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Abstract— Assistive mobile robots that can navigate au-
tonomously can greatly benefit people with mobility impair-
ments. Since an assistive mobile robot transports a human user
from one place to another, its motion should be comfortable
for human users. Moreover, it should be possible for users to
customize the motion according to their comfort. While there
exists a large body of work on motion planning for mobile
robots, very little attention has been paid to characterizing
comfort and planning comfortable trajectories.

In this paper, we first characterize comfortable motion by
formulating a measure of discomfort as a weighted sum of
the total travel time and time integrals of various kinematic
quantities. We then present a method for factoring the weights
such that once a user has customized the weights for one task,
the same choice of weights leads to similar average value of the
discomfort measure in other tasks.

We seek trajectories that minimize the discomfort and
satisfy boundary conditions on pose, velocity and acceleration.
Such a problem can naturally be formulated as a variational
optimization problem. Unlike previous work, we present a
comprehensive formulation that allows the travel time to be
unspecified and includes boundary conditions on position, ori-
entation, velocity and acceleration. This makes the formulation
very general as it can be used to compute trajectories for
various kinds of tasks, such as starting from rest, coming to
rest, moving from one specified velocity to another, arriving at
a goal with a specified orientation etc. Finally, we present a
fast and robust numerical method for solving the minimization
problem.

I. INTRODUCTION

An assistive mobile robot that transports a human user

has to perform many tasks that require it to travel from

an initial state to a goal state with specified pose, velocity

and acceleration. For example, to dock at a user’s desk,

the robot must arrive at the desk with zero velocity and

acceleration and position and align itself correctly. For any

motion task, the trajectory of the robot should not only satisfy

boundary conditions, it should also result in motion that is

comfortable for human users. Moreover, the motion should

be customizable to suit an individual user’s comfort level.

In this paper, we formally characterize comfortable motion

and develop a framework for planning customizable and
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comfortable trajectories. By a trajectory, we mean the robot

pose as a function of time.

Measures of discomfort based on the peak, average and

root mean squared values of acceleration and jerk, are

used in the design of road [1] and railway vehicles [2],

[3]. For nonholonomic mobile robot trajectories, continuity

of velocity and acceleration is considered important and

much research has focused on planning smooth paths and

subsequent time-scaling to find such trajectories [4], [5], [6],

[7], [8], [9], [10]. In the neuroscience literature, it has been

shown that smooth point-to-point reaching movements of

human arm can be replicated by minimizing the time integral

of the squared L2 norm of the hand jerk over the motion

duration [11], [12]. Minimum jerk models were also used

for planning smooth trajectories of manipulators [13] and

time-scaling of paths for nonholonomic mobile robots [7].

Motivated by this, and by the requirement that the motion

be as fast as is consistent with comfort, we formulate a mea-

sure of discomfort as a weighted sum of the following terms:

travel time and time integrals of the squares of tangential

jerk, normal jerk, angular velocity, and angular acceleration.

Jerk is separated into tangential and normal components

to allow different weights for the two components. This

is because normal jerk may contribute more to motion

discomfort than tangential jerk [3]. In addition, large angular

velocity and acceleration also contribute to discomfort. The

objective is to include all the terms that contribute to user

discomfort and give the user the flexibility to decide their

relative importance by changing the weights.

Instead of choosing the weights manually, we use dimen-

sional analysis [14] to partially determine the weights. Each

weight is factored into two parts. The first part has physical

units and is a fixed function of the length and velocity scales.

The second part is a dimensionless multiplicative factor that

can be customized by the user. Since the customizable part

of a weight is dimensionless, it will result in similar average

value of discomfort measure in other tasks with different

length and velocity scales.

Given a set of weights, we seek trajectories that satisfy

the boundary conditions on pose, velocity and acceleration,

and minimize the discomfort. Such a problem can naturally

be cast in a variational calculus framework [15]. Variational

methods have been widely applied to trajectory planning

in robotics, aerospace engineering and control-systems en-

gineering, primarily in the form of optimal control. The

problem formulation consists of constructing a cost func-
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tional representing the cumulative cost over the duration of

motion, and minimizing the cost functional to find a desired

trajectory.

Variational formulations for trajectory planning of wheeled

mobile robots have focused primarily on minimum-time

trajectories. These trajectories result in geometric paths that

consist of a sequence of straight-line and arc segments [16],

[17], [18]. These paths do not have curvature continuity

and the robot cannot be driven on these paths with smooth

velocity controls. Thus, minimum-time trajectories are of

little practical use for assistive robots where comfort is im-

portant. When other performance measures are used, several

limiting assumptions are made, such as known travel time,

or boundary conditions on position but not orientation, or

boundary conditions on pose but not its derivatives etc. [19],

[13], [20], [21], [22]. In this paper, we do not make these

limiting assumptions, and present a comprehensive formula-

tion of trajectory planning for a nonholonomic mobile robot

as a variational minimization problem that allows the travel

time to be unspecified and includes boundary conditions on

position, orientation, velocity and acceleration.

Numerically, a variational optimization problem is solved

by either indirect or direct methods [23]. Indirect methods

solve the first order differential equations representing the

necessary conditions of optimality. One frequently used

method is the “shooting method” [21], [24]. This method

is very sensitive to the initial guess of the unknown parame-

ters, and a poor initial guess sometimes results in “wild”

trajectories with values exceeding the numerical range of

the computer [23]. Direct methods discretize the problem

to convert it into a finite-dimensional problem that is solved

using nonlinear optimization techniques. These are generally

more robust than indirect methods. Direct methods have been

used for planning trajectories for manipulator arms [13], [20]

and nonholonomic robots [19], [22]. In our framework, we

use a direct method for a numerical solution. We choose

a heptic spline discretization and use Newton trust-region

method to solve the resulting finite-dimensional problem.

Simulation results show fast convergence toward a min-

imum. The characteristic weights determined using dimen-

sional analysis result in similar values of the discomfort mea-

sure for different boundary conditions. Results also show that

the root mean squared value of the various discomfort terms

decrease uniformly (as a power law) as the multiplicative

factors for the appropriate weights are increased.

We summarize our key contributions here: First, we

recognize that motion of an assistive mobile robot should

be comfortable and formulate a measure of discomfort in

terms of its state variables. Since the notion of comfort is

subjective, the measure of discomfort is formulated as a

weighted sum of relevant quantities where the weights serve

as customizable parameters. Second, we use dimensional

analysis to determine weights as functions of characteristic

length and velocity scales. Weights computed in this way

result in similar values of the discomfort measure for dif-

ferent boundary conditions. Users can choose an appropriate

multiplicative factor according to their comfort. Third, we

present a comprehensive and general formulation of trajec-

tory planning as a variational minimization problem and

describe a fast numerical method for computing trajectories

in near real-time.

This paper lays down the groundwork for developing an

algorithm in the future that will use human evaluations

of trajectories to customize the weights. This first attempt

toward generating customizable trajectories will undergo

future refinements as comfort level experiments with human

users are conducted in the laboratory.

II. TRAJECTORY PLANING AS A VARIATIONAL

MINIMIZATION PROBLEM

Given a starting pose and an end pose, our objective is

to find a motion that satisfies the boundary conditions and

minimizes the cost functional. This is done by reducing the

discomfort of the user while keeping a small travel time. The

discomfort is modeled by a cost functional J , which is a

function of the total travel time and motion as parameterized

by time. This section defines the cost functional, provides

rationale for various choices, and discusses the method for

numerical solution.

A. The cost functional

For a robot moving on a planar curve, r(t) = (x(t), y(t))
denotes the position vector at time t (Figure 1). The unit

tangent and normal vectors, T and N, are given by

T =
ṙ

||ṙ||
, N =

Ṫ

||Ṫ||
(1)

The dot represents derivative with respect to t. The angle θ
that the tangent makes with the x axis is given by

θ = atan2(ẏ, ẋ) (2)

The mathematical expressions for T,N, and θ above are

meaningful if and only if the tangential speed is non-zero.

We will discuss in Section II-C how these can be defined

when tangential speed is zero.

We model the robot as a rigid body moving in a plane.

We assume that the x−axis of its body-centered coordinate

frame is always tangent to the curve r(t). Hence, θ, as given

in Equation 2, is sufficient to represent the orientation of the

robot, and the nonholonomic constraint ẋ sin θ− ẏ cos θ = 0
is automatically satisfied.

Let the robot start from r0 at t = 0 with known speed

v0, angle θ0, and tangential acceleration a0, and reach rτ

at t = τ with known speed vτ , angle θτ , and tangential

acceleration aτ . The travel time τ is not known yet.

We construct a cost functional J that reflects the trade-off

between the travel time and smoothness of motion. The goal

is to find a function r(t) and a travel time τ that minimize

J . Since θ̇ and θ̈ can be determined from ṙ and its higher

derivatives (Equation 2), J depends only on r and τ .

J = τ + wT

∫ τ

0

(
...
r · T)2 dt + wN

∫ τ

0

(
...
r · N)2 dt

+ wθ̇

∫ τ

0

θ̇2 dt + wθ̈

∫ τ

0

θ̈2 dt

(3)
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Fig. 1. Tangent and Normal to a curve

Here
...
r represents the jerk.

...
r ·T and

...
r ·N are the tangential

and normal components of jerk respectively. θ̇ is the angular

velocity and θ̈ is the angular acceleration. We assume that

r(t) is smooth enough for the cost functional to be well-

defined. This means (at least) that the acceleration vector is

continuous and normal and tangential components of jerk are

square integrable.

The term τ is necessary. If it is not included in the

functional, the optimal solution is to reach the destination

at τ = ∞ traveling at essentially zero speed in the limit

(except perhaps at the end-points where the speed is already

specified). Thus, minimizing just the integral terms will not

lead to a good solution.

The weights (wT , wN , wθ̇, wθ̈) are non-negative known

real numbers. We separate tangential and normal jerk to

allow a choice of different weights (wT and wN ). The terms

with θ̇ and θ̈ provide independent control over the angular

velocity and acceleration.

The weights serve two purposes. Second, they determine

the relative importance of the terms and provide a way to

adjust the robot’s performance according to user preferences.

For example, for a wheelchair, some users may not tolerate

high jerk and prefer traveling slowly while others could

tolerate relatively high jerks if they reach their destination

quickly. We will choose characteristic weights using dimen-

sional analysis in Section II-E.

B. The optimization problem

Find a function r and a scalar τ that minimize J given

the boundary conditions

r(0) = r0, r(τ) = rτ

θ(0) = θ0, θ(τ) = θτ

ṙ(0) = v0q0, ṙ(τ) = vτqτ

r̈(0) · T(0) = aT0
, r̈(τ) · T(τ) = aT τ

.

(4)

Here q0 = (cos θ0, sin θ0) and qτ = (cos θτ , sin θτ ), v is the

speed and aT is the tangential acceleration.

The variational optimization problem of Equation 4 is

posed in an infinite dimensional space of vector-valued func-

tions r(t). This problem is numerically solved by choosing

a discretization of r(t) to convert it into a finite-dimensional

optimization problem. The discretization should satisfy the

boundary conditions.

θ is not an independent variable but is determined from

x(t) and y(t) using Equation 2 when the tangential speed is

non-zero. We derive different expressions for θ at end-points

when the tangential speed is zero. For the robot to move

in the “forward” direction, the speeds v0 and vτ should be

non-negative. Since the optimal trajectory tries to keep the

travel time small, it is clear that for the optimal trajectory

the tangential speed will never be zero, except perhaps at the

end-points if it is given as zero. Thus, θ will always be well-

defined in the interior (0, τ). The only trouble can arise at the

two end-points when the specified tangential speed is zero.

The following discussion shows that θ and its derivatives at

end-points can be defined without reparameterizing the curve

even when the speed is zero at the end-points.

C. Different types of boundary conditions

We want well-defined and computable expressions for

θ and its derivatives in terms of x(t) and y(t) and their

derivatives when the tangential speed and acceleration are

zero at either of the two end-points. This case is important

for specifying tasks that involve starting from rest or coming

to rest or both. This gives rise to three different types of

boundary conditions which will be discussed shortly.

Assume that third derivatives of x(t) and y(t) exist in

a neighborhood of the start and end-points. Let (vx, vy),
(ax, ay) and (jx, jy) refer to first, second and third deriva-

tives respectively of x(t) and y(t) with respect to time at

t = 0. Let the subscripts N and T denote the tangential and

normal components respectively of a vector. Then,

aT = ax cos θ + ay sin θ

aN = −ax sin θ + ay cos θ
(5)

jT = jx cos θ + jy sin θ

jN = −jx sin θ + jy cos θ
(6)

Expand x(t) and y(t) in a Taylor series around t = 0.

x(t) = x0 + vxt +
1

2
axt2 +

1

6
jxt3 + . . .

y(t) = y0 + vyt +
1

2
ayt2 +

1

6
jyt3 + . . .

(7)

We can expand θ around t = 0 in terms of the two Taylor

series using Equation 2.

θ = atan2

(
vy + ayt +

1

2
jyt2 + . . . , vx + axt +

1

2
jxt2 + . . .

)

(8)

Now, we consider three cases at t = 0:

Case 1: Tangential speed v > 0.

Taking the limit t = 0 in Equation 8 we have

θ = atan2 (vy, vx) . (9)

Since v =
√

v2
x + v2

y , v > 0 means that at least one of vx

and vy is non-zero, and hence θ is well-defined.

Case 2: Tangential speed v = 0, tangential acceleration aT 6=
0.

v = 0 =⇒ vx = 0 and vy = 0.

Before analyzing this case to get an expression for θ at

end-points, we derive inequality constraints on tangential
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acceleration at end-points when backward motion is not

allowed. Consider motion along a straight line. The Taylor

expansion of x(t) around t = 0 when v = 0 is

x(t) = x0 +
1

2
axt2 +

1

6
jxt3 + . . . . (10)

If ax < 0, then x(t) < x0 for small enough t, which is

disallowed. Thus ax ≥ 0 at start-point. Similarly, it can

be shown that ax ≤ 0 at end-point. Generalizing to two

dimensions, it is necessary that aT ≥ 0 at start-point and

aT ≤ 0 at end-point.

We will treat the case where aT = 0 separately. For now,

consider the case where v = 0, aT > 0 if start-point and

aT < 0 if end-point. Substituting vx = 0 and vy = 0 in

Equation 8, we get

θ = atan2

(
ayt2 +

1

2
jyt3 + . . . , axt2 +

1

2
jxt3 + . . .

)
.

(11)

Taking the limit t = 0 in Equation 11, we have

θ = atan2 (ay, ax) . (12)

Using Equation 12 in Equation 5 implies that aN = 0

and aT =
√

a2
x + a2

y > 0. Thus, at least one of ax and

ay is non-zero and θ is well-defined. At the end-point,

aT = −
√

a2
x + a2

y < 0 and a similar argument shows that θ

is well-defined.

Case 3 Tangential speed v = 0 and tangential acceleration

aT = 0.

v = 0 =⇒ vx = 0 and vy = 0 and aN = 0.

aT = 0 and aN = 0 =⇒ ax = 0 and ay = 0.

Similar to Case 2, disallowing backward motion leads to

constraints on the sign of jT at the end-points. The sign jT

can be derived by an argument similar to that for the sign aT

in Case 2. At both end-points, jT ≥ 0. We will treat the case

where jT = 0 separately. For now, consider the case where

v = 0, aT = 0, jT > 0 at any end-point. Again, following

a line of reasoning similar to that for Case 2, we can show

that

θ = atan2 (jy, jx) , (13)

and that θ is well-defined. Analysis of further cases,

where jT = 0 is not necessary because we only need to

consider input boundary conditions where v = 0 and aT = 0.

To summarize, the three types of boundary conditions are:

• Type 1: v > 0
• Type 2: v = 0, aT 6= 0. Here aN = 0, aT > 0 if start-

point and aT < 0 if end-point

• Type 3: v = 0, aT = 0. Here aN = jN = 0, and jT > 0
for both end-points.

Obviously, Type 1 is simplest and Equation 2 can be used

to express θ. For Type 2, the acceleration vector determines

θ. Note that the normal component of acceleration is neces-

sarily zero since speed is zero. For Type 3, the jerk vector

determines θ. For this case, the normal component of jerk

is zero at the particular end-point. Thus, for θ to be well-

defined, the discretization of x(t) and y(t) should be such

that their third-derivatives exist.

D. Discretization of the problem

The nonlinear optimization problem Equation 4 is posed

on an infinite dimensional space of vector-valued functions

r(t). We minimize J in a finite dimensional subspace by

discretizing x(t) and y(t). From Sections II-B and II-C, we

see that to completely define the problem we need to specify

4 boundary conditions per end-point per space dimension

– position and three derivatives. Hence, we choose heptic

interpolating splines as the basis functions. Heptic splines

are degree seven piecewise polynomials with continuous

derivatives up to order six. As a function, each spline

x(t) and y(t) (M + 1 polynomial pieces) can be uniquely

determined from 8 boundary conditions and its value on M
interior nodes. In addition to the travel time τ , these nodal

function values {xi, yi}
M
i=1 are the parameters that will be

found by optimization. The choice of time values {ti}
M

i=1

to which these nodal values correspond will be discussed in

Section III.

We need to provide 8 boundary conditions for each spline.

In the input specification of Equation 4, only derivatives of

up to second order (position, velocity and acceleration) are

given. The values of normal acceleration aN , tangential jerk

jT , and normal jerk jN are not provided as input. This is

intentional. For example, when speed is non-zero, specifying

aN will indirectly specify the curvature, which is difficult to

choose. Of course, aN would be zero necessarily if speed is

zero. Instead these three quantities (aN , jT , and jN ) are left

as unknown parameters for the optimization problem. These

are determined along with the optimal trajectory. Thus, each

end-point has four conditions per space dimension (x and

y), and if a quantity (aN , jT , jN ) is not specified but can

physically be non-zero, then it is left as a parameter to be

found by optimization.

Table I lists the three types of boundary conditions,

the quantities that can be automatically deduced, and the

unknown quantities that must be determined by optimization.

To summarize, if we want to find M ≥ 0 interior nodes,

we will have up to 2M +1+6 unknowns to determine. The

breakdown is

• 2M for M nodes with 2 unknowns (x and y compo-

nents) per node

• 1 unknown τ
• Up to 6 unknowns on boundary. Maximum 3 unknowns

(aN , jT , jN ) per end-point.

E. Dimensional analysis and determination of characteristic

weights

The cost functional J is a weighted sum of terms with

different physical dimensions. For J to be meaningful as

a physical quantity the weights should have appropriate

physical dimensions. We will use dimensional analysis to
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TABLE I

THE THREE TYPES OF BOUNDARY CONDITIONS.

Type of BC Input values θ Deduced values Unknowns to determine Remarks

Type 1 v > 0 atan2 (vy , vx) − aN , jN , jT −

Type 2 v = 0, aT 6= 0 atan2 (ay , ax) aN = 0 jN , jT aT > 0 at start-point and aT < 0 at end-point

Type 3 v = 0, aT = 0 atan2 (jy , jx) aN = 0, jN = 0 jT jT > 0 at both end-points

determine their form in terms of characteristic physical

quantities.

All the physical quantities in the cost functional (time,

jerk, acceleration, and angular velocity and acceleration)

depend on only two units − length L and time T . The input

to a motion task specifies the typical length and velocity

scales. For example, the characteristic length L∗ can be taken

as the distance between the end-points (or is specified by

the user if both the end-points are coincident with different

orientations). In addition, the average of starting and stopping

speed defines a characteristic speed V∗. If both are zero,

the robot’s typical operating speed can be used. The speed

V∗ determines the characteristic time T∗ = L∗/V∗. We use

only the two important scales (L∗ and V∗). For this analysis,

other dimensionless parameters such as ratios of starting and

stopping velocities and accelerations will be ignored, since

they would make the analysis more complex than necessary.

From Equation 3 we see that J has dimensions L0T 1

due to the first term (τ ). Thus wT should have dimensions

L−2T 6. Similarly, the dimensions of wN , wθ̇, and wθ̈ are

L−2T 6, L0T 2, and L0T 4 respectively. Let ŵT , ŵN , ŵθ̇, ŵθ̈

be the characteristic weights. Thus, if the characteristic

length of a task is L∗ and the characteristic time is T∗,

the weight ŵT should be proportional to L−2
∗

T 6
∗

. That is,

ŵT ∝
T 6

∗

L2
∗

. Similarly, we can compute the dimensional part

of other three weights.

Now we determine the typical values of the characteristic

weights by optimizing a few representative motion tasks.

Consider a one dimensional motion optimization problem.

The robot starts from x = 0 at t = 0 and stops at x = L at

t = τ . The accelerations are zero at both end-points. Using

the minimizing property of quintic splines [11], the quintic

polynomial

x(t) = L

(
10

(
t

τ

)3

− 15

(
t

τ

)4

+ 6

(
t

τ

)5
)

satisfies these boundary conditions and minimizes
∫ τ

0

...
x2dt

for any fixed τ . For this choice of x(t), it can be computed

that

J(τ) = τ + 720
ŵT L2

τ5
.

Terms involving other weights are zero because this is a one-

dimensional motion. Minimizing J as a function of τ only,

we get

1 −
1

3600

τ6

L2ŵT

= 0.

Using the characteristic time and length scales, this gives

ŵT =
1

3600

T 6
∗

L2
∗

. (14)

ŵN can then be fixed as a factor times ŵT where a larger

factor implies less tolerance for jerk in the normal direction.

Choosing the factor as 1.0, we get

ŵN =
1

3600

T 6
∗

L2
∗

. (15)

For computing the remaining weights (ŵθ̇ and ŵθ̈), we

move on a circle starting from θ = 0 and stop at θ = 2π. The

accelerations at end-points are zero. As before, we choose a

quintic polynomial in θ with L interpreted as 2π. Minimizing

τ + ŵθ̇

∫ τ

0
θ̇2dt and τ + ŵθ̈

∫ τ

0
θ̈2dt with respect to τ , and

using the characteristic length and time scales we get

ŵθ̇ =
7

10(2π)2
T 2
∗
, and

ŵθ̈ =
7

360(2π)2
T 4
∗
.

(16)

Equations 14, 15, and 16 define the characteristic weights

as functions of the characteristic length and velocity scales.

Each of the four weights is now factored into two parts as

w = fŵ (17)

where ŵ is the characteristic weight and f is a dimensionless

multiplicative factor. The characteristic weight is computed

as a function of the length and velocity scales of a given

task. The factor f is the part that is varied by a user for

customization.

III. DETAILS OF THE OPTIMIZATION PROCESS

The discretized function J is a smooth function of the

unknowns (Section II-D). The integrals in J are evaluated

using eighth order Gaussian quadrature rule on each interval

[ti, ti+1]. We use the Newton trust-region method [25] as

implemented in TAO/PETSc [26], [27] to minimize J . This

iterative method requires information about the function

value and its first and second derivatives at the chosen

iterates. We compute the derivatives using forward mode

Automatic Differentiation [28].

A. Choosing an initial guess

A “reasonable” initial guess for each of the parameters to

be optimized is crucial for a good solution of the nonlinear

optimization problem. These parameters can be divided into

3 categories − spline nodal values {xi, yi}
M

i=1, τ , and

boundary condition terms (aN , jT , jN ).
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Except for a case mentioned below, the initial guesses

of aN , jT , jN are zero. The optimal values would be non-

zero in general. Even if we choose them using dimensional

analysis, there is no good indicator whether a positive value

or a negative value would be good. We make the simplest

choice by initializing them to 0. For Type 3 boundary

condition, however, we know the sign of jT at end-points

(always positive, Section II-C) and the value is chosen via

dimensional analysis. jT = 10V 3
∗

/L2
∗
. The factor 10 makes

the initial travel time small.

Next we guess the initial value of τ . It is chosen using

the length and velocity scales. τ0 = 0.75L∗/V∗. The factor

0.75 is chosen to keep the initial guess of τ small. If the

initial travel time is large, the initial trajectory has a tendency

to self-intersect instead of forming a non-intersecting path

between end-points. This is physically intuitive. What is

interesting numerically is that in one of the test cases, this

loop did not vanish in the optimization process even when

a better non-intersecting trajectory (with smaller J) existed.

See Figure 2(c). We choose a small τ to avoid this trap of a

local minimum.

Finally we guess the nodal values for the two heptic

splines. For any fixed τ , consider the two unique heptic

polynomials in t that satisfy the 8 boundary conditions on

x(t) and y(t) respectively. The values of these polynomials

at {ti}
M

i=1 are sampled to obtain the initial guess for xi

and yi. Of course, we need to choose a good subdivision

scheme to fix ti first. Equispaced ti is not a good choice

for all boundary conditions. For example, if we have Type

3 boundary conditions (zero velocity and zero acceleration)

at both end-points, equispaced ti will lead to nodes that are

close together in space. At best, this will make the Hessian

ill-conditioned and at worst will make the spline (and thus

the trajectory) highly sensitive to changes in nodal values. To

avoid this, non-equispaced ti are chosen. They are clustered

toward the center ( τ
2

) so that the resulting nodes xi and yi

do not cluster towards the start and end points. Numerical

results show that this leads to better conditioning and fewer

Newton iterations. We skip the details.

IV. RESULTS AND EVALUATION

We evaluate our method using a test set consisting of 4

base cases (A, B,C, D) with different boundary conditions

as shown in Table II. The optimal paths for all the four cases

are shown in Figure 2. For the base cases, the multiplying

TABLE II

BOUNDARY CONDITIONS FOR THE FOUR BASE CASES

Case (x, y, θ)0 v0 aT0
(x, y, θ)τ vτ aT τ

A (0, 0, 0) 0 0 (4, 2,−π/4) 0 0
B (0, 0, 0) 1 0 (0, 5, π/2) 0.5 0
C (0, 0, 0) 2 0 (2, 0.5, π/4) 1 −0.5
D (0, 0, 0) 0 0.5 (−6, 0,−π/2) 0 −0.5

factors f (Equation 17) corresponding to all the four weights

(wT , wN , wθ̇, wθ̈) are set to 1.0 and the characteristic velocity

V∗ is chosen to be 0.5 m/s. The characteristic length L∗ is the

straight line distance between end-points. Each of these cases

was run with the number of interior spline nodes taken from

the set {1, 3, 7, 15} so that the nodes of different refinement

levels form a nested sequence. The intent is to see how the

optimal value of J decreases as the number of nodes M
increases. If the sequence is not nested, optimal J may not

reduce even if M is increased. The log-log plot Figure 3

shows that for all four cases, the optimal J reduces as M
increases. Ideally the plot should compare J for a finite

1 10
0.01

0.1

1

Number of interior points M

(J
M
−
J
1
5
)/
(J
1
−
J
1
5
)

 

 

Case A

Case B

Case C

Case D

Fig. 3. For each of the cases, the optimal cost decreases as more interior
spline nodes are added. Very little change is observed after M = 15, hence
all the other optimal values are compared with J for M = 15.

M with the exact J when the original continuous problem

is solved. Since we do not know the exact minimal value

of J , the value with largest number of points M = 15 is

taken as the ‘exact’ value. The optimal J did not change

appreciably when M was increased beyond 15, justifying

this approximation.

A. Effect of change of boundary conditions on discomfort

This section evaluates whether the characteristic weights

computed in Section II-E yield similar values of the discom-

fort measure for varying boundary conditions.

For Case B, the initial and final velocities were simulta-

neously varied from 0.1 m/s to 1 m/s. For each choice of

velocities, the final pose was moved along the y axis such

that the straight line distance between the start and end poses

varied from 5 m to 15 m. The characteristic velocity V∗ was

set to 1.0 m/s.

Average of the discomfort measure is plotted against the

boundary conditions in Figure 4. The average discomfort is

independent of the length scale of the task. It does have

a slight dependence on the starting and stopping velocities.

This is because, as discussed in Section II-E, we have not

kept all the dimensionless parameters constant while varying

the boundary conditions. The slight variation seen in the

figure justifies this simplification.

B. Effect of weights on discomfort

The multiplicative factor f corresponding to each of wT ,

wN , wθ̇, wθ̈ was assigned a set of 11 values centered at 1.0

while keeping the other multiplicative factors constant. This
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Fig. 2. Optimal paths for the four base cases shown in Table II. The starting pose for all cases is (0,0,0). The circles are drawn at equal intervals of
time. Thus, lesser spacing between circles implies higher speed. Case A has zero speed and acceleration at both ends. As expected, the path is almost
a straight line. In Case B, the initial velocity is non-zero and is not directed toward the destination. This results in a more curved path. In case C, we
deliberately chose a large initial value of τ . This results in a local optimum with self-intersection. By choosing a smaller initial value, we observed a
non-self-intersecting path that had a lower cost (not shown here). In Case D, a non zero starting acceleration directed away from the destination results in
a path with relatively high curvature.
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Fig. 4. The average value of the cost functional over the travel duration,
plotted against the velocity v at the boundaries and the shortest distance L
between the boundary poses.

resulted in 44 cases for each of the 4 base cases of Table II.

In total, there are 4 × 44 = 176 test cases. The number of

interior nodes M is fixed to 3. The algorithm converges in

all the 176 cases. Except for a few outliers, it takes less than

20 Newton iterations to converge.

As different measures of discomfort, the Root Mean

Squared (RMS) values of tangential and normal jerk, tan-

gential and normal acceleration, angular velocity and ac-

celeration, and the total travel time, were analyzed. It was

found that all the measures vary uniformly with change in

the weights. For ease of discussion, the effect of varying

weights on only two measures of discomfort is described,

namely the root mean squared tangential jerk, given by

jT RMS
=

√∫ τ

0
(
...
r · T)2 dt

τ

and root mean squared angular acceleration, given by

θ̈RMS =

√∫ τ

0
θ̈2 dt

τ
.

Figure 5(a), shows how jT RMS
, θ̈RMS and τ change as
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(a) Effect of varying wT for Case A
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(b) Effect of varying w
θ̈

for Case D

Fig. 5. Effect of varying the weights on measures of discomfort plotted
on a log-log scale. The multiplicative factor f for the weights wT and
w

θ̈
is varied from 0.2 to 5 in 11 steps in (a) and (b) respectively. This

ratio is plotted on the x axis. On the y axis, τ and the root mean squared
(RMS) values of jT and w

θ̈
, divided by the corresponding RMS value at

the characteristic weight are plotted.

the tangential weight wT varies. From the cost functional

(Equation 3), we expect that the largest effect of varying wT

should be seen on jT RMS
, which is borne out by the figure.

Thus, qualitatively speaking, motion that has high jerk can

be made more comfortable by increasing wT . This will result

in longer travel time. In Figure 5(b), wθ̈ is varied. The largest

effect of varying wθ̈ is on θ̈RMS . Thus, if a user feels that

the turns are too uncomfortable, wθ̈ can be increased for

increasing comfort.
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Preliminary analysis of a few cases indicates that the

measures of comfort vary with the factor f as a power law.

If such an empirical power law can be found, it can form a

useful basis for customizing the weights and this analysis will

be further pursued in future work. In general, discomfort will

be a function of all four weights, and this function could be

useful for finer control (if required) of the overall discomfort

level.

C. A note on run-time

For all the experiments, the algorithm takes 0.5 seconds,

on average, on a recent (as of 2009) 1.5 GHz laptop to

converge. We expect that optimizing our code will lead to a

further reduction in the run-time.

V. CONCLUSIONS AND FUTURE WORK

We have formulated a performance measure that quantifies

the discomfort of a human user while riding an assistive

mobile robot. The performance measure is a weighted sum

where the weights can be customized by a user for comfort.

We have developed an approach for planning trajectories

that satisfy boundary conditions on pose, velocity and ac-

celeration, and minimize the discomfort measure. Results

show that our solution method is robust, generalizes to

tasks with various boundary conditions, and that solutions

can be computed in near real-time. Results also show that

weights customized for one task result in similar values of

the performance measure in other tasks.

For this paper we have focused solely on planning

comfortable trajectories ignored the presence of obstacles.

However, obstacle avoidance is an important component

in planning trajectories for autonomous robots [29], [30]

and this framework will be extended to include obstacles.

Further, this framework will be implemented on a wheelchair.

Human-subjects evaluation will be performed to determine

if the measure of discomfort is appropriate or if further

modifications are necessary.
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