
Control-Aware Mapping of Human Motion Data

with Stepping for Humanoid Robots

Katsu Yamane∗† and Jessica Hodgins†∗

∗Disney Research, Pittsburgh †Carnegie Mellon University

Email: {kyamane|jkh}@disneyresearch.com

Abstract— This paper presents a method for mapping cap-
tured human motion with stepping to a humanoid model,
considering the current state and the controller behavior. The
mapping algorithm modifies the joint angle, trunk and center
of mass (COM) trajectories so that the motion can be tracked
and desired contact states can be achieved. The mapping is
performed in two steps. The first step modifies the joint angle
and trunk trajectories to adapt to the robot kinematics and
actual contact foot positions. The second step uses a predicted
center of pressure (COP) to determine if the balance controller
can successfully maintain the robot’s balance, and if not,
modifies the COM trajectory. Unlike most humanoid control
work that handles motion synthesis and control separately,
our COM trajectory modification is performed based on the
behavior of the robot controller. We verify the approach
in simulation using a captured Tai-chi motion that involves
unstructured contact state changes.

Index Terms— Humanoid Robots, Human Motion Data, Mo-
tion Synthesis, Control.

I. INTRODUCTION

Using motion capture data is a potentially powerful way

to realize a wide variety of expressive motions on humanoid

robots. Even though motion capture data provide a fairly

good reference, applying human motion data to robots is still

not straightforward. For example, a human motion capture

sequence is often physically infeasible for a robot due to the

differences in the human and robot kinematics and dynamics.

We therefore need some mapping algorithm that adapts

human motion data to the different kinematics and dynamics

of the robot.

Mapping human motion capture data to robots becomes

difficult when the reference motion involves switching be-

tween different contact states because small control errors

can result in a large discrepancy in the contact area and hence

large differences in contact forces. It is therefore critical for

the mapping algorithm to ensure that similar contact states

can be achieved by the underlying controller with the current

robot and contact states.

In this paper, we propose an online motion mapping

technique that considers the current robot and contact states

as well as the behavior of the robot controller. The method is

online in the sense that it does not require the whole sequence

of motion in advance and can map incoming motion data

with a small constant delay (0.5 s in our implementation).

More specifically, we extend our previous work [1] on

simultaneous balancing and tracking by adding functionality

to adjust the joint angle, trunk and center of mass (COM)

initial pose (a) no COM offset (b) appropriate COM offset (c) too much COM offset

COP

COM

Fig. 1. An example of simple foot lifting: (a) no COM offset results in
falling; (b) successful lifting requires appropriate amount of COM offset;
(c) too much offset also results in falling after lifting the foot.

trajectories so that the balance controller can successfully

maintain balance while keeping the center of pressure (COP)

inside the contact convex hull that varies during the motion

due to stepping. We demonstrate that the proposed method

can successfully realize motions with unstructured contact

state changes through full-body dynamics simulation.

Our approach is different from most of the existing work

in humanoid control where motion synthesis and robot

control are handled separately. In the proposed controller

framework, motion synthesis and control components are

tightly connected by a mapping algorithm that is aware of

the current state and the underlying controller.

II. RELATED WORK

Using human motion capture data for controlling hu-

manoid models have been actively investigated in the graph-

ics and robotics fields.

In graphics, a number of algorithms have been proposed

for synthesizing physically feasible motions of virtual char-

acters either by dynamics simulation or optimization. If the

character is sufficiently constrained or the control objective

can be clearly defined, it is possible to synthesize plausible

motions without human motion data. For example, Hodgins

et al. [2] proposed a method to build task-specific controllers

for simulated characters. Jain et al. [3] proposed an optimiza-

tion scheme that directly outputs a joint angle sequence.

In order to synthesize more complex and stylized motions,

however, using human motion capture data would be a more

promising approach. Sok et al. [4] proposed a method for

mapping human motion capture data for simulated virtual

characters by calculating the optimal rectification of the

original motion. They also developed a method for learning

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 726

tracking

controller

balance

controller

motion sequence

dynamic

mapping

kinematic

mapping
simulator / robot

desired

COP

modified

reference

COM

modified

joint/trunk

trajectories current COM and

COP positions

estimated COM and

COP positions

reference joint angles,

velocities, accelerations

joint

torques

current

contact

positions

Fig. 2. Overview of the controller. The gray area is the contribution of this paper. The dashed box represents the balancing and tracking controller [1].

a controller for each observed behavior. Da Silva et al. [5]

developed a method for designing a controller that realizes

interactive locomotion of virtual characters. They also pro-

posed to combine a model predictive controller with simple

PD servos to obtain the optimal joint trajectories while

responding to disturbances [6]. Muico et al. [7] proposed

a controller that accounts for differences in the desired and

actual contact states. They rely on other algorithms to map

a motion capture sequence into a physically feasible motion

for the character. Although these approaches can generate

physically feasible motions similar to known motion capture

sequences, they require either an extensive optimization

process or a dedicated controller for each captured motion

sequence.

The most relevant work in robotics is the work by Nakaoka

et al. [8] where they proposed a method to convert captured

dancing motions to physically feasible humanoid motions

by dividing a motion into a sequence of motion primitives

and adjusting their parameters considering the physical con-

straints of the robot. Their method is also offline because

they have to first identify the required primitives and then

define a set of parameters for each primitive. In addition,

they only consider the motion synthesis problem and rely

on high-gain servo controllers to track the synthesized joint

trajectories.

Adjusting the COM trajectory based on prediction is

related to the zero-moment point (ZMP) preview control [9],

where a simplified robot model is used to obtain the COM

trajectory that realizes a predefined ZMP path. This work is

also focused on pattern generation and does not deal with

control.

In contrast to existing work, our method does not require

special knowledge about the task, or extensive optimization

processes based on known motion capture sequences. The

only information required in addition to the joint angle

trajectories is whether each link is in contact at each time

step, which can be easily obtained by monitoring the foot

height, velocity or contact force data. Our method can

therefore work online with a constant delay.

III. OVERVIEW

This paper is an extension of the authors’ earlier work on

simultaneous balancing and tracking [1] that only allowed

stationary contacts. We employ the same controller compris-

ing a balancing controller and a tracking controller. The main

contribution of this paper is the preprocessing component

that performs several types of adjustment to the reference

motion to realize a similar motion on the robot.

Figure 1 illustrates a motivating example for this work.

Suppose that the robot is trying to lift one of its feet

starting from the initial pose shown in the left figure. Simply

changing the leg joint angles will cause the robot to fall

down as shown in (a) because the COM is still in the middle

of the feet while the COP moves under the supporting leg.

In order to successfully lift a foot, the robot first has to

shift the COM towards the supporting leg by moving the

COP as shown in (b). However, the robot cannot maintain

balance if the COM offset is too large to be handled by

the balance controller as shown in (c). This example implies

two important observations: 1) a mapping algorithm needs to

start preparing for contact state changes before they actually

happen, and 2) a mapping algorithm needs to know the

controller capability in order to determine the appropriate

amount of adjustments.

Figure 2 shows the controller overview. The dashed box

represents the controller framework presented in [1]. In the

new controller, the motion clip is first processed by the two

mapping components to ensure that the robot can main-

tain balance with the balance controller, using the current

measurements of the COM and COP positions. One of the

mapping components also uses the balance controller to

predict the behavior of the controller.

The mapping consist of kinematic and dynamic compo-

nents. The kinematic mapping component uses the current

contact locations to modify the original joint angle and trunk

trajectories so that the kinematic relationship between the

contact area and humanoid body becomes similar to the

reference motion. The dynamic mapping component modifies

the reference COM trajectory given to the balance controller

in case the future COP position predicted by the simplified

robot model leaves the contact convex hull.

We make the following assumptions about the contacts

between the motion capture subject and the environment:

• The subject only makes physical interaction with a

horizontal floor through the feet.

• Both feet of subject are in flat contact with the floor at

the initial frame. As long as at least one of the feet is

in contact, any contact state is allowed at other frames.

• The set of links in contact is known for each frame.

The contacts do not have to be flat except for the initial

frame, nor do we use detailed contact state information

such as toe or heel contact.

727

x

y

fy fx

θ1

θ2

m

l

Fig. 3. Inverted pendulum model for the balance controller.

IV. BALANCE AND TRACKING CONTROLLERS

In this section, we briefly review the balance and tracking

controllers used to obtain the joint torque command given

to the robot. An earlier version of this controller has been

presented in [1], but we have added several new elements to

make it more robust and to handle contact state changes.

A. Balance Controller

The balance controller takes a reference COM position

as input and calculates where the COP should be using an

optimal controller designed for a simplified robot model.

In this paper, we assume that a state-feedback controller

is designed for the 3-dimensional 2-joint inverted pendulum

with a mobile base shown in Fig. 3. In this model, the entire

robot body is represented by a point mass located at the COM

of the robot, and the position of the mobile base represents

the COP. The state-feedback controller can be designed by,

for example, linear quadratic regulator or pole placement.

Combining the state-feedback controller with an observer

to estimate the current state, the whole balance controller is

described by the following equation:

˙̂x = Abx̂ + Bbub (1)

where x̂ is the estimated state of the inverted pendulum and

ub is the input to the balance controller, which comprises

the reference COM position and measured COM and COP

positions. The matrices Ab and Bb are computed from

the state equation of the inverted pendulum model, the

state feedback gain, and the observer gain. In the tracking

controller, we use the mobile base position element of x̂ as

the desired COP position rb = (rbx rby 0)
T

.

The balance controller essentially handles the joint move-

ments as one of disturbances and obtains a COP position that

can recover and maintain balance under those disturbances,

although it cannot guarantee global stability due to the

difference between the linear inverted pendulum model and

the whole-body robot model, as well as the limitation of the

contact area. Note that, however, none of the existing bal-

ance controllers can ensure global stability of free-standing

humanoid robots for the same reason.

B. Tracking Controller

The tracking controller first calculates the desired joint and

trunk accelerations, ˆ̈q, using the same feedback and feedfor-

ward scheme as in the resolved acceleration control [10]:

ˆ̈q = q̈ref + kd(q̇ref − q̇) + kp(qref − q) (2)

where q is the current joint position, qref is the reference

joint position in the captured data, and kp and kd are constant

position and velocity gains that may be different for each

joint. The desired acceleration is also calculated for the six

degrees of freedom (DOF) of the trunk and foot links using

the same control scheme. We denote the vector comprising

the desired accelerations of all DOF by ˆ̈q.

We also compute the desired accelerations of the foot

links, ˆ̈r, using the same feedforward and feedback control

as Eq.(2). The foot link velocities ṙ are related to the

generalized coordinates q̇ by

ṙ = Jcq̇ (3)

where Jc = ∂r/∂q is the Jacobian matrix of foot link

position and orientation with respect to the generalized

coordinates. Taking the time derivative of both sides yields

the relationship of the accelerations:

r̈ = Jcq̈ + J̇cq̇. (4)

Using this relationship, we modify the desired generalized

accelerations ˆ̈q so that they match the desired foot link

accelerations.

ˆ̈q
′

= ˆ̈q + J+

c

(

ˆ̈r − Jc
ˆ̈q − J̇cq̇

)

(5)

where J+

c is a generalized inverse of Jc. In our implemen-

tation, we use the pseudo inverse assuming that the legs are

not in a singular configuration.

The tracking controller then solves an optimization prob-

lem to obtain the joint torques that minimizes a cost function

comprising the COP, joint acceleration and foot acceleration

errors.

The unknowns of the optimization are the joint torques τ J

and contact forces fc, subject to the whole-body equation of

motion of the robot

M(q)q̈ + c(q, q̇) = SτJ + JT
c f c (6)

where M is the mass matrix, c denotes the gravity, Coriolis

and centrifugal forces and S is the matrix that maps the joint

torques to the generalized forces.

The cost function to be minimized is

Z = Zb + Zq + Zc + Zτ + Zf + Zp + Zm (7)

where the terms represent the error in COP (Zb and Zp), the

the desired accelerations (Zq and Zc), the joint torques and

contact forces (Zτ and Zf), and the moment around COM

(Zm). The last two terms have been added to the original

version [1] to improve the robustness of the controller. We

now describe those terms in more detail. In the following de-

scription, W ∗ denotes the positive-definite weight matrices

for each term.
728

The term Zb addresses the error between the desired

and actual COP positions. Using the desired COP position

rb = (rbx rby 0)
T

determined by the balance controller as

described in the previous subsection, Zb is computed by

Zb =
1

2
fT

c P T W bPf c (8)

where P is the matrix that maps f c to the resultant moment

around the desired COP and can be computed as follows:

we first obtain matrix T that converts the individual contact

forces to total contact force and moment around the world

origin by

T =
(

T 1 T 2 . . . T NC

)

(9)

and

T i =

(

13×3 03×3

[ri×] 13×3

)

(10)

where ri is the position of the i-th contact link and [a×] is

the cross product matrix of a 3-dimensional vector a. The

total force/moment is then converted to resultant moment

around COP by multiplying the following matrix:

C =

(

0 0 rby 1 0 0
0 0 −rbx 0 1 0

)

(11)

which leads to P = CT .

The term Zq denotes the error from the desired joint

accelerations, i.e.,

Zq =
1

2
(ˆ̈q − q̈)T W q(ˆ̈q − q̈). (12)

The term Zc denotes the error from the desired contact

link accelerations, i.e.,

Zc =
1

2
(ˆ̈rc − r̈c)

T W c(ˆ̈rc − r̈c). (13)

The term Zτ is written as

Zτ =
1

2
(τ̂J − τ J)T W τ (τ̂ J − τJ) (14)

where τ̂J is a reference joint torque, which is typically set

to a zero vector and hence Zτ acts as a damping term for

the joint torque.

The term Zf has a similar role for the contact force, i.e.,

Zf =
1

2
(f̂ c − fc)

T W f (f̂c − fc) (15)

where f̂c is a reference contact force, which is also typically

set to the zero vector.

Zp is a new term representing the difference from the

desired and actual COP of individual feet. This term has

been introduced in addition to the total COP term Zb to

prevent foot rotation. The desired COP of each foot is set

to the center of its contact area. Zp is computed using a

formulation similar to Zb:

Zp =
1

2
fT

c P T
p W bP pfc (16)

where P p = CpT p,

Cp = diag{Ci}

T p = diag{T i}

Ci =

(

0 0 rpiy 1 0 0
0 0 −rpix 0 1 0

)

and rpi = (rpix rpiy 0) is the desired COP of foot i.
Another new term Zm represents the moment around the

COM and has been included to keep the angular momentum

constant. Zm is computed by

Zm =
1

2
fT

c V T W mV f c (17)

where V is written as

V =
(

V 1 V 2 . . . V NC

)

V i =
(

[si×] 13×3

)

si = ri − rm

using the COM position rm.

Using Eqs. (4) and (6), the cost function can be converted

to the following quadratic form:

Z =
1

2
yT Ay + yT b + c (18)

where y = (τT
J f

T
c)T is the vector of unknowns.

The optimization problem has an analytical solution

y = −A−1b. (19)

Our previous paper [1] provides more details on how to

choose the weights for the cost function and deal with joint

angle and torque limits.

V. KINEMATIC MAPPING

A. Joint Angle Mapping

Due to the difference in the kinematics of the human

subject and the robot model, the joint angles obtained by

an inverse kinematics calculation using the robot model may

not result in the same contact state as in the original motion.

The first mapping is applied to the joint angles to fix this

problem, relying on the assumption that the feet are in flat

contact at the initial frame.

We first obtain the contact link positions and orientations

using the joint angles at the initial frame and project them

onto the floor. We then obtain the joint angles that achieve the

new contact link positions and orientations by running a nu-

merical inverse kinematics algorithm using the original joint

angles as the initial guess. Finally, we store the differences

between the original and new joint angles. The joint angle

mapping is performed by simply adding those differences to

the joint angles at each frame of the original motion capture

data.

Note that this simple mapping algorithm does not always

realize exactly the same contact state in the robot model. We

could perform an additional inverse kinematics calculation

at each frame to realize the same contact state. When we

are using human motion capture data, however, it is often

difficult to determine the desired foot position and orientation

because the precise human model is unknown. Also, the

inverse kinematics can be computationally expensive for

online processes. We therefore limit our joint angle mapping

to the simple method described above and let the controller

and the robot dynamics determine the best contact state to

track the reference motion.
729

B. Trunk Trajectory Mapping

Another type of adjustment is to globally transform the

reference trunk position and orientation in the motion capture

data to account for the difference in the reference and actual

contact positions. The feet may not land at the reference

position due to control errors. In such cases, using the same

reference position for the trunk may result in falling due to

the difference in its position relative to the contact area.

To solve this problem, we apply translation, rotation and

scaling to the trunk trajectory every time a new contact is

established. Figure 4 summarizes the parameters used to

determine each transformation. We first calculate the center

of reference and actual contact convex hulls by simply taking

the average of all contact points:

ĉ =
1

M

∑

p̂i (20)

c =
1

M

∑

pi (21)

where ĉ and c are the center of contact convex hull in

reference and actual motions respectively, M is the number

of contact points, and p̂i and pi are the positions of the i-th
contact point in reference and actual motions.

We then perform a principal component analysis of the

contact point positions with respect to their center. Let θ̂1

and θ1 denote the angle of the first principal component axis

with respect to the x axis of the inertial frame. Also let ŝi

and si (i = 1, 2) denote the singular values of the reference

and actual contact points respectively.

For a pair of reference trunk position p̂ and orientation R̂,

the transformed position p and orientation R are obtained

as follows:

p = ΩS(p̂ − ĉ) + c (22)

R = ΩR̂ (23)

where

S =

s1/ŝ1 0 0
0 s2/ŝ2 0
0 0 1

 (24)

and Ω is the rotation matrix representing the rotation of θ1−
θ̂1 around the vertical axis.

Note that we update the transformation only when a

contact is established. It would provide positive feedback if

we update the transformation when it is still possible to move

the foot in contact, because the tracking controller would

move the contact position in the same direction as the trans-

formation update. We therefore update the transformation

only when the vertical contact force at every link in contact

exceeds a large threshold (100 N in our implementation) after

the contact state has changed in the reference motion.

VI. DYNAMIC MAPPING

This section describes a mapping algorithm that modifies

the COM trajectory of the reference motion so that the

balance controller can keep the robot balanced with the

provided contact area. The mapping algorithm predicts the

future COP positions based on the current robot state and

reference contacts

actual contacts

s1s2

c

c

^

s1
^s2

^

θ1

^
θ1

Fig. 4. Parameters associated with the translation, rotation and scaling of
trunk position and orientation.

original reference COM trajectory. If the COP is leaving

the contact convex hull, it calculates a new COM trajectory

so that the COP stays within the contact convex hull and

sends the next COM position to the balance controller as the

reference COM. If a foot is making a new contact, on the

other hand, it is preferable to bring the COP close to the

edge of the current contact area so that the weight of the

robot helps the foot come down.

We first describe how to modify the COM trajectory so

that the COP moves to a given desire position n frames in

the future. We use a discretized state equation model of the

balance controller Eq.(1):

xk+1 = Axk + Buk (25)

where xk is the state and uk is the input at sampling time

k. In contrast to the balance controller (1), the controller

model (25) does not include an observer because we are not

using real measurements here. Therefore, uk only includes

the COM trajectory in the reference motion. We choose the

COP position as the output and define the output equation

accordingly as

yk = Cxk. (26)

For a given initial state x0 and the COM trajectory for the

next n frames, ûk (k = 0, 1, . . . , n− 1), we can predict the

location of the COP n frames later by

ŷn = C
(

Anx0 + MnÛn

)

(27)

where

Mn =
(

An−1B An−2B . . . B
)

(28)

Ûn =

û0

û1

...

ûn−1

. (29)

Suppose that a desired COP position yref at frame n is

given. We find a new reference COM trajectory U ′ such

that yn becomes as close as possible to yref , by solving the

following optimization problem:

U ′ = argmin
U

Zd (30)

730

where the cost function Zd is

Zd =
1

2

(

yn − yref

)T (

yn − yref

)

+
1

2

(

U − Ûn

)T

W
(

U − Ûn

)

, (31)

yref is the desired COP inside the contact convex hull, W

is a constant positive-definite weight matrix, and

yn = C (Anx0 + MnU) . (32)

The first term of Eq.(31) tries to bring the COP as close

as possible to a chosen point yref while the second term

penalizes the deviation from the original COM trajectory.

This optimization problem also has an analytical solution.

At every control cycle, we predict the COP locations up to

N frames in the future using Eq.(25) and the COM trajectory

computed from the reference motion after the kinematic map-

ping. We activate the COM trajectory modification process

in the following two situations:

1) The predicted COP leaves the contact convex hull.

2) A link is making a new contact but the COP is still

inside the previous contact convex hull.

We describe how to determine yref and W in the following

paragraphs.

In case 1), we set yref inside the contact convex hull

considering the following two issues. First, it would be better

to keep a safety margin from the boundary because the

resulting COP may not be exactly at yref . We also want

to minimize the COM trajectory change and maintain the

original reference motion as much as possible. To consider

both issues, we first obtain the closest point on the contact

convex hull boundary from the predicted COP, b1, and the

center of the contact convex hull, c1. We then obtain yref

by

yref = hb1 + (1 − h)c1 (33)

where h = hmax(N − n)/N and hmax is a user-specified

constant. By this interpolation between b1 and c1, yref

becomes closer to c as n becomes larger, which is based on

the observation that it is more difficult to change the COM

in a shorter period.

In case 2), the robot can still maintain balance but may not

be able to initiate a new contact. We therefore try to bring

the COP close to the edge of the current contact area so that

the weight of the robot can help achieving the new contact.

In this case, we take c2 at the center of the contact area

that will be added by the new contact, and b2 becomes the

intersection of the line connecting the predicted COP and c2

and the border of the current contact convex hull. We then

obtain yref by

yref = hb2 + (1 − h)c2. (34)

W represents how much we allow the COM trajectory to

deviate from the original. Because we hope to return to the

original COM position at the last frame, it seems reasonable

to give smaller values to the earlier frames and larger values

to the later frames. In our implementation, we calculate the

i-th diagonal component of W by wi2 where w is a user-

specified constant.

predicted COP

b1

c1

yref
h

1-h

Fig. 5. Obtaining modified COP position when the predicted COP leaves
the contact convex hull.

predicted COP
new contactb2

c2

yref

h

1-h

Fig. 6. Obtaining modified COP position when the predicted COP is inside
the previous contact convex hull.

VII. SIMULATION RESULTS

We verify the effectiveness of the proposed controller

with a simulator based on a rigid-body contact model and a

forward dynamics algorithm described in [11]. Note that the

contact forces in the simulation are computed independently

of the controller and may be different from the ones expected

by solving the optimization problem described in Section IV-

B, allowing us to emulate one of the disturbances in hardware

experiments. We use a humanoid robot model with 25 joints

(31 DOF including the translation and rotation of the root

joint).

We use linear quadratic regulator for the balance controller

with the same parameters as in [1]. The feedback gains for

the tracking controller are kp = 36 and kd = 12. The

parameters for the adjustment components are N = 100,

hmax = 0.8 and w = 0.01. The control system (25) is

discretized at the sampling time of 5 ms, meaning that the

dynamic mapping component looks 0.5 s future in order to

determine if COM modification is required. Note that the

sampling time for discretization does not necessarily have

to be the same as the control cycle. In fact, using larger

sampling time for Eq.(25) than the control cycle can reduce

the computation time for dynamic mapping.

A. Dynamic Mapping Example

We first show a simple example where the dynamic map-

ping is required to realize a stepping motion. The reference is

a manually-generated simple motion where the right foot is

lifted during the period between t = 1.0 and 2.0 s while the

left foot is in flat contact with the floor all the time. Figure 7

shows the COM and COP trajectories along the sideways of

the robot, the positive axis pointing to its left. The green area

in the bottom figure depicts the contact area of the left foot.

The bottom graph shows that the COP never reaches the

left foot without dynamic mapping, and therefore the robot

cannot lift its right foot. If the mapping is turned on, on the
731

0 0.5 1 1.5 2 2.5 3 3.5
−0.2

0

0.2

0.4

0.6

time (s)

C
O
M
 p
o
s
it
io
n
 (
m
)

0 0.5 1 1.5 2 2.5 3 3.5
−0.1

0

0.1

0.2

0.3

time (s)

C
O
P
 p
o
s
it
io
n
 (
m
)

reference COM (no mapping)

reference COM (with mapping)

actual COM (no mapping)

actual COM (with mapping)

actual COP (no mapping)

actual COP (with mapping)

foot area

Fig. 7. COM and COP trajectories for the simple right foot lifting example
(best viewed in color).

other hand, the reference COM is modified at t = 0.5 s when

the lifting time comes into the COP prediction window and

the dynamic mapping component realizes that the COP will

not be under the left foot in time. The COP shifts towards

the right foot first in response to the new reference COM,

which pushes the COM farther towards the left foot. The

COP eventually reaches the left foot at around t = 0.8 s so

the robot is able to lift the right foot.

B. Application to a Complex Motion

We use a motion capture sequence of Tai-chi from

the Carnegie Mellon University Motion Capture Data Li-

brary [12]. The marker position data are converted to joint

angle data by an inverse kinematics algorithm with joint

motion range constraints [13]. Tai-chi motion involves many

unstructured contact state changes such as transition to toe

or heel contact and slight repositioning of a foot while in

contact.

Figure 8 shows how the dynamic mapping works in

complex motions. The images are taken at approximately

0.2 s interval. The red arrow indicates the total contact force,

the small ball around the trunk is the reference COM, the

large ball around the trunk is the actual COM, and the small

ball on the floor is the optimized COP. The COM trajectory

modification is activated in (b), which shows a jump in the

reference COM compared to (a). The optimized COP initially

moves towards the left (from the reader’s view) to bring the

COM towards the reference, but eventually enters the left

foot sole in (d). Finally, the robot is able to rotate the right

foot as shown in (f).

Figure 9 shows snapshots taken every 4 s from the simu-

lated motion. The faded model represents the corresponding

reference pose after applying the kinematic mapping. The

supplemental movie includes the clips corresponding to

Figures 8 and 9.

VIII. CONCLUSION

In this paper, we presented a method for mapping human

motion capture data to humanoid robots. The most notable

feature of the method is that it not only deals with the

different kinematics and dynamics of the robot, but also

determines the amount of adjustments based on the current

robot and contact states as well as the capability of the

balance controller. We demonstrated in simulation that the

proposed method can successfully make a humanoid robot

imitate a human Tai-chi motion.

We are currently conducting hardware experiments of

the balance and tracking controllers. Although most of the

components can run in real time at 2 ms control cycle, it

takes much longer when the COM trajectory modification

takes place. We can potentially run the whole controller in

real time by running this process in parallel.

There are also some possible theoretical extensions. Al-

though the current method allows non-flat contacts in the

reference motion, it does not guarantee that a particular

contact state is realized on the robot. We could command

those contact states by choosing the desired COP along

the edge of a foot, but it would require very fine COP

manipulation. The current method can only handle motions

with relatively slow stepping due to the long lookahead

time. Improving the dynamic mapping algorithm to realize

faster contact state switching is another interesting extension.

Furthermore, allowing free-flight phase would extend the

method to more agile motions such as running and jumping.

ACKNOWLEDGEMENTS

The authors would like to thank Justin Macey for capturing

and cleaning motion capture data.

REFERENCES

[1] K. Yamane and J. Hodgins, “Simultaneous tracking and balancing
of humanoid robots for imitating human motion capture data,” in
Proceedings of IEEE/RSJ International Conference on Intelligent

Robot Systems, 2009, pp. 2510–2517.
[2] J. Hodgins, W. Wooten, D. Brogan, and J. O’Brien, “Animating Human

Athletics,” in Proceedings of ACM SIGGRAPH ’95, Los Angeles, CA,
1995, pp. 71–78.

[3] S. Jain, Y. Ye, and C. Liu, “Optimization-based interactive motion
synthesis,” ACM Transactions on Graphics, vol. 28, no. 1, p. 10, 2009.

[4] K. Sok, M. Kim, and J. Lee, “Simulating biped behaviors from human
motion data,” ACM Transactions on Graphics, vol. 26, no. 3, 2007.

[5] M. Da Silva, Y. Abe, and J. Popović, “Interactive simulation of stylized
human locomotion,” ACM Transactions on Graphics, vol. 27, no. 3,
p. 82, 2008.

[6] ——, “Simulation of human motion data using short-horizon model-
predictive control,” in Eurographics, 2008.

[7] U. Muico, Y. Lee, J. Popović, and Z. Popović, “Contact-aware nonlin-
ear control of dynamic characters,” ACM Transactions on Graphics,
vol. 28, no. 3, 2009.

[8] S. Nakaoka, A. Nakazawa, K. Yokoi, H. Hirukawa, and K. Ikeuchi,
“Generating whole body motions for a biped robot from captured
human dances,” in Proceedings of the IEEE International Conference

on Robotics and Automation, 2003.
[9] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,

and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in Proceedings of IEEE International

Conference on Robotics and Automation, 2003, pp. 1620–1626.
[10] J. Luh, M. Walker, and R. Paul, “Resolved Acceleration Control of

Mechanical Manipulators,” IEEE Transactions on Automatic Control,
vol. 25, no. 3, pp. 468–474, 1980.

[11] K. Yamane and Y. Nakamura, “Dynamics simulation of humanoid
robots: Forward dynamics, contact, and experiments,” in The 17th

CISM-IFToMM Symposium on Robot Design, Dynamics, and Control,
2008.

732

(a) (b) (c) (d) (e) (f)

reference COMtotal contact force

optimized COP contact normal vector

Fig. 8. Example of dynamic mapping. Although the soles and floor are modeled as completely flat surfaces, there may be only three contact points
between a foot and the floor because of small penetrations.

Fig. 9. Simulation result of a Tai-chi motion. The faded model shows the reference pose after applying the kinematic mapping.

[12] “Carnegie Mellon University Graphics Lab Motion Capture Database,”
http://mocap.cs.cmu.edu/.

[13] K. Yamane and Y. Nakamura, “Natural Motion Animation through
Constraining and Deconstraining at Will,” IEEE Transactions on

Visualization and Computer Graphics, vol. 9, no. 3, pp. 352–360, July-
September 2003.

733

