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Abstract—Three dimensional point clouds acquired by range
scanners often do not represent the environment precisely due
to noise and errors in the acquisition process. These latter
systematical errors manifest as deformations of different kinds
in the 3D range image. This paper presents a novel approach
to correct deformations by an analysis of the structures present
in the environment and correcting them by non-rigid transfor-
mations. The resulting algorithms are used for creating high-
accuracy 3D indoor maps.

I. INTRODUCTIONS

Many robotic tasks require the creation of a model of

the robot’s surrounding. Then the robot uses its sensors to

acquire spatial information. Any sensor and any sensing

process is erroneous. This cannot be avoided. Thus, the

engineering tasks are to reduce sensor errors as good as

technically possible, and to regard noisy and faulty sensor

readings in the robot programming.

Recently, 3D laser scanners have become popular in

mobile robotics for making 3D maps of the environment [3],

[11], [14], [19], [22]. Typical 3D scanners used in robotics

consist of a high-precision laser measurement unit either

using a pulsed laser measuring the time-of-flight or using a

continuous laser wave measuring the phase shift. 2D scanners

are built using a rotating mirror. This measurement system is

actuated by a servo to yield 3D scans i.e. a 3D point cloud

is assembled from several 2D laser scans at a single robot

position and different servo positions. As result, ranges can

be measured with high accuracy, but systematic errors are

the result of imprecise servo movements.
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Fig. 1: From left to right: (1) 3D laser scanner. Its technical basis is a SICK 2D laser range finder (LMS-200). (2) A scan from an office
environment with deformations as they occur due to the pitching laser scanner. (3) The offset that was generated to simulate an oscillation
of the rotating scanner. (4) A simulated scan with randomly generated servo errors in a similar perspective to 2.

Different 3D point cloud improvement algorithms are

introduced and evaluated in this paper. They establish their

non-rigid deformation by computing correct points in a

global frame of reference. These correct points are either

computed directly, or with help of plane information obtained

by the 3D Hough transform [2]. Therefore, presented algo-

rithms differ in the way how the desired point positions are

computed.

The registration of laser scans is usually done with the goal

of finding a set of rigid transformations that brings the scans

into a single coordinate system. The implicit assumption is

that the range images are a precise representation of the

world. However, at some point rigid transformations are no

longer sufficient to consistently register the scans so that non-

rigid methods need to be adopted.

Preceding all non-rigid improvement of the point clouds,

we therefore employ the well-known Iterative Closest Point

(ICP) algorithm to align the scans sequentially [1], [19].

After pairwise matchings have been computed the global

rigid alignment according to Lu and Milios’ relaxation

algorithm [3] is used to create a globally consistent map.

As a first step of our non-rigid registration and rectification

of 3D laser scans a Hough transform is executed to find

a set of planes describing the scan. These planes are then

optimized so that they comply with a general geometrical

model and fit the registered map as good as possible. This is

done by using the scheme laid out in section III. From the so

produced structures we extract global points, whose positions

correspond to the true underlying geometry. A summary of

the overall algorithm is given in Algorithm 1.

The last two step of the algorithm are variable and allow

two configurations of the non-rigid deformation and two

global point extraction methods. The most obvious choice for

the computation of global point coordinates is to exploit the

point-to-plane correspondences, for example by choosing the
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Algorithm 1 Map Improvement using Plane Extraction

1: Rigidly register all scans using the globally consistent

alignment framework as given in [3]

2: Use Hough Transform to extract planes in every scan [2].

3: Improve the Plane Model (Section III).

4: Extract global point information.

5: Deform each scan using either the TPS (Section VI) or

the minimization in Section V.

projection of a point to its plane as its desired global point.

Since architectural shapes of environments follow standard

conventions arising from tradition or utility [10] we can

exploit knowledge for improving 3D scans made in indoor

environments, e.g., plane walls. The information about global

points is fed into the Thin Plate Spline (TPS) or the slice

based deformation as given in Section V.

II. RELATED WORK

The area of non-rigid registration is largely unexplored

in anything but the medical imaging community where it is

widespread [7], [15].

Williams et al. [21] describe an extension of a rigid

registration algorithm that includes point estimation to com-

pensate for noisy sensor data. This technically constitutes

a non-rigid registration algorithm designed for low scale

high frequency deformations. Similarly, Haehnel et al. [12]

modified the ICP algorithm to estimate the position of each

measured point. Chui and Rangarajan [6] proposed a point

matching algorithm that is capable of aligning point clouds

with each other. All these approaches have in common that

they only allow for a small amount of points. Subsampling

the point clouds leads to less accurate correspondences,

thus reducing registration quality. Aiming to reduce noise

Unnikrishnan [20] locally fit high-order polynomials to 3D

data. Large scale deformations will not be corrected by such

a local approach.

Mitra et al. [16] rely on a high number of scans which

contain a slowly deforming object. Instead of computing

point correspondences they estimate the deformation by the

local space-time neighborhood. Consequently, higher point

density is not a difficulty but actually a benefit for the

algorithm. On the other hand the algorithm is inapplicable to

problems with large deformations and movements between

individual scans.

The most relevant work has been done by the Stanford

Graphics Laboratory. Ikemoto et al. [13] dice laser scans into

a set of overlapping regions, which are rigidly transformed.

This is iterated until convergence. Extreme care has to be

taken when and how to dice each scan so as not to destroy

the internal consistency of a scan. Brown and Rusinkiewicz

developed a global non-rigid registration process [4]. In [5]

they introduced a novel ICP variant to find very accurate

correspondences. Even though the registration requires ex-

treme subsampling the deformation is generalized onto the

entire scan. Although the computation time of this algorithm

is reported to be several days for some data sets, we believe

this to be the most promising non-rigid alignment process.

This paper gives a closer examination of this algorithm

and propose an improvement to greatly speed up the the

computations involved.

III. DESIRED POINTS BY PLANE EXTRACTION

Planes are extracted from the point clouds using the

randomized Hough Transform as described in [2] or similar

plane detection techniques. Each plane i is represented using

the Hesse normal form, i.e. by a unit normal ni and a

distance from the origin ρi. Systematic errors are still present

in the estimated parameters. This has several reasons:

• The plane conforms to the data itself, so that deforma-

tions in the scans carry over to the plane.

• The same surface can be detected several times due to

registration errors.

For example, in a deformed scan floors and walls may be

slightly non perpendicular to each other.

The first step for improving the position and orientation

of a given set of planes is to establish geometrical relations

between planes as they appear in an indoor environment.

Then all plane parameters are optimized and planes are

joined if necessary.

The plane classification problem can be stated as follows:

Given a set of planes we want to label each as either floor,

ceiling, wall or as a non-feature. Small planar objects within

the scans are regarded as irrelevant to the global plane model

and should be classified as non-feature.

Nüchter et al. [18] employed a semantic net as simple

Prolog program that encodes semantic relations between

objects to solve this problem. With a larger number of planes

this becomes intractable and therefore, we propose a different

strategy.

It is obvious that the planes we want to classify usually

aggregate around a few points in the spherical coordinate

system, due to regularities in the architecture. The normals

represented in spherical coordinates are inserted into an oc-

tree. The spatial subdivision of the octree can now be used to

quickly cluster “close” planes together. The distance between

two planes i, j is defined as ∡ (ni, nj). The clustering is

controlled by a parameter θ, where planes with ∡ (ni, nj) ≤
θ will belong to the same cluster. After clustering, each

cluster is represented by a normal n′

i:

n′

i =

m
∑

j=1

mjnj

m
∑

j=1

mj

,

where mj is the number of points that lie on plane pj . We

assume that the feature planes that are to be classified are

joined in their respective clusters. It follows that we need to

find 3 clusters that are orthogonal to each other. It is a trivial

task to find the biggest three n′

i,n
′

j ,n′

k for which:

n′

i · n
′

j = n′

j · n
′

k = n′

k · n′

i = 0

holds. Floor and ceiling planes are now easily identified

by their relation to the 3D scanner. The other two clusters
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represent the walls of the environment. All remaining planes

are classified as non-feature.

With the planes correctly classified, their poses are now

optimized by minimizing the positional error

E =
∑

pi

mi
∑

j=1

|nixj − ρi|
2
, (1)

under the side conditions:

ni · nj = 0 if i and j ought to be orthogonal

ni = nj if i and j ought to be parallel

|ni| = 1.

For each i the mi points x1, . . . , xmi
lie on plane pi.

There is no closed-form solution to the above equation

system. Nüchter [18] introduced an additional error term

that replaces the side conditions. This new error metric is

then minimized by non-linear optimization algorithms, such

as the Downhill Simplex Method or Powell’s Method. This

approach is likely to lead to a remaining residual error in the

planes.

To improve these results the error metric is reformulated.

E(R) =
∑

i

mi
∑

j=1

|(R · ni)xj − ρi|
2
. (2)

where R is a 3×3 rotation matrix and the normals ni is the

corresponding base vector for the ith plane. The number of

parameters is only 3 + n′, where n′ is the total number of

classified planes, instead of 3 · n′. A 3-dimensional rotation

matrix is non-linear, so that the metric needs to be linearized.

Assuming that only small rotations are necessary to adjust

the planes, the linearized rotation matrix is given by:

R ≈ I3 +





0 −θz θy

θz 0 −θx

−θy θx 0



 .

This can now be minimized by solving a linear equation

system, for details see [17]. This will not yield the exact

solution that minimizes the original metric. However, the

optimization is iterated until it converges to a stable set of

normals n′

i.

After the pose of each plane has been corrected, two

planes are joined if their classification is equal and the spatial

distance between them is below a threshold. The ρ′ of the

joined planes is computed as a weighted average by:

ρ′ =

∑

pi∈E

∑mi

j=1 (nixj)
∑

pi∈E mi

,

where E is a set containing the equal planes.

IV. DESIRED POINTS FOR UNSTRUCTURED

ENVIRONMENTS

The algorithm presented in this section was first described

by Brown and Rusinkiewicz [4], [5]. We propose an improve-

ment that is later evaluated on simulated as well as on real

world data.

(a) Establish correspondences (b) Associate local features with
global points

(c) Optimize global positions (d) Warp scans to global points

Fig. 2: The individual steps of the global non-rigid alignment
algorithm. First, the pairwise correspondences between features
selected in the laser scans are computed. Then correspondences
of local to global features are computed and the global feature
positions are optimized. After a consistent global point set is
computed, the scans are warped.

The algorithm is an extended scan matching procedure

where non-rigid deformations are allowed. Non-rigid regis-

tration is a particularly hard problem due to the summation

of errors. Small errors in the matching process accumulate

and result in large scale incorrect warps that are applied to

scans later in the sequence.

The algorithm relies on features that were randomly

selected from a scan. First, the correspondences between

features in pairs of scans are established by a variant of

the ICP algorithm. Second, for each of the features a desired

point, i.e., a global position for this feature is computed from

the correspondences by minimizing an error metric. Now that

each scan has a set of features with associated desired points

a non-rigid transformation is calculated to deform the scans.

Fig. 2 gives an overview over the complete process.

A. Finding Features and their Correspondences

Feature points should ideally cover the entire model and

should be chosen so as to yield stable correspondences

between scans. It is intuitive to pick features at significant

places in the environment. This would however require some

knowledge about the geometry of the entire environment and

does not guarantee a sufficient coverage.

A fixed percentage of points (approx. 1 %) are selected us-

ing uniform random sampling to ensure coverage everywhere

in the environment.

For each feature mk
i in scan k and each overlapping scan

l we search for a corresponding point ml
i. This is achieved

by locally weighted ICP, which gives higher importance
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to points surrounding the feature mk
i . Instead of roughly

estimating correspondences for all points we wish to compute

the most precise estimate for each feature. This is equivalent

to increasing the accuracy of the alignment in areas close to

mk
i . After the algorithm converges, the closest point to mk

i

on scan l is selected as its corresponding point.

The locally weighted ICP is based on the standard ICP

baseline algorithm with a point-to-point error metric and

closest-point computations using k-D trees for speed up. The

only change to the standard algorithm is in the point-selection

stage. The set of corresponding points that are considered

in the minimization step is sampled using a probability

distribution that makes it more likely that points near mi

are used in the estimation process:

p(x) =
1

|x − mi|
2 .

The probability distribution is normalized and numerically

inverted to transform the random variable into samples to

be selected. This is called the inversion method for sub-

sampling [8].

Because an initial registration of the laser scans has

already been performed, only few iterations of the locally

weighted ICP are required for convergence. In addition, the

computationally most expensive part of the ICP, i.e., building

the k-D tree is done only once per scan.

B. Computing the Global Point Positions

In order to calculate consistent deformations for all scans,

a global position di for each feature i is computed. These

positions are computed in such a way as to minimize

unnecessary deformations.

The arrangement of the global point positions should be as

similar to the arrangement of the corresponding local features

as possible. Under the assumption that the scans contain no

deformation or errors of any kind and the correspondences

have been computed correctly, the arrangements of both

points are identical. If the scans are slightly deformed this

correlation will only hold approximately.

Guided by the intuition that global point positions should

be affected by their geometric configuration relative to

neighboring features, Brown and Rusinkiewicz optimize the

positions di by attempting to preserve their relative distances

as indicated by the computed correspondences within the

scans. Consequently the points are no longer represented as

simple positions in a global coordinate system but relative

to each other. A “spring” with non-zero rest length is placed

between all pairs of features i and j. Assuming feature i

was originally selected on scan k and feature j on l, the rest

length is set to

1

2

(∣

∣mk
i − mk

j

∣

∣ +
∣

∣ml
i − ml

j

∣

∣

)

.

Then an error metric is formulated:

E =
∑

k

∑

i

∑

j

j>i

wi,j

(

|di − dj | −
∣

∣mk
i − mk

j

∣

∣

)2
. (3)

Scan 1

Scan 2

Scan 1

Scan 2

Fig. 3: Global point positions as computed by the error metrics.
Left: Local feature points are represented relative to each other.
Each of these “springs” is one summand in the error metric. Right:
Global point positions are then adjusted to minimize the total spring
energy.

When computing this it is necessary to consider that the inner

sum over i and j is dependent on k. This means the inner

sum is not over all i, j but over all i, j such that

• both features i and j were originally selected on k, or

• feature i was selected on k and feature j, selected in

some other scan, has a valid correspondence mk
j on k.

See Fig. 3 for a closer look on how the sum is computed.

The error metric can be conceptualized as a measure of the

discrepancy between the distances of the global points and

the distances of the corresponding local features. Minimizing

this discrepancy clearly leads to a geometric configuration

of the global points that closely resembles the features mk
i .

Brown and Rusinkiewicz apply gradient descent to minimize

the error.

We propose a novel alternative to the optimization of

the global points with the aim of considerably improving

the performance of the algorithm. Instead of considering

the distance between feature points we will also consider

the relative orientation of each feature point to each other.

In addition, the problem is modeled in probabilistic terms

allowing complex “weights”. This approach enables us to

compute a globally optimal solution with respect to the error

metric much more efficiently.

We view each scan k as a set of measurements of the

features mk
i within that scan. To be more precise, for any

feature pair mk
i ,mk

j we assume scan k measured the relative

displacement of dj from di, i.e., Di,j = di − dj . The

measurement D̄
k

i,j = mk
i − mk

j is associated with an

uncertainty Ck
i,j that replaces the weights wi,j in (3).

Given all the measurements, we wish to maximize the

likelihood of the global point positions by minimizing the

following Mahalanobis distance.

E =
∑

k

∑

i,j

(

Di,j − D̄
k

i,j

)T

Ck
i,j

−1
(

Di,j − D̄
k

i,j

)

(4)

=
∑

k

∑

i,j

(

di − dj − D̄
k

i,j

)T

Ck
i,j

−1
(

di − dj − D̄
k

i,j

)

.

Under the assumption that Ck
i,j

−1
= wi,jI3 minimizing (4)

is equivalent to minimizing:

E =
∑

k

∑

i

∑

j

j>i

wi,j

(

(di − dj) −
(

mk
i − mk

j

))2
,

which is a restated (3). The minimum to (4) can be easily

computed in a single step by concatenating the global point
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positions into the (n − 1) × 3-dimensional matrix D =
(d2, . . . , dn)

T
. The first feature is not included as it defines

the global reference system. (4) is now represented in matrix

form:

E =
(

D̄ − HD
)T

C−1
(

D̄ − HD
)

,

where C is a diagonal matrix containing all wi,j and D̄ is

the concatenation of all D̄i,j . H is an incidence matrix rep-

resenting the graph created by the edges i, j. The minimum

D is given by:

D =
(

HT C−1H
)−1

HT C−1D̄

= G−1B,

where G and B are given by:

Gi,i =
∑

k

∑

j

w−1
i,j

Gi,j =
∑

k

w−1
i,j for (i 6= j)

Bi =
∑

k

∑

i,j

w−1
i,j

(

mk
i − mk

j

)

.

Estimating the optimal positions of the global points is

therefore reduced to computing the inverse of an (n − 1) ×
(n−1) matrix. As this is in the order of O(n3) this algorithm

is much more efficient than the gradient descent method.

V. DEFORMATION ON BASIS OF AN ERROR MODEL

We improve the scan quality for scanners with systematical

errors after a set of desired points has been computed. The

rotation axis of the scanner is assumed to be the x-axis. For

each slice s, we aim to compute the correct orientation αs

the scanner had by minimizing the summed point-to-plane

distances.

E =
∑

s

∑

(dj ,mj)

|Rαs
mj − dj |

2 + λ
∑

s

|αs|
2
,

If the desired position of the measurements is given by a set

of planes this is restated as:

E =
1

n

∑

pi

∑

xj∈pi

|(Rαs
xj)ni − ρi|

2
,

where n is the total number of points associated to planes.

The rotation matrix Rαs
describes a rotation around the

x-axis by αs. The error metric is easily minimized in an

iterative fashion by using the small angle approximations

sin(α) ≈ α and cos(α) ≈ 0.

VI. DEFORMATION ON BASIS OF TPS

The Thin Plate Spline (TPS) was first formulated by J.

Duchon in 1976 [9] as a way to model the deformation of a

thin metal sheet. The TPS is able to represent any perceivable

deformation of a scan, while guaranteeing the maximum

amount of smoothness. It is robust to measurement errors

as well as errors in the correspondences The TPS function
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(a) Extracted normals
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(b) Classification by clustering

Fig. 4: (a) Plotted in spherical coordinates, the normals are concen-
trated around a few points. (b) The classification of the planes as
computed by the clustering approach. All normals have been flipped
to the side of the unity sphere where the corresponding cluster has
first been identified. The algorithm classified a total amount of 568

planes. 122 planes remain unclassified. These are mostly normals
that lie between the 3 main clusters and are of dubious relevance
to the optimization.

T is separable into an affine part A ∈ R
e×d and a non-

affine part, the warping parameters W = (w1, . . . , wn)T

with W ∈ R
e×n. T is given by:

T (x) = Ax +
n

∑

i=1

wi |di − x| ,

where x is a point in homogenous coordinates. Concatenat-

ing the desired points into D and their corresponding feature

points into the M , the TPS can be computed by solving the

linear equation system:

AD + W (K + nλI) = M

WDT = 0.

D is a 4×n matrix, since the desired points are represented

in homogenous coordinates and M is a 3× n matrix. K is

given by Ki,j = |di − dj |.

VII. EXPERIMENTAL EVALUATION

A. Plane Optimization

First we evaluate the quality of the classification algorithm

using a showcase data set with 63 laser scans from the fourth

floor of the university building in Osnabrück. After extracting

almost 700 planes, the two classification algorithms were

started. The results are depicted in Fig. 4(b). Many of

the detected planes do not belong to either floors, ceilings

or walls. The clustering algorithm is preferable because it

produces a more realistic labeling.

The Prolog program does not perform well when the

amount of planes increases to a more realistic number (>

40). As Prolog exhausts every possible assignment when

looking for an exact solution its computation time can reach

extreme heights. The clustering algorithm clearly outper-

forms by several magnitudes (ms instead of min ). Even

when using several hundred planes as input the clustering

is computed in less than a second.

The required computation time for the improvement step

after classification never exceeded 30 ms. The usual number

of iterations required for convergence is 5.
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Fig. 5: A scan of the soccer field on the fourth floor in the AVZ
building in Osnabrück before and after improvement. Top: The scan
before(left) and after(right) correction. Bottom : Close-up view of
the ceiling of the initial scan and the corrected scan.

Fig. 6: A second scan of the soccer field before and after im-
provement. In this scan the wall in front of the scanner is more
prominent while other planes are much less apparent. The algorithm
introduced some new error into the scan. Top: The scan before(left)
and after(right) correction. Bottom: Close-up view of the introduced
error in the floor. The floor in general is improved. However, slices
immediately behind the door are incorrectly positioned.

B. Deformation using planes

The improvement algorithm from section V is evaluated

on real as well as on simulated data. The computation time

of the improvement step (minus plane extraction) in all

examples was less than 1 ms per scan on modern hardware.

We applied the algorithm to every one of the 63 scans from

the fourth floor of the AVZ university building in Osnabrück.

The errors that produce wave-like effects on floor and ceiling

were greatly reduced and the scans were visibly improved.

Fig. 5 shows a representative scan.

In some cases however (in 8 of 63 scans) the algorithm

encountered difficult geometry as in Fig. 6 and parts of the

scans were misaligned. This often occurred on slices that

were acquired shortly before the scanner reached a parallel

position to the floor. Points from these slices tend to be

mistaken for points stemming from the floor. The following

improvement steps then find an α that moves these points

closer to the floor so that the slice is misaligned. However,

even in these worst cases, most slices of the scan were
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Fig. 7: Results of the improvement using simulated data. The error
bars indicate the variance for each trial.
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Fig. 8: The simulated environment with 3 scans. The solid curve
represents the environment that is to be estimated. The points
constitute the scans. Rigid transformation errors simulating a mis-
alignment in the registration process have been applied.

brought into a visually more appealing position.

To objectively demonstrate the effectiveness of the im-

provement, a laser scanner with a variable amount of os-

cillation error was simulated in a simple environment. An

example is given in Fig. I. The function generating the error

is given by E(ϕ) = A sin(p1ϕ) sin(p2ϕ + P ), where the

phase offset P was randomly generated from a uniform

distribution P ∈
[

−π
2 , π

2

]

. In each trial the amplitude A

was varied and 20 scans were generated. The mean error

of the optimized scans, i.e., the summed absolute difference

between the estimated and the correct α is plotted against

the amplitude A in Fig. 7. Clearly, the effectiveness of the

improvement suffers from higher initial errors.

C. Deformations with TPS

In order to objectively assess the quality of the different

error metrics an artificial 2-dimensional test scenario is

used. The complete non-rigid alignment is also qualitatively

evaluated on a real data set.

A number of global points that lie on a curve as seen

in Fig. 8 are generated. Then a set of 2-dimensional range

scans that sampled the curve are simulated. To each of the

local scan points a positional error as well as a randomly

generated rigid transformation is applied. The effect of the

noise and rigid errors are depicted in Fig. 9. Finally, for each

scan a non-rigid deformation is simulated by transforming a

point p as follows:

p′y = py + A sin L.

The effect of the amplitude A on the registration accuracy

is depicted in Fig. 9. The registrations accuracy is given by

sum of distances:

E =
∑

i

∣

∣di − d̄i

∣

∣ ,
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Fig. 9: Evaluation of the global estimation algorithms with different
amount and types of error. All experiments were carried out with
100 global points. Left: The error of both algorithm with varying
amount of noise. Right: In this test the parameter pertaining to the
non-rigid deformation was varied. Bottom: The accuracy of both
approaches with different rigid errors.

where d̄i is the estimation of the ith global point di.

Each of the trials were repeated 20 times with randomly

generated initial errors and scans. Both algorithms received

the same input. The results are shown in Fig. 9. For small and

proportional errors the matrix inversion usually fares better.

The accuracy of the novel estimation algorithm decreases

when more rotational error is introduced in the scans. This

is due to the new metric encoding the relative position of

the points. Rotating a scan leads to an increase of the error,

while this is not the case for Brown’s metric.

The second point of interest is the efficiency of both

algorithms. As seen in Fig. 10 the newly proposed estimation

algorithm is much faster than the gradient descent. Also

shown is the error of the estimated global points in relation

to their total number. As expected the error increases with

more points.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented a novel map improvement approach

for structured environments that shows promising results.

Possible application are low-cost laser scanners as employed

on mobile robots and kinematic laser scanning. We also

presented a significant improvement in the efficiency of the

non-rigid alignment procedure by Brown and Rusinkiewicz.

Needless to say, much work remains to be done. We plan

on strongly generalizing the improvement algorithm to cope

with arbitrary structures and variable laser scanners. In the

process robustness against incorrectly classified structures

will be enhanced. For the non-rigid registration in unstruc-

tured environments we plan to incorporate further parameters

for the rotation of each scan. This should sacrifices a little

speed while gaining more flexibility and accuracy.

 0.01

 0.1

 1

 10

 100

 1000

 0  100  200  300  400  500  600

T
im

e 
in

 s

Number of points

matrix inversion
gradient descent

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  100  200  300  400  500  600

E
rr

o
r 

in
 c

m

Number of points

matrix inversion
gradient descent

(b)

Fig. 10: Evaluation of the estimation algorithms on the synthetic
data set with a variable number of points. Left: The computation
time required for both algorithms in a plot of logarithmic scale.
Right: Comparison of the accuracy of both algorithms.
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[18] A. Nüchter, H. Surmann, K. Lingemann, and J. Hertzberg. Semantic

Scene Analysis of Scanned 3D Indoor Environments. In Proc. VMV
’03, pages 215 – 222, Munich, Germany, November 2003.

[19] H. Surmann, K. Lingemann, A. Nüchter, and J. Hertzberg. 6D SLAM
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