

minimal energy solution can be obtained by imposing the L2

penalty while the L1 norm is shown to lead to the sparsest

solution. The fact that the L1 penalty leads to a vector

with fewest nonzero elements for both overdetermined and

underdetermined systems has been demonstrated [14].

A. Optimizing Linear Mappings via the L2 Regularisation

Projection coefficients that maximise the objective func-

tion can now be found using the algorithm given in Fig. 1

which includes the update rule (6) for each entropy term

(1) and imposition of a L2 penalty (L2(α1), L2(α2)) on the

projection coefficients α1 and α2

J = JY1
+ JY2

− JY1,2
− β

(

L2(α1) + L2(α2)

)

(10)

where the L2 penalty is derived from

L2(α1) =
∂α1α

T
1

∂α1
(11)

therefore

L2(α1) = 2Y1X
−1
1

(

X1
−1

)T
(12)

L2(α2) = 2Y2X
−1
2

(

X2
−1

)T
(13)

where X−1 is the pseudo inverse of matrix X .

B. Optimizing Linear Mappings via the L1 Regularisation

The L2 criterion seeks to spread the energy of α1 and

α2 over many small valued components, rather than concen-

trating the energy on a few dominant ones. The applications

examined in this paper, requires identifying a few dominant

components in the input signal space that are related to each

other. Hence, the solution of the parameter vectors α1 and

α2 should be sparse identifying the minimum number of

nonzero elements naturally suggesting the use of the L1

norm as an appropriate penalty function. In addition, the

number of samples and dimensionality of the signals can vary

between applications producing an either underdetermined or

overdetermined system of equations Y1 = α1X1 and Y2 =
α2X2. The L1 norm performs equally well as the L2 norm

on overdetermined system of equations while outperforming

L2 norm for underdetermined problems [9] especially where

the solution is expected to have fewer non zeros than 1/8 of

the number of equations.

The update equation for the gradient descent method when

using the L1 penalty is

J = JY1
+ JY2

− JY1,2
− β

(

L1(α1) + L1(α2)

)

(14)

The equations for the L1 norm penalty are derived

min ‖α1‖1 subject to Y1 = α1X1

min ‖α2‖1 subject to Y2 = α2X2

(15)

where ‖ �‖1 represents the L1 norm. Since the projections

α1, α2 may be of very high dimensionality, it is assumed

that

min ‖α1‖1 = |α11
| + |α12

| + · · · |α1n
| (16)

Therefore the L1 penalty is

∂ min ‖α1‖1

∂Y1
(17)

further

∂|α1|
∂Y11

=
∑n

i=1
∂|α1i

|

∂Y11

=
∑

|X−1
1 |row1 sign|Y11

|

...
∂|α1|
∂Y1i

=
∑n

i=1

∂|α1i
|

∂Y1i

=
∑

|X−1
1 |rowi sign|Y1i

|

resulting in

∂ min ‖α1‖1

∂Y1
=

∑

|X−1
1 | sign|Y1| (18)

C. Stopping Criteria

All iterative optimization methods require stopping cri-

teria to indicate the successful completion of the process.

Consider,

δ =
max(∆NN ) − min(∆NN)

max(∆)
(19)

where, the term ∆NN is the nearest neighbor distance in

the resulting output distribution, ∆ is the distance between

any two samples in the output distribution, max(.) and min(.)

are the maximum distance and minimum distance between

samples in the output space. The numerator is a measure

of uniformity of the output space and the denominator is a

measure of how well the output space is filled. Therefore,

(19) can be used as a convergence criterion. However, ∆
is dependent on the number of samples obtained from the

signal n, the dimensionality N and the size of the output

space d. As the numerator approaches zero for uniformly
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Fig. 1. Block Diagram of Proposed Method, η is the learning rate, β is
the normaliser on the L1/L2 penalties applied to the projection coefficients
α1 and α2.

distributed samples and for a given threshold γ required, δ
may be determined by γ

d−N /n
. For all experiments in this

paper following parameter values have been chosen.

TABLE I

OPTIMIZATION LEARNING RATE COEFFICIENTS

η M1M2

N1N2

β max
“

max(X2)N2

N1

, max(X1)N1

N2

”

IV. SIMULATION AND EXPERIMENTAL RESULTS

For the simulation and experimental study, output space

dimensionality is chosen to be d = 2. For a sample size, n =
100, the stopping criteria from equation (19) is calculated to

be δ < 0.035. In order to detect that the optimization has

reached a local minima the variation of δ should be contained

in a 1.5e−3 limit at least for a minimal convergence span of

5 iterations.

A. Simulation Results

Two simulations are performed to evaluate the proposed

method. Simulation 1: The purpose is to detect identical

signal pairings embedded within a number of unrelated

signals. Simulation 2: The purpose is to identify non

informative signals. We have utilised Johnson’s [12] method

of generating signals with an arbitrary high order of

dependency. Signals that are generated for the purpose of

simulation are scaled to [−1, 1].

Simulation 1: Identical Signals: One hundred signals

are generated, containing 100 samples each. Five signals are

selected and supplied as sensor 1 output {1, 2, 3, 4, 5} and

one signal is selected as sensor 2 output {1}, thus, N1 = 5
and N2 = 1 with one signal in common.

In order to determine the most informative signal we

examine the vector of α1 co-efficients, where each α1i

corresponds to a X1i
. Results are presented in Fig. 2 with

the mapping coefficients, α1i
i ∈ {1, 5} in blue, red, green,

cyan and yellow respectively. The convergence criterion,

δ is plotted as the dashed gray line. The results show

the highest coefficient for α11
confirming that signal 1 is

common between the sensors. Applying the L1 norm penalty

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

(a) L1 penalty

0 50 100 150
−0.5

0
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3

3.5

(b) L2 penalty

Fig. 2. Results of indirect estimation of Mutual Information for signals
with underlying linear dependency
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 /
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(b) L2 penalty

Fig. 3. Results of indirect estimation of MI for non informative signals

to the optimization produced faster convergence, occurring in

iteration 38 compared to 142 iteration with L2 norm penalty.

It is to be noted that only the non-zero mapping parameter

ideally should be α11
and all others should be zero. However,

due to the approximations in the objective function and the

presence of local minima, the other mapping parameters have

smaller non-zero vales.

Simulation 2: Non Informative Signals

In this simulation signals {1, 2, 3, 4, 5} are selected as

sensor 1 output and signal {6} is chosen as the sensor 2

output, clearly there is no common signals. Fig. 3 shows that

neither L1 or L2 norm penalty has produced convergence

in 200 iterations. In fact the solution based on the L1

regularization shows a divergence from an optimized solution

verifying there is no common signal.

B. Experiments

Two experiments are performed to evaluate the proposed

method in establishing the relationship between multi-modal

sensory data by identifying informative signals without any

prior knowledge about geometric parameters. Experiment 1:

The purpose is to localise the audio source in the video

data sequence. Experiment 2: The purpose is to identify the

common source in a laser and video data stream.

Experiment 1: Audio and Video Signals: A microphone

and camera were used to capture activity in an office en-

vironment consisting of a person (left on image) reading a

sequence of numbers and another person (right of image)

mimicking unscripted sentences (see Fig. 4(a)). Video data

was captured at 15Hz while audio signal was captured at

48KHz with only 10KHz of content used. Both video and

audio data streams were synchronised in time. Color images

acquired were transformed to grey scale and pixel intensity

values (consisting of 640 ∗ 480 = 307200 pixels per frame)

of 100 frames were analyzed using raw pixel values. The
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(a) (b)

Fig. 4. Samples of signal sequence (a) camera data (b) audio periodogram

(a) (b)

Fig. 5. MI projection coefficients achieved on signal level between Audio
and Video using indirect MI estimation with (a) L1 norm penalty and (b)
L2 norm penalty

audio data was transformed to a series of periodograms as

shown in Fig. 4(b). The window length of the periodogram

is 2/15s (corresponding to two video frames). The scenario

here requires finding the most mutually informative pixels

from 307200 signals from the camera to 200 signals from

the audio data.

The results of application of L1 (Fig. 5(a)) and L2 (Fig.

5(b)) regularizations show images of obtained projection

coefficients where the highest values denote areas of the

image containing the mouth of the person sitting on the left

(which is true). It is observed that the applying the L1 norm

penalty to the optimization produced faster convergence,

occurring in iteration 59 compared to 141 iteration with L2

norm penalty (Fig. 6)

Experiment 2: Laser and Camera Signals: A SICK laser

range finder with a 180°field of view (FOV) and a camera

with a horizontal FOV of 60°were used to capture motions

in an office environment. Ordinary office activity consisted

Fig. 6. Analysis of convergence properties of the L1 (solid line) and L2

norm penalty (dotted line)

(a)

−30 −20 −10 0 10 20 30
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20

25

30

35

40

45
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Y
 [

m
]

(b)

Fig. 7. Samples of signal sequence observed from (a) camera and (b) laser

(a) (b)

(c) (d)

Fig. 8. Mi projection coefficients achieved on signal level localization
between Laser and Camera using indirect MI estimation with (a,b) L1 norm
penalty and (c,d) L2 norm penalty

of person 1 operating a computer mouse, person 3 moving

in an office and person 4 moving at his desk Fig. 7(a). In

addition, significant motions of person 2 shaking a book up

and down were introduced. The laser range finder and the

camera were capturing data at 75Hz and 10Hz respectively.

The laser beam of the range finder intersects horizontally

at the abdominal area of the standing person capturing the

movement of the book.

The color images acquired were transformed to grey scale

and pixel intensity values (consisting of 640 ∗ 480 = 307200
pixels per frame) of 80 frames were registered against 80

time synchronised raw laser readings. The scenario here

requires finding the most mutually informative signals from

307200 signals from the camera to 181 signals from the laser

range finder.

As discussed previously, the highest projection coefficients

α1, α2 denote areas of highest mutual information. The

results of the application of L1 (Fig. 8(b)) and L2 (Fig.

8(a)) regularizations show an image of obtained projection

coefficients α1, where the highest value denotes areas of the

image containing the moving hands of person 2. Smaller

values highlight the left most sitting person’s (person 1)
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Fig. 9. Analysis of convergence properties of the L1 (solid line) and L2

norm penalty (dotted line)

hand and his chin movement. Fig. 8(d) and Fig. 8(d) show

the projection coefficients of the laser scan α2. There the

significant peak is due to the hands of person 2. Although

there seems to be some correlations with the motions present

in the environment, the method correctly matches person 2

in the image sequence with person 2 in the laser sequence.

Applying the L1 norm penalty to the optimization pro-

duced faster convergence, occurring in iteration 72 compared

to 110 iteration with L2 norm penalty. Furthermore, the

coefficients α1, α2 have fewer non zeros, thus achieves better

separation of the informative signals from other noise.

To evaluate the results of the proposed indirect MI esti-

mation incorporating the L1 norm penalty the experiment

was repeated on 18.5 seconds worth of video data iteratively

using 80 video frames and the corresponding laser returns

producing 27 correct matches and 13 incorrect matches. The

results reveal that registration could be performed without

artificially augmenting the environment due to natural oc-

curring movements such as person 1 moving a computer

mouse or the torso and head of person 3 moving in the

office cubicle. However, in some cases, changes of pixel

intensity may not be directly linked to the change of range

to the object unless the experiment is performed in an

environment where luminance is altered with the distance to

the object. This had an influence on the 13 incorrect matches.

Alternatively raw data can be processed and feature level

signals can be used to improve the registration results [4].

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have formulated the sensor registration

problem with a method that detects the sensor signal pairing

via indirect estimation of mutual information. As opposed to

the L2 regularisation, which commonly used in the literature,

we have introduced a L1 regularization which concentrates

energy to few dominant components rather than spreading

over many valued components. This leads to faster conver-

gence with less spurious correlations when compared to the

use of L2 regularization. Experiments and simulations were

carried out to validate the findings.

Research in several directions to extend the work pre-

sented in this paper are currently under way. Formulating

the problem in the feature level rather than signal level

will remove the requirement of preserving locality of the

data source. Combining the indirect estimation methods with

direct estimation could couple their respective strengths and

would be a fruitful avenue of further research into signal

grouping. Constructing a multidimensional feature space by

combining the separate features could add value and this

would obviously benefit future research outcomes.
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