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Abstract

This paper describes a high-fidelity model of wire-
less propagation that integrates several existing mod-
els from the wireless communications literature. The
model accounts for environmental features, including
fading (large and small-scale, and multipath), link-
layer models, and interference between radios. In addi-
tion to identification and integration of the complemen-
tary communication components, this paper’s contri-
bution is in demonstrating how discretization, approx-
imation and batch pre-calculation allow the complete
model to remain practicable for real-time robot simula-
tion. The faithfulness of the simulated communications
is assessed by showing how important qualitative as-
pects of the communication behavior are reproduced.

1. INTRODUCTION
Recently researchers have become concerned with pro-
gramming robots to establish and dynamically main-
tain wireless networks. Such communications may
be an end in themselves (e.g., virtual “infrastructure”
minimizing goodput, latency, etc.), or the communica-
tions may also serve as a means toward some higher-
level coordination (e.g., distributed auction algorithms).
Even when robots are beyond the range of reliable
communication, signal-strength measurements can pro-
vide important information. Reproducing realistic net-
work behavior requires modeling both physical and
data/application layers, and their interaction.

Although many radio and wireless communica-
tion models are available in the literature, no single
model adequately captures detailed environmental ef-
fects on signal propagation, fading and multipath while
simultaneously being fast enough for robotics applica-
tions. This paper integrates several models to account
for these aspects and achieves suitable runtime perfor-
mance by relying on a single tedious preprocessing step.

The following section describes existing ap-
proaches to simulation of wireless communication and
outlines where existing approaches fail to address the
needs of roboticists. Section 3 provides a description
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Figure 1. Discretization of the input map.

of the channel model (path attenuation and shape-factor
fading) and outlines the division into offline preprocess-
ing and online queries. Section 4 presents examples
of variation of signal strength and packet reception rate
along a given trajectory. We show conditions with and
without interference. These examples at both channel
and link-layer levels show good qualitative correspon-
dence with previously identified network behavior.

2. RELATED WORK
This is a high-level analysis of the state of network

simulation, first within the robotics and then the sensor-
networking communities.

2.1. Robot simulators
Few robotic simulators provide realistic models of

wireless network failures or unreliability (cf. Stage [1],
Gazebo [2], Teambots [3], Webots [4]1). The user must
perform sophisticated processing to reproduce realis-
tic network behavior, e.g., accessing simulated position
information to apply distance-based connectivity rules.
This requires additional user code and, consequently, no
single approach is pervasive or standardized.

Occasionally researchers use a simple model of
network unreliability to show that their control software
is robust to communications failures. For example, soft-
ware might be shown to cope with a complete commu-
nications failure, a network partition, or a bounded mes-
sage loss rate. In such circumstances wireless networks
are used purely for communication and, thus, failure

1Webots adds white Gaussian noise to IR transmission that, while
producing nondeterminism, hardly constitutes a propagation model.
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Figure 2. Three examples of path attenuation factors
(PAF) from a transmitter placed within the environment.
These values are calculated by ray-casting and integrating
values along the connecting ray. Partition values for brick
from those reported in [8].

models consider only the link-layer behavior. When
robots use packet reception and network topologies (or
local changes thereof) as important inputs, then these
techniques are inadequate.

2.2. Sensor-networking models and simulators
Several standardized models exist within the

sensor-network literature. Multiple models exist be-
cause they each capture some aspect of network behav-
ior, or have useful theoretical properties, or account for
some controlled empirical measurements. Despite sev-
eral assumptions being shown to be poor approxima-
tions of reality, they continue to be used [5]. For ex-
ample, a popular model considers the communications
reception area to be a disc centered on the transmitter.
This single radius model is regarded as unrealistic, even
for theoretical models [6], but nevertheless its use re-
mains widespread.

Although attempting to study network performance
by analyzing performance across layers can be pro-
ductive in particular applications (e.g., timing analysis
in [7]), most models of network performance consider
some subset of the layer model. Comparatively little
work considers the effects that changing transmission
channel conditions have on performance. This is per-
haps unsurprising given that sensor networks are typi-
cally deployed in fixed locations and that events being
monitored are assumed to be sensed through specially
designed sensors rather changes in radio transmission.
(There are exceptions to this last case, but the general-
ization is broadly true.) Thus, modellers will often use a
simplified channel model that uses a statistical descrip-
tion of communication channel properties. For exam-
ple, variance to account for shadowing is often repre-
sented by a random variable drawn at initialization time.
This suits the sensor network researcher who is not con-
cerned with the spatial relationship of the nodes, but is
content with drawing a sample network from an ensem-
ble which describes plausible networks. One finds ex-
amples of sophisticated models of application-layer net-
work performance, interference, etc., despite the physi-
cal channel properties being simple.

Figure 3. Ray-tracing allows the reflected components
of the received power to be calculated. This is used to
construct an angular distribution of the power, which is
summarized with the three shape-factors (for clarity, the
power produced by the direct path is omitted from the fig-
ure.) The resulting shape-factor for the shown points are:
Λa = 0.985525, γa = 0.590345, Θa = 0.291113; Λb = 0.662603,
γb = 0.843989, Θb = 0.046750; Λc = 0.762548, γc = 0.388172,
Θc =−0.191796.

Such statistical approaches to channel models (e.g.,
log-normal shadowing [8]) are inadequate for describ-
ing performance in contexts in which a robot uses its
radio as a sensor of transmission channel properties. As
a robot moves, the communications model must reflect
the changes in transmission quality (or received signal
strength) that result. Indeed, we expect that the robot
could potentially use these changes to infer informa-
tion about structural changes in the world. With mo-
bile nodes, location-based variation becomes important
(to see an robotic application that exploits this fact and
mobility, see [9]).

2.3. Physical channel models

Broadly speaking, statistical physical channel mod-
els, like those mentioned above, attempt to represent un-
derlying causal factors and uncertainty by treating them
as randomly drawn from a suitable statistical distribu-
tion. The form of the distribution may reflect particular
broad categories of environmental types (e.g., Ricean
versus Rayleigh fading).

A second class of models considers scenarios in
which the physics of the signal propagation can be ana-
lyzed. [8] demonstrates how refraction or reflection can
be treated in this manner. Since the environments we
consider are complex and have small-scale structure, no
single such model will suffice. However, this model of
radio reflection is used within the ray-tracing approach
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Figure 4. Examples of short-range fading. First (left-
most) figure shows the sum of small and large-scale ef-
fects. The second and third figures show the large-scale
and small-scale components separately. The fourth de-
scribes the variance due to small fading; the third figure
is sampled from a distribution with this property.

described in the next section.
[8] goes on to describe “site specific” techniques

that process a map in order to understand signal propa-
gation within the space. One of these, the primary ray-
casting technique, provides a description of large-scale
attenuation effects and is used below. Since the map
is available to a robotic simulator, it is reasonable to
provide the same information to the radio propagation
model software. (Additional information like material
type, attenuation factor, and surface tangent direction
was captured by hand, as shown in the sections the fol-
low.)

Our philosophy is to find potentially computation-
ally expensive techniques that capture the degree to
which signal propagation (and hence communication)
depends on environmental features. The following sec-
tion describes more generally the models used. Map
pre-processing to enable real-time queries is described
thereafter.

3. APPROACH
We are primarily concerned with capturing the ef-

fects of position within the environment on reception
power. The probability of correct packet reception is a
function of the received power. Thus, the channel model
must capture the power received from a given transmis-
sion location to other areas within the environment. We
consider two contributing factors: (1) attenuation as the
result of path loss; (2) multipath effects.

3.1. Large-Scale Path Loss
We model the wireless channel by combining a

term for large-scale path loss, and a second term for
small-scale multipath effects and fading. The log-
normal shadowing model is an simple and widely
agreed upon model [10], that serves as a reasonable
starting point:

PL(d) = PL(d0)+10n log10(
d
d0

)+Xσ ,

This gives an value of average power (in dB) lost
over the path from a position of length d (where d ≥ d0,
provided one has some power measurements at d0). The
additional zero-mean normal noise Xσ may change with
time, and is used to capture unmodeled effects.

Figure 5. Tests of the model consider a static transmitter
T and a receiver that moves from 1 to 2. Interference from
radio at a, b, c and d were also considered.

As stated above, our philosophy is to find possi-
bly computationally expensive, but better than resigning
ourselves to purely stochastic models. Following [8],
Section 4.11.5, we include a terms for shadowing by
adding including a path obstructions through so-called
“primary ray tracing” so that partition attenuation factor
(PAF) values model power loss due passing through an
obstacle:

PL(d) = PL(d0)+10n log10(
d
d0

)+∑PAF [dB]+Xσ ′ .

(Note that variance of the additional noise Xσ ′ is de-
creased because large-scale pass loss is well accounted
for by the attenuation factor [8, pp. 163].)

Figure 1 is a plan of a building used throughout the
remainder of the paper. Figure 2 graphically shows at-
tenuation factor values for a transmitter in the upper-left
corner: these are constructed by ray-casting to sum the
attenuation factor values along a path from the trans-
mitter to each part of the environment. (A slight modi-
fication like that in [11] handles multi-floored environ-
ments easily.)

3.2. Small-Scale Fading
Small-scale fading is produced by two multipath

effects: Time-delay spread, and Doppler spread [8, pp.
206]. In our scenarios we consider Flat Fading as the
time-delay element, and what is termed slow Doppler
Fading. Oftentimes these details will be ignored and ei-
ther Rayleigh or Ricean distributions used to model the
small-scale fading. Rayleigh fading results when there
is no line-of-sight between the transmitter and receiver;
the receiver is assumed to have power arriving from all
angles. Ricean is similar, having power arriving from
all angles, but additionally includes power peak to ac-
count for a line-of-sight transmission. Much like the
use of a normal distribution to model large-scale path
loss and shadowing, we were unsatisfied with the lack
of an environmental attributes of the behavior in these
distributions. We implemented a multipath shape-factor
model, which produces Rayleigh and Ricean distribu-
tions when arriving power is one of the special cases de-
scribed above. The following description follows [12].
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Figure 6. Radio transmission to a moving test receiver.

The multipath shape-factor model accounts for the
fading statistics by modeling the angular distribution
of the power, p(θ) that arrives at a receiver. To cal-
culate this distribution, a deterministic ray tracer was
developed that treats obstacles as sources of reflection.
Obstacles are modelled as imperfect dielectrics, and as-
suming an E-field normal to the edge of the obstacle
(which holds when E-field is horizontally polarized, and
the antenna are placed vertically). If an incident wave
entering the obstacle at an angle θi has electric field Ei
then the reflected wave:

Er =
sinθi−

√
εr− cos2 θi

sinθi +
√

εr− cos2 θi
Ei.

(The relative permittivity εr is taken as having the value
of 4.44 as is suitable for brick.)

The shape-factors are based on the Fourier coeffi-
cient’s of the power distribution. Once p(θ) has been
calculated for a particular transmitter and receiver pair,
we calculate:

Fn =
∫ 2π

0
p(θ)e−inθ dθ .

From these the three shape-factors are defined:

Angular spread is a measure of the concentration of
power about a single azimuthal direction:

Λ =

√
1− |F1|2

F2
0

.

Angular constriction is a measure of the concentration
of power about a two azimuthal directions:

γ =
|F0F2−F2

1 |
F2

0 −|F1|2
.

Azimuthal direction of maximum fading is given by:

Θ =
1
2

arg{F0F2−F2
1 }.

The variance of the received power (in Volts-
squared) is equal to the magnitude-squared of the com-
plex voltage. Figure 3 provides an example. The ra-
dio power less the path-loss factor provides PR (an av-
erage of the local received power) and then the variance
(from [8], pp. 233) of the complex voltage for a receiver
travelling in direction β is:

σ
2
V̄ ′ =

2π2Λ2PR

λ 2 (1+ γ cos(2β −2Θ)),

where λ is the wavelength of the carrier frequency.
Thus, the variance of the received power due to

small-scale effects can be calculated from a given trans-
mitted location to a given receiver once the values for
Λ, Γ and Θ have been established for that pair. Figure 4
displays the additional variance that results from small-
scale effects. The right-most figure shows the variance
from the given transmission point. This variance is sig-
nificant in regions which can be reached from the trans-
mitter through reflection off obstacles.
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3.3. Link-Layer Model
Next, we implemented the link-layer model devel-

oped by [13], the following is an overview. As men-
tioned PR = PT −PLT (d,Λ,γ,Θ,β ), where PT is the ra-
dio’s transmit power, and PLT (·) is the sum of PL(d)
and the appropriate noise generated as a function of
the shape factors just described. The probability of a
bit error is modeled by assuming NRZ encoding with
NCFSK modulation. This in turn leads to the follow-
ing expression for the probability of receiving a packet
correctly:

PRR = (1− 1
2

e−
α

2 )8 f ,

where f is frame length, we take f = 50 bytes. The
α is the signal-to-noise ratio in [13], but we extend their
model as described in the following section.

3.4. Transmission Interference Model
The concurrent transmission model based on [14]

is integrated by having signal-to-noise term become
a signal-to-interference-plus-noise-ratio. This involves
including the power that is received from concurrent
transmissions and treating them as adding to the noise
floor:

α = PR−Pn−PI .

Both the noise floor Pn and interference are ways
that result in asymmetry in the communications net-
work. We follow [13] and generate Pt and Pn to-
gether with a covariance matrix that is representative
for MICA2 radios. To model PI , we simulate packet
transmission times, and treat a collision on the medium
by adding power produced by the interfering transmit-
ter. [14] show that simply adding such noise will over-
estimate packet losses. Thus, additional interference
contributions are halved, based on the data in Figure 13
of [14]. Our experiments suggest packet reception is
adversely affected by increasing the interferers more by
the increased frequency of collisions than by their con-
tribution to the noise floor.

3.5. Preprocessing and efficient queries

We added this model two multi-robot simulators.
The first was our own custom simulator for large
swarms of robots, and the second based on Cybele [15].

In order to do this position dependant calcula-
tion efficiently, we rely on significant pre-computation.
Given transmitter and receiver locations, a model for the
power depends on a path attenuation factor (PAF) and
three shape-factors coefficients. Two separate databases
are produced, one for the PAF values another for the co-
efficients given any pair of locations within a discretized
representation of the environment.

The maps shown in the figures were discretized into
a 200×200 grid with each entry storing the attenuation
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Figure 7. Radio transmission in the presence of interfer-
ers, at (a), (b), (c) and (d) respectively.

factor for the material within that portion of the envi-
ronment, which is then discretized to a 8-bit signed in-
teger. A Path Attenuation Factor Database is produced
by ray casting from every possible starting position to
every possible final position. The database contains the
integral of attenuation factors along a each such trajec-
tory. The process can be optimized by casting long rays
initially and storing intermediate values along each ray.
We use a Bresenham integer line marching algorithm to
perform this quickly.

A Shape Factor Coefficient Database is generated
by ray tracing from each position to every other posi-
tion. This operation takes significantly longer than path
attenuation factors, thus we make use of a further down-
sampling of the previous grid. Because these operations
involve many repeated reflections, an optimization ini-
tially builds an index at each surface indexed by a re-
flection angle.

Both databases are arrays indexed by location 4-
tuples. Our implementation memory maps each of these
databases in uncompressed form so that, given dis-
cretization sizes, the values can be read directly only
when needed. This is useful because it does not cause a
delay to the simulation start-up.
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4. EVALUATION AND DISCUSSION
We briefly present some controlled examples in or-

der to show resulting simulated radio behavior. Fig-
ure 5 shows the set-up. A static transmitter at T broad-
casts test packets. A test receiver is moved from 1 to 2,
which is a distance of about 8 metres. Figure 6 shows
the resulting shape-factors, variance in power, total fad-
ing, and packet-reception. It is interesting to observe
that passing through the doorway from the corridor into
the room results in packet reception in the transitional
regime of behavior. Notice also how the small-scale
effects (see Figure 6(b)) result in marked changes in
packet-reception rates shown in Figure 6(d).

This compares favorably with our (and previously
published [6, 11, 13]) experience with physical radios
in which there exist three basic regimes of behavior: (i)
Close, well-connected, near perfect transmission; (ii)
Intermediate transitional region with high-variability;
(iii) Long distances with no, or very limited connectiv-
ity.

The same setup was also used in an arrangement to
test interference. The movement of the receiver was re-
peated, but we included a transmitting interferer at each
of (a), (b), (c) and (d) respectively. Figure 7 shows that
the effect collisions have on the reception rate varies
with position (and hence, received interferer power) as
one might expect.

5. SUMMARY
This paper has presents an high-fidelity model of

communications for simulation of wirelessly networked
robot systems. Our contribution has been in identifying
and integrating complementary techniques for captur-
ing the effects of environmental features, fading (large
and short-scale, and multipath), link-layer schemes, and
interference from other radios. The result is a model
that, after a single batch pre-processing stage, can be
used to perform rapid, realistic multi-robot simulation.
We are unaware of any work that provides these fea-
tures, which could undoubtedly improve the quality of
simulators currently available. We have thus attempted
to provide a description of the approach that is suffi-
ciently complete to allow direct implementation.
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