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Abstract— We propose an approach for acquiring geometric
3D models using cameras mounted on autonomous vehicles
and robots. Our method uses structure from motion techniques
from computer vision to obtain the geometric structure of the
scene. To achieve an efficient goal-driven resource deployment,
we develop an incremental approach, which alternates between
an accuracy-driven next best view determination and recursive
path planning. The next best view is determined by a novel
cost function that quantifies the expected contribution of future
viewing configurations. A sensing path for robot motion towards
the next best view is then achieved by a cost-driven recursive
search of intermediate viewing configurations. We discuss some
of the properties of our view cost function in the context of an
iterative view planning process and present experimental results
on a synthetic environment.

I. INTRODUCTION

This work presents a novel approach for the concurrent
solution of the problems of viewpoint selection and path
planning for a mobile robotic platform used for visual 3D
reconstruction. In general terms, sensor planning systems
strive to determine the pose and settings of a vision sensor
to undertake a vision task usually requiring multiple views
[2]. The application of these systems span from robotic
exploration and navigation to automated surveying and mod-
eling of complex and/or unstructured 3D environments. In
the context of mobile robotics, the next best view problem
(NBV) consists in determining the most favorable future
sensing action to be performed by the robot in an effort
to achieve specific task goals. For the scenario of vision-
based reconstruction considered in this work, sensing actions
involve moving the robotic platform to a desired location and
acquiring images. We refer to the accumulation of sensing
actions by the term of sensing strategy.

Incremental 3D reconstruction by means of iterative NBV
planning allows the development of systematic and princi-
pled sensing strategies for an autonomous observer. However,
the use of a robotic platform to perform sensing actions
brings up the issue of how to best utilize such infrastructure
during the reconstruction process. Moreover, given knowl-
edge of the NBV position and settings, is it possible (and
favorable) to execute additional sensing actions during the
robot’s motion toward the NBV? An affirmative answer to
this question leads to the fact that taking intermediate sensing
actions modifies our knowledge of the environment and
may render obsolete our existing estimation of the NBV. A
straightforward solution to this problem is to recompute the
NBV after each single intermediate sensing action, but this
may either be computationally not feasible or lead to reactive
non-convergent sensing behavior. Instead, in this paper we
explore an alternative solution where a path towards the NBV

is followed until either the NBV is reached or the expected
qualitative benefits of the NBV are achieved.

The goal of our NBV planner is to guide the process of
systematically increasing the precision and completeness of
the estimated 3D model. Our proposed NBV planning ap-
proach uses adaptive planar primitives as the basic element of
structure representation while using their covariance matrices
as the representation for the 3D reconstruction uncertainty of
the primitives. The approach is aimed at (quasi-)dense 3D
reconstructions, which commonly output millions of surface
points for even simple object-centered scenes. Accordingly,
scalability and efficiency are major concerns when develop-
ing a viewpoint selection algorithm in this context. To this
end we propose a data parallel hierarchical approach that
can efficiently deploy commodity parallel architectures like
GPUs or multi-core processors.

II. RELATED WORK

Determining the NBV for 3D reconstructions based on a
range scanner sensor is an active research field [9],[13], [6],
[1]. In this work we address the task of 3D reconstruction
based on intensity images. The challenge of automatic view-
point selection has been widely studied in robotics, computer
vision and photogrammetry. Surveys that span from early
approaches in this field to recent advances were published
by Newman et al. [10], Tarabanis et al. [17] and Scott et al.
[15]. Recently Chen et al. [2] provide a broad coverage of
multiple research areas within sensor planning.

The task of designing a viewing configuration for pre-
cise 3D reconstruction is known in photogrammetry as the
photogrammetric network design (PND) problem. Fraser [3]
early on identified the analytical difficulties of designing
an optimal imaging geometry in the context of rigorous
photogrammetric 3D measurements. His work identified the
high non-linearity and multi-modality, which makes the PND
problem ill-suited for canonical optimization methods. Ma-
son [8] adopted an expert systems approach based on generic
networks to achieve strong viewing configurations for model
based PND. The developed system used CAD model as input
and followed a series of predetermined rules for each CAD
element in order to design an imaging geometry. Olague
and Mohr [12] addressed the PND problem by developing a
criterion based on forward covariance propagation of image
measurement uncertainty. The criteria was the maximum
element along the diagonal of the reconstruction’s covariance
matrix and the optimal multiview configuration was obtained
by global evolutionary search. Note that the aforementioned
PND systems where designed to generate sets of multiple
viewpoints used for highly precise 3D reconstruction tasks,
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carried out in well controlled and customized environments
(i.e. fiducial markers, high accuracy calibration patterns,
etc.). Accordingly, they mainly address the geometric aspects
of 3D reconstruction omitting considerations on the role of
texture saliency in the image measurement process.

Robot vision researchers have studied how a controlled
camera can be best used to achieve accurate 3D recon-
structions. Whaite and Ferrie [20] developed a 3D modeling
system that used parametric modeling of scene elements and
used the internal model uncertainty to determine sensing
actions. Marchand and Chaumette [7] developed a system
for structured scene reconstruction by developing optimal
strategies for surveying a set of volumetric primitives. We
note that, while these systems successfully achieved au-
tonomous operation, they used simple parametric models to
represent scene elements, whereas our approach does not
place any restrictions on the observed geometry. Accordingly,
our approach is better suited to perform over a large variety
of scenes.

In the computer vision community, camera placement
and configuration has recently received renewed interest
[19],[14]. Wenhardt et al. [18] proposed a 3D reconstruction
based on a probabilistic state estimation framework where
the NBV is determined by a metric of the state estimation’s
uncertainty. The authors propose the use of three different
metrics corresponding to the concepts of D-, E- and T-
Optimality found in the optimal experimental design liter-
ature. Hornung et al. [5] propose an image selection scheme
for multi-view stereo, that selects images in order to improve
the coverage of a voxel based proxy. Their approach strives
to achieve sufficient sampling of the entire object’s surface
while identifying regions with poor photo-consistency for
additional redundant sampling. The authors make use of
GPU assisted computation and present results on multiple
object oriented scenes.

III. 3D STRUCTURE AND UNCERTAINTY ESTIMATION

In our approach, scene geometry is represented by a set of
primitives of varying scale. Hence, our model can represent
general scene geometry (by using primitives as small as a
planar surface of the size of a pixel at the scene distance),
while efficiently representing larger planes through a single
model plane. Each primitive is parameterized by

Pi = [Xi,Σi,Sij ] : {Xi ∈ R3,Σi ∈ R3×3,Sij ∈ Rp×p},
where Xi is the primitive’s 3D position, Σi is the 3D
covariance matrix and Sij is the square set of p× p (p is a
user defined integer value) neighboring image pixels to the
projection of Pi onto image j. Also, viewpoint configurations
are parameterized in terms of sensor position and orientation
angles,

νj = [xj , θj ] : {xj ∈ R3, θj ∈ SO(3)}.
In this work, the estimation of 3D structure and the asso-

ciated geometric uncertainty of each primitive is performed
by an individual extended Kalman filter (EKF). While this
approach does not consider the uncertainty correlation among

the estimates of different primitives, it does provide a
computationally scalable framework for 3D structure and
uncertainty estimation of large 3D environments. For a given
viewpoint ν and a 3D primitive P , we use the well known
collinearity equations as our non-linear observation function
φ(X, ν). Furthermore, by considering a static 3D scene the
state propagation (e.g. time update) equations of the EKF
can be obviated. In this way, each EKF incorporates new
observations ot = (ut, vt) ∈ R2 into the state estimate by
the following measurement update equations:

Kt = Σt−1H
T
t (νt)(Ht(νt)Σt−1H

T
t (νt) + R)−1 (1)

X̂t = X̂t−1 + Kt(ot − φ(X̂t−1, νt)) (2)
Σt = (I −KtHt(νt))Σt−1 (3)

where Kt is the Kalman gain matrix, R is the image
measurement covariance matrix and Ht(νt) is the Jacobian
matrix of φ(·, ·), derived at X̂t−1 and using the sensor
placement νt. We use this framework to compute the effect
of incremental visual sensing for each primitive. Moreover,
the conceptual motivation for using an EKF framework lies
on the non-incremental nature of uncertainty estimates.

Lemma 1. A steady state EKF framework presents non in-
creasing uncertainty estimates for successive measurements.

Proof. From (1) we can define

W = Σt−1H
T
t (νt)

S = (Ht(νt)Σt−1H
T
t (νt) + R)−1

and rewrite (3) as Σt = Σt−1 −WSWT . Accordingly, the
term WSWT is a PSD (positive semidefinite) matrix and
subtracting one PSD matrix from another can’t cause the
eigenvalues to increase ¤

The geometric structure of the 3D uncertainty of the input
model is captured by the eigenvectors and eigenvalues of the
primitive’s covariance matrix Σ. Namely, in Euclidian 3D
space the eigenvectors ek|k = 1 . . . 3 convey the orientation
of the 3D uncertainty, while the eigenvalues λk specify the
magnitude in each direction. We define Ψ to be the matrix
of eigenvectors scaled by their corresponding eigenvalue,

Ψ = [λ1e1 λ2e2 λ3e3] .

The planning approach presented here uses the information
contained in Ψ as the guide for viewpoint selection.

IV. A NOVEL NEXT BEST VIEW CRITERION

It is well known that for 3D reconstruction approaches
based on optical triangulation, a larger viewing angle among
observing camera positions helps attain precise 3D estima-
tions [4]. However, by increasing the baseline and incidence
among cameras, image measurement and matching are made
more difficult. The main reason for these difficulties is that
the surface texture appearance may vary widely across distant
viewpoints. Accordingly, a novel viewpoint must achieve a
balance between the reduction of geometric uncertainty and
the attainment of reliable image measurements. Our proposed
criterion seeks the balance by considering the geometric
uncertainty and the matching uncertainty simultaneously.
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The proposed criterion relies on 3D uncertainty informa-
tion contained in a primitive’s covariance matrix Σ. In this
way, an uncertainty volume (i.e. ellipsoid) can be estimated
from each covariance matrix and the problem of reducing
the overall uncertainty can be posed as the problem of
reducing a chosen metric defined over the values of all
covariances matrices. Instead of optimizing an experimental
design criterion as in [18], we define a criterion based on a set
of geometric relationships, which contribute to systematically
reducing a 3D primitive’s uncertainty.

The first geometric relationship being sought is achieving
an adequate incidence with respect to a primitive’s 3D
uncertainty. The second desired relationship is to obtain a fa-
vorable imaging resolution for a given 3D primitive. Finally,
we condition the relevance of these factors on the primitive’s
texture saliency. In this way, our planning approach is
applicable to feature based reconstruction algorithms as well
as to their contour based counterparts.

A. Reducing 3D uncertainty

Let Xi denote the estimated 3D position of a primitive Pi.
The goal is to find the viewpoint νj with camera position xj

such that the unit length viewing direction

v =
Xi − xj

‖Xi − xj‖2
best reduces the 3D uncertainty contained in Σi. Given an
estimate of a 3D point with non isotropic 3D uncertainty, the
most favorable viewing rays v for minimizing triangulation
uncertainty are the ones orthogonal to the main uncertainty
direction vector. Accordingly, for 3D estimates where the
majority of the uncertainty is found along a single direction
e1 (e.g. the eigenvector with the largest associated eigen-
value), a viewing ray orthogonal to this vector is desired.
Such viewing ray corresponds to a solution of the product
equation vT ei

1 = 0. However, a more general criterion is
desired for nearly isotropic uncertainty. We propose to find
the viewing ray minimizing

f(P, ν) = ‖vT
[
λ1ei

1 λ2ei
2 λ3ei

3

] ‖2 = ‖vT Ψi‖2. (4)

The above arguments consider 3D reconstruction as a merely
geometric task, not taking into account practical aspects
such as robustness of image measurements and matching.
We incorporate these aspects into our approach by also
considering the effects of varying a viewpoint’s incidence
and proximity with respect to a given 3D primitive.

B. Combining incidence and proximity

3D reconstruction deals with estimating the position of
points located on a 3D supporting surface. The visual ap-
pearance of this supporting surface allows the identification
and measurement of the projection of a given set of 3D
points onto the image plane. In general terms, better accuracy
in image measurements can be obtained as the imaging
resolution increases. Moreover, given knowledge of a cam-
era’s intrinsic parameters, the main factors in determining
a surface’s projection on the image plane are the viewing

angle and the distance from a given 3D surface. We propose
to combine both incidence and proximity by measuring a
single quantity: the area of projection of a 3D surface onto
the image plane. It is straightforward to compute this quantity
analytically for simple geometric primitives. Alternatively, it
can be computed with high efficiency in a GPU by using a
3D rendering engine such as OpenGL. The benefits of using
a GPU computation in this context are that aspects such as
resolution, field of view and occlusions can be handled by the
graphics engine. Moreover, we define a function g(ν, P ) for
a primitive’s projected area to be included into our criterion
for NBV selection.

At this point we have defined geometric relationships
favoring a suitable observation of a generic surface. The
motivation behind such definitions is to attain reliable image
measurements. The geometric relationship presented in the
next subsection incorporates into our criterion the contin-
gency cases where a given surface does not provide sufficient
texture to make reliable image measurements.

C. Incorporating Texture

Visual saliency of a scene surface is a requirement for
robust matching across images in feature based reconstruc-
tion. Accordingly, textureless scene regions present a major
difficulty in the application of these algorithms. On the
other hand, contour based approaches do not rely on texture
saliency to estimate bounding volumes, but instead favor
tangent views of the scene surface. In our approach, we
strive for oblique views of textureless regions. Note that
the motivation behind measuring the projected area of a 3D
primitive was to consider jointly a viewpoint’s incidence and
proximity. Taking into account that the projected area of a
perpendicularly observed planar surface is null, the relevance
of the projected area of a primitive is conditioned on its
texture. This relevance factor can be modeled by a continuous
step function with transition at a given texture threshold. We
propose to use a modification of the well known Gauss error
function (encountered by integrating the normal distribution)
of the form

erf(x) =
1

γπ

∫ x

0

e
(t−τ)2

γ dt +
1
2

(5)

where x is the texture measure estimated for a given primi-
tive, τ is the texture threshold value and γ is a decay factor
controlling the slope of the transition in the step function.
Using Eq. (5) we can obtain a value in the range [0, 1]
to describe the relevance of the projected area of a given
primitive. The measure used to describe texture saliency is
described next.

Let Si denote the image region corresponding to the
surface of a 3D primitive. We propose measuring the entropy
of the autocorrelation function A(Si) of a given patch to
describe texture saliency. This is motivated by the fact that
homogeneous texture regions will display fairly ”flat” pro-
files for A(Si), leading to high entropy. On the other hand,
surfaces with salient texture will provide a well localized
”peak” on the autocorrelation function landscape, leading to
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low entropy. For an image region of size p×p, the A(s) will
output a matrix of dimensions 2p−1 × 2p−1 with values ai

in the range [−1, 1]. The values of this matrix are normalized
and used to evaluate Shannon entropy.We empirically define
a texture threshold value τ as the cutoff point for our step
function (5), as well as the decay value γ. Hence, we have
a function of the form

h(Pi) = erf


−

∑

ai∈A(Si)

p(ai) log p(ai)


 . (6)

The proposed function (6) accordingly measures the qual-
ity of a correlation match given the local appearance. It
does not include currently any correction for the texture
frequency reduction due to potential projective distortions.
This can easily be integrated into the computation of the
auto-correlation. We found that in practice it does not change
the results significantly, but the simpler measurement (6)
is more efficient to compute since it is a constant for a
given model and does not depend on the location of the
new camera.

D. The aggregate criterion

In developing our geometric criterion we seek to attain
a trade-off between two (typically conflicting) objectives
involved in depth estimation. These objective are: 1) max-
imizing the visibility of a given patch on the novel image,
2) aligning the camera viewing direction to the direction of
smallest uncertainty for the considered 3D primitive Pi. We
propose the following function to evaluate the contribution
of a viewpoint ν for a single 3D primitive P :

C(ν, P ) =
g(ν, P )h(P )

f(ν, P )
(7)

where g(ν, P ) denotes the computed projection area of the
3D primitive (as discussed in section IV-B), while h(P ) and
f(ν, P ) are defined in Eqs. (6) and (4) respectively. The
function (7) is evaluated for each primitive and combined
through a weighted sum to define our NBV criterion

F (ν) =
N∑

i=0

wi C(ν, Pi). (8)

We define a primitive’s weight value to be

wi = det(Σ) =
3∏

j=1

λi
j (9)

where λi
j represent the eigenvalues associated with the

primitive’s covariance matrix Σi. In this way, patches with
larger uncertainty are given more attention in the viewpoint
search process. It is important to note that the weight value
could alternatively be defined in terms of more specific
experimental design criteria (as presented in [18]) in order
to favor the reduction of a particular uncertainty metric.

V. PATH PLANNING

Our approach to path planning seeks a balance between
robot motion efficiency and 3D reconstruction quality of
the estimated 3D model M. For our planning purposes we
consider the viewpoint specification ν to completely define
the robot configuration and assume the absence of non-
holonomic motion constraints. Moreover, by considering a
constant value for sensor elevation we can assume path plan-
ning for a point robot in a 2D plane. Given knowledge of the
existing 3D model M, the current viewpoint configuration
νinit and the desired sensing configuration ν∗ (determined
by global NBV planning), the goal of our path planning
approach is to determine a sequence νi : {i = 1 . . . n, ν1 =
νinit, . . . , νn = ν∗} of intermediate sensing configurations
to be adopted in the transition from νinit to ν∗ by means of
robot motion.

We consider a discretization of the search space for path
planning by means of a 2D grid G ∈ Rn×n centered around
the object being observed. For each cell Gij in the grid, we
consider a viewing configuration νij located at the center
of the cell and oriented towards the center of the grid. The
cost of each cell is determined as the inverse of the NBV
evaluation function (8) and scaled linearly to reside in the
[0, 1] range. In this way, the cell containing the NBV will
be the one with the globally lowest cost and the selected
route will be the minimum cost path connecting νinit and ν∗.
The solution to such path planning problem can be sought
by using a gradient descent search strategy. However, in
order to avoid scenarios where the gradient based search may
stagnate in local minima, we implement a recursive approach
for cost guided path planning and describe it in the following
subsection.

A. Recursive Path Planning

Our path planning approach is restricted to determining
sensor positioning in terms of a fixed 2D grid, while sen-
sor orientation is pre-computed for each cell Gij as the
orientation of maximal benefit. In this way, the viewpoint
configuration assigned for each cell approximates the local
optimum among the viewpoints located within the cell’s area.

Our recursive path planning approach determines a set S
of viewpoints approximately equidistant to both the start and
goal 2D positions x0 and x1. We select the valid viewpoint
position x∗ corresponding to the greatest element in the
set S with respect to F (νij). The validity of a viewpoint
x∗ depends on the existence of a path from x0 to x1,
passing through x∗ (i.e. [x0 → x∗ → x1]). To perform
this test we utilize an auxiliary path planning function
PathQry(x0,x∗,x1) which determines the shortest connect-
ing path by breadth-first search. NBV planning recursion is
applied by treating the intermediate viewpoint position x∗

as the starting and goal 2D position of two different paths
(i.e. [x0 → x∗] and [x∗ → x1]). Recursion halts once a
proximity threshold among starting and goal positions is
reached. The range of candidate viewpoint positions S is
reduced at every recursion level to guarantee convergence
toward the goal position. Moreover, the range of equidistant
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Fig. 1. Recursive Path Planning. Starting from two viewpoint positions
(x0,x1), intermediate viewpoint positions x∗ are selected from a set S
of positions approximately equidistant to x0 and x1. The position x∗ is
the minimal element of S. Note how the extent of S is proportional to
the distance between x0 and x1. Two successive levels of recursion are
illustrated.

positions is proportional to distance among starting and goal
positions at the current recursion level.

The benefits of the proposed approach are two-fold. First,
by considering a reduced local set S of candidate viewpoints
at each recursion step, the total amount of NBV evaluations
is reduced when compared against evaluating the entire
grid. Moreover, controlling the cardinality and geometric
extension of S provides a mechanism for balancing the
divergence of our path from a straight line motion in favor of
attaining more favorable viewing positions. Second, by using
an auxiliary function PathQry(·) as an indicator function
for intermediate viewpoint validity, the low level kinematic
considerations of path planning are decoupled from the task
of designing a suitable sensing strategy. In other words,
vision related constraints can be addressed by the NBV
evaluation function, while robotic motion considerations are
to be handled by PathQry(·). In practice, we implement a
global path planning approach based on the A∗ algorithm
[11]. However, alternative path planning techniques can be
considered based on computational cost and completeness
considerations.

B. Controlling Path Plan Execution

Once a sensing path P = {νj : j = 1 . . . n} has been
determined, robot motion towards the NBV ν∗ = νn initiates
and sensing actions are executed as specified by the planned
intermediate viewpoints. After each image acquisition our
model M = {∪Pi : i = 1 . . . N} is updated by a Kalman

SplitPath(x0 ,x1):
//Compute mid-point
xm ← (x0 + x1)/2
//Compute distance between end points
d ← ‖x0 − x1‖2
if d ≤ 2ε return TRUE
// Compute normal vector to separating axis
x̂ ← (x1 − x0)/‖x1 − x0‖2
// Group points in the ε-neighborhood of the
// separating axis and at distance not greater than d/2
// from the mid-point
S ← {Gij(y) :| (y − xm)T x̂ |≤ ε, ‖y − xm‖2 ≤ d/2}
// Among elements of S reachable from both end points
// select the element with minimal cost

x∗ ← x

(
arg min
Gij∈S

C (Gij) : ∃PathQry(x0,x(Gij),x1)

)

if x∗ = ∅ return FALSE
// Apply recursion on left half-plane
if NOT SplitPath(x0,x∗) return FALSE
// Insert mid-point after left half-plane recursion
P ← P ∪Gij(x∗)
// Apply recursion on right half-plane
if NOT SplitPath(x∗,x1) return FALSE
return TRUE

Fig. 2. Pseudo-code for SplitPath(). Taking an initial and goal positions as
input parameters a path P is recursively generated by selecting intermediate
viewpoint from a local subset S.

filter framework (see Section III). Under such an estimation
framework it is possible to predict the state of the model
after a single sensing action from ν∗. In turn, this estimation
Mν∗ can be compared with each of the sequentially updated
models to determine whether the benefit of reaching the
original NBV has been already met by the accumulation of
intermediate sensing actions.

We propose the use of a utility function to describe
the total reduction of 3D uncertainty for the model region
Mν∗ ⊂ M observed by ν∗. Let γ : R3×3 → R denote
a criterion function describing the total 3D uncertainty of a
given covariance matrix Σ. We define γ(Σ) =det(Σ), since
this measure is equivalent to the product of the eigenvalues of
Σ, providing an approximate quantification of the uncertainty
volume described by Σ. Moreover, this criterion corresponds
to the concept of D-optimality found in the experimental de-
sign literature [18]. Let ΣP and ΣP

ν∗ respectively denote the
current and predicted 3D covariance matrices for primitive
P . In this way, we define an utility function of the form

U(Mν∗ ,M) =
∑

P∈Mν∗

γ(ΣP )− γ(ΣP
ν∗).

Note that the difference between γ(ΣP ) and γ(ΣP
ν∗) for a

given primitive P , will become negative when the current
uncertainty volume represented by ΣP is smaller than the
volume for the predicted covariance ΣP

ν∗ . By defining our
utility function as the sum of differences, we consider
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ExecuteSensing(P):
// Predict 3D model after path execution
// to determine path-specific performance goals
ν∗ ← LastElement(P)
Mν∗ ← PredictModel(ν∗)
while P 6= ∅

// Move to next viewpoint and sense environment
ν ← FirstElement(P)
P ← P \ ν
MoveTo(ν)
SenseEnvironment()
// Update internal 3D model
M← UpdateModel()
// Halt execution if task-level goals are met
if PrecisionLevel(M) < ρ return TRUE
//Determine a novel NBV if either

// the path-specific performance goals are met,
// the path is not valid after model update,
// the end of the original path has been reached

if U(Mν∗ ,M) < η
OR ¬∃PathQry(x(ν),x(ν∗))
OR P = ∅

ν∗ ← ComputeNBV()
P ←SplitPath(x(ν),x(ν∗))
Mν∗ ← PredictModel(ν∗)

Fig. 3. Pseudo-code for ExecuteSensing(). A predetermined path P is
executed by traversing trough a sequence of viewpoints while updating an
internal 3D model. Path is recalculated when an utility threshold is reached
or the original path is no longer feasible.

negative values of our utility function as favorable as they
represent a reduction in uncertainty of the patches contained
in Mν∗ . Accordingly, once we define a threshold value η
for our utility function U(·), we can monitor the evolution
of the function values and decide to halt the execution of
the sensing plan. In this way, the determination of the NBV
ν∗ serves the double purpose of providing the required input
for complete task specification as well as explicitly defining
qualitative goals for the sensing plan.

The effects of model updates during path execution are two
fold. First, augmentation of our internal model representation
by sensing novel regions of the environment may render
the original path unfeasible or cast regions of the object
unobservable as obstructions may be detected. Second, if
the internal 3D model updates are of sufficient scale as to
significantly modify the 3D geometry of our internal model
representation, the NBV may be rendered ineffective.

The feasibility of the current path towards the NBV can
be readily evaluated after each augmentation to the internal
model M and a novel NBV can be computed if the current
path is rendered unreachable. Dealing with regions that
are rendered unobservable by model augmentation is more
complicated if those regions are the main focus of attention
of the NBV. In that case, the 3D uncertainty of such regions
will not be updated trough the course of path execution
and an alternative NBV will need to be determined after

path completion, when subsequent evaluations of our NBV
criterion will consider the novel visual occlusion constraints.

C. Planning Completeness

The usefulness of an automated planner is dependent on
its ability to avoid degenerate behavior. In this respect, the
capability of our planner to escape local minima in the search
space defined by our NBV criterion function (8) is essential
for the achievement of planning convergence. Without loss
of generality we can study the case of a single primitive
and for the analysis of equal consecutive viewpoints since
the Kalman filter guarantees that the cost function is not
increased for any other primitive of the model.

Proposition 1. For a scene consisting of a single convex
object, the use of the proposed Kalman filter framework for
image measurement fusion, along with our NBV planning
criterion, eliminates stagnation in the iterative process of
viewpoint selection.

Proof. Our proof relies on showing that consecutive sens-
ing actions from the same optimal NBV will reduce the value
of criterion evaluation at that viewpoint. Moreover, iterated
measurements from the current viewpoint will cause the local
maximum in our criterion function (8) to be consumed and
allow for a new global optimum to be considered as the NBV.
This is achieved when

F (P t, ν∗) > F (P t+1, ν∗). (10)

Here, we will present a brief sketch of our proof. Note
that for consecutive sensing actions from the same viewpoint,
the effects of texture thresholding h(P ) and projected area
measurement g(P, ν) can be obviated, as the first is a
constant function for each primitive while the second is a
viewpoint dependent function. Accordingly, they both remain
constant for repeated measurements from the same position.
Hence, for the considered scenario and from the definitions
of w (9) and f(P, ν) (4) we have the function profile of (8)
given by

F (P, ν) =
cw

f(P, ν)
=

cλ1λ2λ3

‖vT [λ1e1 λ2e2 λ3e3] ‖2 . (11)

Since v and ej are unit vectors, an analysis of the partial
derivatives of F (P, ν) indicates that decreasing the magni-
tude of the eigenvalues also reduces the value of (11). Finally,
given that the utilized Kalman filtering framework provides
non-increasing uncertainty estimation (see Lemma 1), and
assuming discardable changes to the orientation of the 3D
uncertainty, the eigenvalues are indeed decreased by iterated
measurements, which in conjunction with (11) proves (10)¤.

Proposition 1 allows for the normal operation of the
planner not to get stuck on local minima of the NBV
search space. In practice, this property holds even though
the actual criterion is computed from an aggregation multiple
primitives. This is due to the fact that primitives outside the
visual field of the current viewpoint are not affected by our
EKF framework, yielding a fixed 3D uncertainty estimate.
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Fig. 4. Planning from an initial configuration. At left, the navigational grid is depicted with the two initial viewing configurations highlighted as well as
the NBV computed for the current 3D model. At center, the recursively interpolated sensing path between the initial viewing configuration and the NBV
is illustrated along with the predicted model. At right, the complete sensing path obtained after several iteration of the NBV planner. Higher uncertainty
levels of the reconstructed model surface are rendered as red patches while more precise patches are rendered blue.

VI. EXPERIMENTS

We present experimental results on a synthetic environ-
ment. The object under observation is a 3D model located
at the center of a M × M grid. Image acquisition and
measurements were simulated through OpenGL rendering
with synthetic lighting as the only source of surface texture.
The rendered model consisted of 70K triangles and two
initial images with a small baseline were simulated to obtain
an input 3D model for our NBV planner. The simulated
scenario consists of an open environment where the only
inaccessible regions of the grid are those occupied by our
object model.

The goal of our reconstruction is to achieve a reconstruc-
tion precision of 100 times greater than 2% of the a viewing
distance of 40 units. This viewing distance value corresponds
to configurations where the entire rendered model occupies
half the image viewing area, while 2% is in practice a typical
error range for binocular stereo depth estimation. The two
termination criteria for our algorithm are: 1) Achieving 99%
object coverage and 2) attainting an average 3D uncertainty
value σ < 0.008 units across all primitives. Such precision
values can be readily obtained from the covariance structure
of each primitive.

Viewpoint evaluation works at a rate of 130Hz on a laptop
powered by a 2.4 GHZ Centrino processor with 2GB of
RAM and an Nvidia Quadro 570M graphics card. In the
presented experiments, the grid resolution is specified as
M = 60, allowing for the determination of the NBV by
means of complete grid evaluation with a processing time
of under 30 seconds. Alternatively, we have developed an
evolutionary computation based global optimizer for our
NBV criterion (not presented here). However, for the our
simulation scenario full grid evaluation is adopted, as it
assures the attainment of a global NBV.

A. Experimental Results

Figure 4 depicts the initial viewpoint configuration used in
the experiment. The NBV ν∗ is highlighted (i.e. the cell with
the minimal cost value) and the set of intermediate view-
points determined by our recursive path planning approach
is depicted. This sensing plan will be followed until path
completion or the achievement of an utility threshold due
to intermediate sensing and model updates. In this scenario
the sampling rate is set at one sample for each single
cell displacement. However, the sampling rate is a tunable
parameter not inherently restricted by the resolution of the
path planning grid, but instead determined by the operational
characteristics of the mobile platform as well the compu-
tational throughput of the image processing infrastructure.
The availability of near real-time 3D reconstruction systems
allows flexibility in specifying a reasonable sampling rate.

On the right of Figure 4 the results of our sensor planner
are illustrated after achieving a 99% coverage of the object’s
visible area as well as precision level of 0.002% with respect
to a viewing distance of 40 units. These task level qualitative
goals were reached after 270 imaging samples. The geometry
of the obtained sensing path highlights the properties of
our planning approach. Namely, the path initially favors
viewpoints in close proximity of the object, since high reso-
lution measurements of the object surface provide improved
reconstruction accuracy. Due to the 3D object’s shape, these
initial images are unable to favorably sense the regions near
the top of the object. Accordingly, a small nearly horizontal
region on top of the object can not be observed from any
cell in the grid and, as such, it is not considered part of
the visible object surface. Moreover, the initially higher 3D
uncertainty found in the upper regions of the object caused
the planner to guide the selection of subsequent NBV’s away
from the object to bring those regions in to view. In fact, the
final landscape for our NBV criterion function reflects this
property. The displayed final path is achieved by 12 iterations
of our sense-replan approach.
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Fig. 5. Performance of the sensing strategy. Above, average standard
deviation of 3D structure estimates across entire model. Below, utility
function used to monitor achievement of path-level goals. In both cases
the horizontal axis represents the sample count along the sensing path.

It is noteworthy, that while our planner does achieve a
complete circuit around the object, it does present oscillation
at a large scale of displacements. Large scale oscillation
can be attributed to the fact that successfully improving
the reconstruction accuracy on the currently sensed region
may render previously sensed regions in need of additional
sensing in order to compensate. Such behavior is inherent to
the incremental and greedy nature of a NBV based approach.
The lower portion of Figure 5 depicts the evolution of
the utility function used to verify the achievement of path
specific goals. Once a lower bound threshold is reached, a
novel NBV is determined along with an updated sensing
path. The sharp increases in the graph coincide with the de-
termination of novel NBV’s and the corresponding set of new
path specific goals. The upper portion of Figure 5 depicts
the downward trend of the uncertainty in our estimated 3D
model. The non monotonic behavior of the graph is caused
by the inclusion of novel object regions into our model.
Newly sensed regions represent higher uncertainty as they are
generally sensed from a small baseline stereo configuration
(or perhaps from a degenerate stereo pair obtained from
forward motion). A reactive NBV approach (i.e. recomputing
the NBV after each sensing action) would essentially be
guided by these abrupt changes in model uncertainty and
compromise the systematic achievement of task level goals.
Our approach avoids these difficulties by the inclusion of the
aforementioned path specific sensing goals.

VII. DISCUSSION AND FUTURE WORK

We have presented an approach for developing sensing
strategies for autonomous 3D reconstruction. The combi-
nation of the proposed cost function and a recursive path
planner have yielded satisfactory results on simulated en-

vironments. It is noteworthy that our planner exhibits an
exploratory behavior although our NBV criterion is strictly
driven by uncertainty reduction. This property may be
deemed a consequence of observing an object centered scene.
However, the criterion implicitly penalizes revisiting viewing
configurations as they offer limited uncertainty reduction
potential. The generic nature of our 3D model representation
and the computational efficiency our approach makes it well
suited for future real world experimentation. Among addi-
tional research goals we include further formal analysis of the
computational bounds of our approach, as well as exploring
the use of dynamic path planning framework similar to the
one presented in [16].
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