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Abstract— This paper addresses continuous collision-
checking of a high-DOF robot trajectory in a completely
unknown and unpredictable environment (i.e., obstacles are
unknown and their motions are also unknown). In [1], the
authors introduced how to discover, if a robot at configuration
q at a future time t is guaranteed collision-free or not using
the novel concept of the dynamic envelope and atomic obstacles
based on sensing in such an unknown and unpredictable
environment. In this paper, we further show that if a point
(q, t) in the robot’s configuration-time space (CT-space)
is discovered collision-free, a neighborhood (CT-region) of
(q, t) is also guaranteed collision-free. Based on that, given a
continuous robot trajectory, we present a method to compute
a set of discrete CT-points such that, if these points are
discovered to be guaranteed collision-free, their associated
collision-free neighborhood CT-regions contains the continuous
trajectory, i.e., the trajectory is guaranteed continuously
collision-free.

I. INTRODUCTION

The ultimate goal of intelligent robotics is to enable
a robot of high degrees of freedom (DOF) to work au-
tonomously in an unknown and unpredictable environment.
For the robot to move safely in such an environment, it must
be able to discover guaranteed continuously collision-free
trajectories in real-time. However, the most common practice
in the robotics literature for collision-checking is to discretize
a continuous path or trajectory into a sequence of discrete
configurations or configuration-time points and just check
if the robot is collision-free or not at these discrete points.
A collision can be missed between two consecutive discrete
points, especially if the size of an obstacle is not known
beforehand. A finer discretization will increase computation
cost but not be able to eliminate the problem.

Most of the work addressing continuous collision checking
are for known environments, using the knowledge of obstacle
motion. One approach formulates the trajectories of the robot
and approximated obstacles in the environment as functions
of time and finds the time instants when collision occurs
analytically [2]. However, if the trajectory functions are
nonlinear, solving for collision time instants can be difficult.
The adaptive bisection algorithm [3] is based on the intuition
that if the sum of the distances traveled by two objects is less
than the minimum distance between them before traveling,
then they cannot collide during their motions.
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There are also approaches in the literature that focus on
generating or approximating the continuous swept volume
by a robot along a path or trajectory [4], [5], which can
then be used to perform collision tests against obstacles.
One approach [6] models the motion between two discrete
configurations of an articulated robot in order to avoid
generating the swept volume of individual links. Graphics
hardware is then used to perform fast collision queries
for approximated swept volumes in a virtual prototyping
environment. Another approach [7] is focused on growing
the physical robot’s volume at discrete configurations along
a path to form a continuous region for collision tests. These
approaches are focused on the robot rather than the obstacles,
which are mostly assumed static.

To our best knowledge, there is no method in the liter-
ature that has addressed continuous collision checking in a
completely unknown and unpredictable environment, where
obstacle geometries are not known and whether obstacles
move or not and their motions cannot be predicted. We
address the novel problem of continuous collision checking
in such an environment in this paper.

The rest of the paper is organized as follows. Section
II introduces basic assumption and notations used in the
paper. Section III provides a review of how to use the
concept of dynamic envelopes [1] to perceive collision-free
configuration-time points (CT-points) for a robot in an un-
known and unpredictable environment. Section IV describes
a collision-free CT region associated with a collision-free CT
point discovered via a dynamic envelope. Section V presents
a method to detect in real-time if a robot trajectory is guar-
anteed continuously collision-free or not through checking
a set of discrete configuration-time (CT) points. Section VI
provides an implemented example and some experimental
results. Section VII concludes the paper.

II. ASSUMPTION AND NOTATIONS

Here we assume a high-DOF robot consisting of multiple
polyhedral links. This is a reasonable assumption since a real
robot’s link is commonly modeled by a polygonal mesh or
can be approximated by a polyhedral bounding box.

The following notations describe such a robot model in
the Cartesian space (i.e., the physical space).

• l: the set of points constituting a polyhedral link (rigid
body) of the robot.

• lx: the set of vertices of l.
• R: the set of all points of all links of the robot, i.e.,
R =

⋃
l.
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Fig. 1. Illustration of dmax(q′,q) of a rod robot

• Rx: the set of all bounding vertices of all links, i.e.,
Rx =

⋃
lx.

• p(q): the position of a point p ∈ R in the Cartesian
space when the robot is at configuration q.

• px(q): the position of a point px ∈ Rx in the Cartesian
space, when the robot is at configuration q.

• R(q): the region occupied by the robot R at configura-
tion q.

• dmax(q′,q): the distance defined below:

dmax(q′,q) = max
∀px∈Rx

‖px(q′)− px(q)‖. (1)

Figure 1 illustrates dmax(q′,q) of a rod robot (which can
also be considered a rectangular link of a high-DOF robot).

We also use the following different temporal notations in
the description of a robot’s operation:
• τ : time of sensing.
• t: time of action.

III. DYNAMIC ENVELOPE: A REVIEW

For a robot to move in an unknown and unpredictable
environment safely, it is necessary that the robot is able
to sense on-line if it can be guaranteed collision-free at
some time and place. In [1], an approach is introduced
to discover from sensing whether a high-DOF robot (such
as a manipulator) will be guaranteed collision-free at a
configuration q at some future time t, i.e., whether the CT-
point χ = (q, t) is guaranteed collision-free. To do that, it
uses the novel concept dynamic envelope complemented by
atomic obstacles.

Atomic obstacles are low-level sensory data representing
actual obstacles collectively in similar and simple geome-
try without distinguishing them. In other words, all actual
(unknown) obstacles as a whole can be sensed as many
atomic obstacles (with default geometry) and their respective
locations at any sensing moment. Although the obstacles and
their motions (or lack of motion) are unknown, an upper
bound can be put on the changing rate of the environment in
terms of a maximum possible speed vmax of each atomic
obstacle. Of course, an atomic obstacle may have varied
actual speeds in [0, vmax]. To be safe, vmax can be quite
over-estimated, but the approach for discovering guaranteed
collision-free CT-points is shown [1] to be robust for over-
estimated vmax.

Now, we describe the concept of dynamic envelope.

Definition 1: For a CT-point χ = (q, t), a dynamic envelope
E(χ, τi), as a function of sensing time τi ≤ t, is a closed
surface enclosing R(q) in the physical space so that the
distance between any point on E(χ, τi) and the surface of
R(q) is vmax(t− τi).

The following are major properties of a dynamic envelope
E(χ, τi). They capture non-worst case scenarios regarding
atomic obstacle motions, without assuming any particular
kinds of obstacle motion.

1) A dynamic envelope shrinks monotonically over sens-
ing time with speed vmax, i.e., E(χ, τi) ⊃ E(χ, τi+m),
where m > 0, τi < τi+m ≤ t.

2) An atomic obstacle not on or inside E(χ, τi) will never
be on or inside E(χ, τi+m).

3) An atomic obstacle either on or inside E(χ, τi) can be
outside E(χ, τi+m), for certain τi+m, if not moving
towards R(q) in maximum speed vmax.

Suppose some atomic obstacles are on or inside the
dynamic envelope initially. As the dynamic envelope shrinks
over time, it is possible that at some sensing moment τj < t,
the dynamic envelope E(χ, τj) is free of atomic obstacles.
When that happens, the CT-point χ = (q, t) is discovered
guaranteed collision-free at τj (based on the above prop-
erties), and we call that the dynamic envelope expires at
τj . Moreover, all the continuous CT-points in the interval
[(q, τj), (q, t)] are also guaranteed collision-free.

Figure 2 shows an example, where χ = ((3, 3), 3), vmax =
1 unit/s. The robot is a planar rod robot with fixed orientation
and can translate along the plane. In this example, the whole
workspace is assumed visible so that all obstacles are viewed
as atomic obstacles. However, the work to be described in
this paper does not require that assumption. Rather, as long
as the concerned region for a trajectory is visible, we can
determine if the trajectory is continuously collision-free or
not.

IV. COLLISION-FREE CT-REGION DISCOVERED ALONG
WITH A COLLISION-FREE CT POINT

We have the following theorem.

Theorem 1: When a CT-point χ = (q, t) is discovered
collision-free at sensing time τi, i.e., the dynamic envelope
E(χ, τi) is free of obstacles, a continuous neighborhood
F (χ, τi) of χ is also discovered collision-free, such that, for
any CT-point χ′ = (q′, t′) ∈ F (χ, τi), its configuration q′

satisfies:
dmax(q′,q) ≤ vmax(t− τi), (2)

and its time t′ satisfies

τi ≤ t′ ≤ t−
dmax(q′,q)

vmax
< t. (3)

Proof: When inequality (2) is satisfied, R(q′) is contained
by the dynamic envelope E(χ, τi), which is free of obstacles.
If χ′ = (q′, t′) is collision-free, it means that the dynamic
envelope of χ′ is contained in the dynamic envelope of χ,
i.e., E(χ′, τi) ⊂ E(χ, τi), and τi ≤ t′. Since dmax(q′,q) is
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(a) E(χ, 0.1) contains atomic obstacles

(b) E(χ, 1.89) shrinks and does not contain
an atomic obstacle

Fig. 2. A rod robot in an environment of unknown obstacles. The unknown
obstacles are modeled by atomic obstacles as red circles. χ = ((3, 3), 3) is
detected guaranteed collision-free at τi = 1.89s. These figures are reprint
from [1].

Fig. 3. Illustration of inequality (4)

the maximum distance between two corresponding points of
R(q′) and R(q), we have

dmax(q′,q) + vmax(t′ − τi) ≤ vmax(t− τi), (4)

which can be simplified to

t′ ≤ t− dmax(q′,q)
vmax

.

Thus, the theorem is proven.
Figure 3 illustrates the proof for a rod robot.

Corollary 1: If χ′ ∈ F (χ, τi) for some τi < t, then χ′ ∈
F (χ, τi+m), τi+m ∈ [τi, t′],m = 0, 1, 2, ...

Proof: From inequality (3), subtracting t′, we have

0 ≤ (t− t′)− dmax(q′,q)
vmax

which, multiplying vmax, leads to:

dmax(q′,q) ≤ vmax(t− t′)

From the above, because τi+m ≤ t′, we have

dmax(q′,q) ≤ vmax(t− τi+m) (5)

and also

τi+m ≤ t′ ≤ t−
dmax(q′,q)

vmax
< t. (6)

With (5) and (6), based on Theorem 1, the corollary holds.

We next characterize the geometry of the CT-region
F (χ, τi) below, based on Theorem 1 and Corollary 1.
• F (χ, τi) is on the time interval [τi, t].
• The region of F (χ, τi) on the time-slice τi contains all

the configurations that satisfy inequality (2), whose size
and shape depend on (a) the robot kinematics, and (b)
the size of the dynamic envelope E(χ, τi).

• At the time-slice t, F (χ, τi) contains the single CT-point
χ = (q, t).

• Based on Theorem 1, for τi ≤ t′ ≤ t(χ,q′), where

t(χ,q′) = t− dmax(q′,q)
vmax

(7)

all CT-points χ′ = (q′, t′) are in F (χ, τi). Equation (7)
shows that the smaller dmax(q′,q) is, the longer is the
hyper-line from (q′, τi) to (q′, t(χ,q′)) in F (χ, τi).

• F (χ, τi+m) = F (χ, τi) − Fp, where Fp =
{(q′, t′)|(q′, t′) ∈ F (χ, τi), t′ < τi+m}.

As an example, Figure 4 illustrates the geometry of the
CT-region F (χ, τi) of the same rod robot as in Figure 2
with only two translational degrees of freedom. The region
of F (χ, τi) on the time slice τi is a circular disc.

V. PERCEIVING GUARANTEED CONTINUOUSLY
COLLISION-FREE TRAJECTORY

For an n-DOF robot, a continuous trajectory segment Γ
from CT-point χs = (qs, ts) to CT-point χe = (qe, te) can
be formulated as:

Γ = q(t) = [q1(t), ..., qn(t)]T ,
ts ≤ t ≤ te,

(8)

where q1(t), ..., qn(t) are continuous functions of time t for
respective joint variables.

In order to discover if Γ is continuously collision-free or
not, our idea is to find a set of sparse CT-points Q(Γ) =
χj , j = 1, ..., k, such that if each χj = (qj, tj) ∈ Q(Γ) is
discovered collision-free at sensing time τj ≤ ts, then the
(continuous) CT-points on Γ are contained in

⋃
F (χj , τj),

i.e., the entire trajectory segment Γ is discovered continu-
ously collision-free at time instant max(τj) ≤ ts. We now
explain the details of how this works below.

A. Associate Γ to the CT-region F (χ1, τ1) of a single CT-
point χ1 = (q1, t1)

Let us first consider the condition for the CT-region
F (χ1, τ1) of a single CT-point χ1 = (q1, t1) to include all
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(a) F (χ, 0.1) based on the dynamic envelope E(χ, 0.1)
shown in Figure 2(a)

(b) F (χ, 1.89) based on the dynamic envelope
E(χ, 1.89) shown in Figure 2(b). F (χ, 1.89) ⊂
F (χ, 0.1)

Fig. 4. The geometry of CT-region F (χ, τi) for the 2D rod robot of
Figure 2.

(continuous) CT-points satisfying Γ. From the inequality (3)
in Theorem 1, the following condition can be easily derived:

dmax(q(t),q1) ≤ vmax(t1 − t),∀t ∈ [ts, te] (9)

From equation (1), dmax(q(t),q1) can be further computed
as

dmax(q(t),q1) = max
∀px∈Rx

‖px(q(t))− px(q1)‖

where px(q(t)) can be obtained from q(t) by forward
kinematics.

Next we want to choose the CT-point χ1 = (q1, t1) to
satisfy the condition (9), which shows that the complicated
non-linear function dmax(q(t),q1) has to be bounded by
the straight line f(t) = vmax(t1 − t) during interval [ts, te].
Figure 5 illustrated the condition (9) visually. If we choose
q1 to be the end configuration of Γ, i.e., q1 = qe,
then, at least for a time interval immediately before te,
dmax(q(t),q1) monotonically decreases as a function of t
until dmax(q(t),q1) = 0 when te is reached. We now need
to select a t1 to make dmax(q(t),q1) below the straight-line
segment f(t) = vmax(t1−t). To increase the area below f(t)

Fig. 5. Illustration of the condition (9)

Fig. 6. A situation after f(t) is shifted ∆t to end at t1

in order to satisfy condition (9), we have to select t1 ≥ te
i.e., shifting f(t) along the t axis in the positive direction.
Figure 5 illustrates a situation after f(t) is shifted to end at
t1.

The subsequent question is how much t1 should be greater
than te (or f(t) should be shifted). Apparently the greater the
t1, the more likely condition (9) will be satisfied. However, a
greater t1 can mean a delayed discovery of trajectory Γ being
collision-free, if it is indeed collision-free. This is because,
for the same configuration q1, it may take longer time to
discover if the CT-point χ1 = (q1, t1) is collision-free or not
than the CT-point χ′1 = (q1, t

′
1), if t′1 < t1. It can be shown

that τ1 ≥ τ ′1 + 0.5(t1 − t′1), i.e., the sensing moment when
χ1 is discovered collision-free will be more than 0.5(t1 −
t′1) later than the sensing moment when χ′1 is discovered
collision-free. Moreover, if the CT-point χ1 is discovered
collision-free at a time later than ts, i.e., τ1 > ts, then the
CT-point is no longer useful for discovering trajectory Γ to
be collision-free beforehand. It is too late.

Thus, we have to limit t1 to be only slightly later than
te to avoid much delay, but then this small shift ∆t of the
line f(t) may not result in condition (9) to be satisfied (see
Figure 6). This is why we want to consider using not just one
CT-point, but a set of CT-points Q(Γ) = χj , j = 1, ..., k, to
discover if trajectory Γ is continuously collision-free or not.

B. Associate Γ to
⋃
F (χj , τj) of a set of CT-points {χj}

Following the previous section V.A, for some time interval
[tr, te] ending at te, dmax(q(t),qj) is below vmax(t1 − t).
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Now we need to find out the value of tr. There are the
following possible results:
• Case 1: tr = ts, implying that dmax(q(t),q1) is below
f(t) for the entire time interval [ts, te];

• Case 2: tr is the greatest root of equation
dmax(q(t),q1) = vmax(t1 − t).

If case 1, the single CT-point (q1, t1) is sufficient for
discovering if the trajectory Γ is continuously collision-free
or not (as described in section V.A).

Case 2 means that only the part of Γ for the time
interval [tr, te], where ts < tr < te, can be contained
by F (χ1, τ1) of the CT-point χ1 = (q1, t1). That further
means that the dynamic envelope of χ1 can be used to only
discover if that part of Γ is continuously collision-free or not.
Therefore, we need to find additional CT-points for checking
if the remaining part of Γ, for the time interval [ts, tr], is
continuously collision-free. We use Algorithm 1 to find such
a set Q(Γ) of CT-points.

Algorithm 1 Q(Γ) generator
1: Input Γ for the time interval [ts, te]
2: tr = te
3: j = 0; Q(Γ) = ∅
4: repeat
5: j = j + 1
6: Apply the process of section V.A to find χj = (qj , tj)

for Γ in [ts, tr]
7: Add χj to Q(Γ)
8: Find new tr from equation:

dmax(q(t),qj)− vmax(tj − t) = 0 (10)

9: until tr = ts (i.e., Case 1)
10: return Q(Γ)

Note that the value of ∆t (which is the amount of shift of
f(t) along positive time axis – see section V.A) affects the
number of CT-points in Q(Γ). Recall that we want ∆t to be
small to avoid time delay in discovering if Γ is collision-free
or not. However, if ∆t is too small, there can be too many
CT-points in Q(Γ), and thus the cost of collision checking
(of the CT-points via their dynamic envelopes) increases. So
instead of using a fixed ∆t, our strategy is to adapt the value
of ∆t to balance the need of fast discovery of collision-free
CT points and that of fast collision-checking.

Note also that solving the non-linear equation (10) to find
roots may require numerical techniques. There are derivative-
free1 fast numerical methods [8], [9], [10] which guarantee
to find the roots of a non-linear equation g(x) = 0 in
an interval [a, b], if g(a)g(b) < 0. If g(a)g(b) > 0, we
can sample within this interval for potential roots, which
requires evaluating a non-linear function. If the function is
a high order polynomial, there are fast numerical methods
for evaluation [11]. In the case of a robot, the L.H.S. of
equation (10) can be converted to a polynomial (by variable
substitution in transcendental equations).

1No need to differentiate L.H.S. of (10)

(a) Γ shown by the sequence of CT-points in Q(Γ)

(b) Dynamic envelopes of the CT-points in Q(Γ)

Fig. 7. Piece-wise continuous trajectory Γ consisting of three segments

VI. AN IMPLEMENTED EXAMPLE

Our approach was implemented in a simulation envi-
ronment for a mobile rod robot having three degrees of
freedom, i.e. q = [x, y, θ]T , where the origin of the robot
frame was at one end of the rod. The rod robot (which
can be considered a link of a high-DOF robot) moves in an
unknown environment with atomic obstacles shown as red
circles (as in Figure 2). A continuous trajectory segment for
the rod robot was generated with cubical polynomials [12].
Step 8 of Algorithm 1 was trivially implemented using the
intermediate value theorem and Brent’s method [8] for root
finding. Figure 7(a) shows the configurations of a piece-
wise continuous trajectory Γ consisting of three continuous
segments. The discrete configurations shown along Γ are
from the set Q(Γ) generated by Algorithm 1. Γ starts from
time ts = 2s and ends at time te = 4.4402s. Figure 7(b)
shows a snapshot of dynamic envelopes of the CT-points in
Q(Γ) when the continuous Γ is discovered collision-free. In
this environment, vmax = 1 unit/s.

Table I shows the results for the same trajectory Γ but in
three environments of different levels of obstacle dynamics,
as indicated by different values of vmax (which is the upper-
bound of obstacle speeds). It shows the smallest time interval
and the largest time interval between two consecutive CT-
points (qj , tj) and (qj+1, tj+1) in Q(Γ), the number of CT-
points in Q(Γ), and ∆t in each case. In all cases, the time to
generate Q(Γ) was within 1s. Note that we set the minimum
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TABLE I
RESULTS OF Q(Γ) FOR THE SAME CONTINUOUS MOTION-SEGMENT Γ IN

DIFFERENT ENVIRONMENTS

vmax Smallest Interval Largest interval |Q(Γ)| ∆t
(unit/s) (s) (s) (s)

1 .0154 .0570 99 0.1
1.5 .0250 .0858 60 0.1
2 .0158 .1023 41 0.1

In all cases, the time to generate Q(Γ) was within 1s.

value for ∆t to be 0.1s, and there was no need to increase
∆t further in this example for all cases. Note also that as
vmax increases, the number of CT-points in Q(Γ) decreases.
This can be explained from inequality (2): the increase of
vmax enlarges the dynamic envelope E(χ, τi) of any CT-
point χ = (q, t) and therefore enlarges the associated CT-
region F (χ, τi) for any sensing moment τi.

The attached video clip shows the 3-DOF rod robot simul-
taneously discovering and executing continuously collision-
free trajectory segments in an unknown dynamic environ-
ment. Each trajectory segment Γ is shown by the sequence of
configurations in Q(Γ), along with the dynamic envelopes of
the corresponding CT-points. Each Q(Γ) is generated on-line
by the approach introduced in this paper. Whether the CT-
points in Q(Γ) are collision-free or not are checked in real-
time via their dynamic envelopes as described in [1]. When
a CT-point is discovered collision-free, its dynamic envelope
at that moment changes to green from red. Therefore, any
trajectory segment covered by a sequence of green envelopes
are discovered continuously collision-free, which the robot
can move along. The red envelopes cover the trajectory
segments that are uncertain, i.e., not yet discovered collision-
free (and they may not be collision-free). Note that after the
robot finishes executing a collision-free trajectory segment, if
it cannot find a subsequent collision-free trajectory segment
to follow, it is forced to stop until it can find one. When it
is forced to stop, it may get hit by an obstacle. As seen in
the movie for vmax = 1.5 unit/s, the robot gets hit by an
obstacle (and momentarily change color to blue) during a
forced stop.

VII. CONCLUSIONS

This paper addresses the novel problem of how to perceive
continuously collision-free trajectories for a robot to oper-
ate in an unknown and unpredictable environment, where
the obstacles and their motions (or lack of motions) are
completely unknown. Given a continuous trajectory Γ in
the configuration-time space (CT-space) of the robot, the
idea is to determine a set Q(Γ) of discrete configuration-
time points (CT-points), such that when each of these CT-
points, (qj , tj), j = 1, 2, ..., is discovered collision-free
based on the notion of dynamic envelope [1], a continuous
neighborhood of (qj , tj) in the CT-space, i.e., a CT-region,
is also discovered collision-free, and the union of these
continuous CT-regions for all points in Q(Γ) contains Γ,
meaning that Γ is continuously collision-free. To be efficient,
our method avoids minimum-distance computation, which is

the most computationally expensive component of existing
collision-checking algorithms.

The introduced method can be used by a real-time robot
motion planner (such as RAMP[13]) to test if a trajectory
candidate is continuously collision-free in an unknown 3-D
environment in real time2. An implemented example involv-
ing a 3-DOF rod robot and the attached video demonstrated
that. However, we plan to further test the efficiency of the
method on a 7-DOF manipulator. We will also improve
the root-finding algorithm for generating Q(Γ), which bears
most of the computation cost.
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