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Abstract— In this paper the problem of computing a rigid
object trajectory in an environment populated with deformable
objects is addressed. The problem arises in Minimally Invasive
Robotic Surgery (MIRS) from the needs of reaching a point of
interest inside the anatomy with rigid laparoscopic instruments.
We address the case of abdominal surgery. The abdomen is
a densely populated soft environment and it is not possible
to apply classical techniques for obstacle avoidance because
a collision free solution is, most of the time, not feasible. In
order to have a convergent algorithm with, at least, one possible
solution we have to relax the constraints and allow collision
under a specific contact threshold to avoid tissue damaging. In
this work a new approach for trajectory planning under these
peculiar conditions is implemented. The method computes off-
line the path which is then tested in a surgical simulator as
part of a pre-operative surgical plan.

I. INTRODUCTION

A common robotic task is to plan a robot trajectory from

an initial configuration to a desired configuration. In its

standard form, the solution of the motion planning problem

requires the computation of a collision free path for a moving

body between start and goal positions.

Depending on the nature of the problem, we may be

interested in any collision-free trajectory, or one that provides

the minimum (or close to minimum) overall cost, where the

cost of a trajectory may be a function of several factors. The

most common factor to be minimized are time for traversal,

traversal risk and visibility. Several approaches exist for

generating such trajectories, and in the following some of

them are reviewed. In recent years motion planning has

been increasingly used in virtual environments and games

[1], where contacts and deformations need to be taken into

account.

In this paper, we are interested in computing a path for

a rigid body moving in an environment densely populated

by soft objects that can deform and that can be damaged

by an excessive penetration. This requires that environment

objects to be constrained and their reaction forces to be

always balanced by the forces exerted by the moving body

during its contacts with the objects.

Our research is motivated by the possible application of

motion planning to surgery, where the environment is the

patient’s anatomy and the robot is a surgical instrument.

In particular, our scenario is Minimally Invasive Robotic

Surgery (MIRS), where small incisions are used to introduce
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Fig. 1. Trajectory between deformable objects in a very populated
environment.

special instruments at the distal end of a long rod through a

cannula into the body of the patient. The operation area is

small and sometimes difficult to reach, and the freedom to

move the instruments is limited. Moreover the visibility is

restricted to the small field of view of the endoscopic camera.

Tactile and contact sensations is totally different from open

surgery. This makes very hard to choose and perform a

proper trajectory without planning and motion indication.

In this paper we present a framework to compute the most

comfortable trajectory for a surgeon that has to move a probe.

Such a path has collisions and penetrations, because the

obstacles are unavoidable in this environment, but it should

damage the organs as little as possible. In our approach

we represent the obstacles with a geometric model and

we compute a trajectory that minimizes the collisions by

considering both the geometric shape and the stiffness of

each deformable object. We use a planning algorithm based

on the minimization of the tool penetration (a rigid object)

into the soft obstacles, while it is moving. The method

computes off-line the path which is then tested in a virtual

environment by using a surgical simulator developed in

our laboratory (Fig. 6). The surgical simulator shows the

feasibility of the trajectory to the surgeon.

After the introduction of the previous work done in the

field of planning and modeling with deformable objects

(Section II) we present in Section III the computation of the

penalty function used in Section IV to find the trajectory.

Section V describes the experimental results and tests we

have carried out. Finally, Section VI presents the conclusions

and an outlook of a possible continuation of this work.
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II. RELATED WORK

A. Planning with deformable objects

Although research on motion planning for rigid bodies

has produced many practical results, there is not an equiv-

alent body of work in the area of motion planning among

deformable objects. One difficulty facing motion planning

with deformable objects is having a (deformation) model that

accurately represents the object physical properties, while

preserving the efficiency of the planner. In fact, a planner

that uses a physically correct deformation model can be very

slow [2] and a planner that uses only geometric deformations

can compute unnatural motions [3].

Workspaces studied in most standard planning algorithms,

generally include only static and rigid obstacles.

A very good study and implementation of motion planning

in medical interventions is done in [4]. In this book the

problem of computing deformation to compensate for errors

caused by soft tissue displacement during needle insertion is

addressed. Their planner uses 2D images of the organs and

the physical simulation of the deformations is done by using

the finite elements method (FEM). The same book describes

also the computation of a path for a steerable needle in

deformable environments using again the FEM modeling on

2D images.

Frameworks such as Probabilistic Roadmap Planner and

Rapidly-Exploring Random Tree (RRT), [3], [5], describe

path computation in totally dynamic and deformable envi-

ronments. [2], [6] deal with planning and compute phys-

ically correct deformations models. These approaches are

not suitable to our problem because the main goal of those

algorithms is to completely avoid collisions, and mainly

they consider a deformable robot [7] that deforms to avoid

compenetration. Moreover such expensive computations for

solving mechanical models and generating collision detection

data structures are too time consuming and are not needed

for our goal. Generally they are applied to simple objects,

such as a sheet of metal or a pipe-like robot. In [8] deformed

distance fields are used to control the amount of deformation

between non-penetrating simple flexible bodies.

A combination of probabilistic roadmaps with physical

simulation of object deformations to determine a path that

optimizes the trade-off between the deformation cost and

the distance to be traveled using finite element theory for

calculating the deformation cost is described in [9].

B. Surfaces modeling and the surgical simulator

The environment of our planner is based on a virtual model

of the abdomen, implemented in a surgical simulator built in

our laboratory.

The surgical simulator uses data from a computed tomog-

raphy process to create the organs as clouds of points linked

by linear springs. Applying a displacement to one or more

points of the model results in changes in the length of the

model springs, and this generates internal forces that deform

the model. Mass spring models (MSM) have been used in

medical simulations to simulate skin, fat or muscle [10]

Fig. 2. The meshless representation of the environment.

[11] [12]: their reduced computational complexity makes

them a good choice for interactive simulation with haptic

feedback. The main limitation of mass spring models is

their lack of physical background that makes them difficult

to calibrate. Another issue that arises using MSM is the

realism of the simulation: it is known that mass spring

formulation leads to correct simulations when the magnitude

of deformations stays below 10% of the model size. Using

the graphic processing unit present on recent graphic cards,

we are able to provide to the user a virtual environment in

which he/she can use a haptic device to move a probe along

a given trajectory and feel the force exerted by the virtual

tissue on the probe. Particular attention has been paid to the

implementation to obtain update frequencies that are suitable

to realistic visual and haptic feedback.

The MSM model is described by a mesh of springs

connecting a set of surface points, called surflets, and a set

of internal points, called phyxels, where every point has a

mass. The surflets and the phyxels describe the geometry of

the objects.

Since the surgical simulator could be used to test a trajec-

tory (once the trajectory is computed) and, while computing

the trajectory it is difficult to simulate the deformation, we

chose to use a meshless model instead of the finite elements

method, considering only the set of surflets points.

In the computation of the trajectory, we will consider only

statical deformations, quantified by the penetration depth,

therefore, in our approximation, the contacts are local. Each

state of the problem consists of the position of the tool

and the penetration depth function at that point. The path

is feasible when a collision does not damage the obstacle

and providing that the obstacle deforms of an appropriate

amount.

The point based representation of the objects (the meshless

model) allows us reconstructing the scene in a more auto-

matic and straightforward way, to do fast model resampling,

and to easily compute collisions and penetration depth.

Following the method described in [13] point clouds can

be easily generated from different 3D representations (CAD

models, triangular surfaces, segmented medical images, im-

plicit functions) thus our method can be generalized to many
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scenarios represented by real data sets. Fig. 2 shows a

screenshot of the meshless model we have considered.

III. COLLISION DETECTION AND RESPONSE

This section describes the collision detection module used

by the planning algorithm to compute the penetration depth

function, PD(p) : R
3 → R. PD is the objective function to

be minimized in the optimization process.

The detection of collisions in a virtual environment has

been studied in different fields (among others: planning,

computer animation) with the goal of making it as fast and

accurate as possible [14]. The main task of these algorithms

is to detect a collision and define the penetration depth (PD)

among two objects.

The penetration depth function gives a measure of the

amount of the collisions along a given discrete trajectory.

To have the total amount of collision we added the value

of the collision of the probe with every single object of the

environment.

The first step of our approach was to compute the collision

between the probe and only one organ for a given position

of the tool.

To detect the collision and to compute the penetra-

tion depth function we used an algorithm derived from

expanding-polytope algorithm (EPA) [15] and from [16].

The metric used by EPA algorithm to compute the penetra-

tion depth is in terms of Minkowski difference of two objects

(or the translational configuration space obstacle TCSO). The

Minkowski difference (Fig. 3 and 4) between two sets A and

B is defined as:

A ⊖ B = {a − b : a ∈ A,b ∈ B} (1)

where a − b is the vector difference of the position vectors

a and b.

Without loss of generality, let us assume that polytopes

A and B are defined with respect to the global origin

O. Thus, if the two polytopes intersect, then the origin

O is inside of A ⊖ B and PD(A,B) corresponds to the

minimum distance from O to the surface of the Minkowski

difference A ⊖ B [17]. Also we notice that if A and B do

not intersect then O is outside of A ⊖ B and the distance

between A and B corresponds to the minimum distance from

O to the surface of A and B [16]. Therefore the unified

computational framework based on Minkowski difference

provides a continuum of the distance measure between the

two objects as they alternate between separation and inter-

penetration configuration. This characteristics will be very

useful in the minimization process (next section).

The penetration depth of two inter-penetrating objects A

and B is defined as the minimum translation distance that one

objects undergoes to make the interiors of A and B disjoint.

Formally, PD(A,B) is defined as:

PD(A,B) = min{‖t‖ : interior(A − t)
⋂

B = φ} (2)
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Fig. 3. The Minkowski difference of two disjoint convex objects in the two-
dimensional Euclidean space. The norm of the vector t gives the Euclidean
distance between the objects.
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Fig. 4. The Minkowski difference of two intersecting convex objects in
the two-dimensional Euclidean space. The vector t norm is the penetration
depth between the objects.

Both algorithms we have cited and used do not need

to compute explicitly the Minkowski difference of the two

objects, but they iterate on convex sets formed with vertices

from the Minkowski difference sampling through a support

mapping function on demand. The support mapping function

returns the farthest point of the Minkowski difference in a

given direction. The support mapping function is defined for

objects made of points or for some classes of nonpolytopal

convex sets (see [18]). This types of objects gives the applica-

bility of our algorithm to polytopes and more general convex

sets. The first algorithm detects collisions by searching a

separating plane between the Minkowski difference and the

origin and the second algorithm computes the minimum

norm point of the boundary of the Minkowski difference

(see [15] for more details). The objects are approximated by

their convex hull and this approximation suits very well our

planner since we are interested in touching the objects as

little as possible.

In our environment we have represented the organs as

unions of convex meshless models given only by the points

on their surfaces (surfels) and the probe as decagonal right

prism (it approximates well enough, for our purposes, a

cylindric probe, which is normally used).

A parameter eo models the stiffness of each object o or

may be used to implement constraints such as objects that

must be avoided along the path.

With this set-up, PD(p) (the value of the penetration

depth in a given position p ) is the sum of all contributions

PDo to the penetration depth:
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Fig. 5. Three positions of the tool along a computed trajectory. The red
point represents the entering point and is always aligned with the tool. The
red-white points are the starting position and the end position of the tool
along the trajectory (yellow).

PD(p) =
∑

o∈O

eoPDo(p) (3)

where O is the set of all the objects of the scene. Therefore

PD(p) represents a penalty function which depends on the

global collision relations, once the probe is placed at position

p.

IV. PLANNING THE TRAJECTORY

A. The trajectory

We can formulate the problem of computing the minimum

penetration trajectory among deformable obstacles as a min-

imization problem, where the optimization variables are the

trajectory parameters and the performance index is a measure

of how much the probe collides with the objects on its path.

The mobile probe is constrained to move inside the

abdominal environment and it has only four degrees of

freedom, since it passes always through a fixed point (Fig.

5).

In our work we decided to focus on trajectories described

by polynomials C of degree d, computed from an initial

point P0 to a final point Pf , C : [0, 1] → R
3, with C(0) =

P0 and C(1) = Pf .

For the polynomial function C we have choosen the Bèzier

curve of degree d. The control points P0, P1, ..., Pd−1, Pf ∈
R

3 represent, excluding the initial and the final point, our

parameters.

The Bèzier curve lies within the convex hull of the control

points, this providing a simple way of bounding the trajectory

by just imposing constraints on the control points.

The minimization problem can be stated as follows:

min G(x1, x2, ..., x3d−3), G : R
3(d−3) → R (4)

where x1, x2, ..., x3d−3 ∈ R
3d−3 are the coordinates of the

interior control points P1, P2, ...Pd−1,

Pi(xi, xi+d−1, xi+2d−2) ∈ R
3, i = 1, ..., d − 1 (5)

C(u) =
d

∑

i=0

Bd
i (u)Pi (6)

, u ∈ [0, 1]

Bd
i (u) =

(

d

i

)

(1 − u)dud−i (7)

Equation (7) describes the Bernstein polynomials of de-

gree d and

G(x1, ..., x3d−3) =
s

∑

j=1

PD(C(ui)), (8)

is the objective function to be minimized, where

PD(C(ui)) is the function described by equation (3) and

ui ∈ {0,
1

s − 1
,

2

s − 1
, ..., 1},

s represents the number of discrete time steps that we use

to sample the movement of the probe. For each parameter

ui, C(ui) ∈ R
3 represents a position of the probe along the

trajectory.

Note that we try to minimize the global collisions so we

are looking for an optimum choice of the d−1 control points,

which are our variables. At every step of the iteration we

will compute the penetration depth along the entire trajectory

described by the points P1, .., Pd−1.

B. The minimization algorithm

To minimize the objective function given by (8) we need

a minimization algorithm that can find the minimum of

a function when the computation of the derivative is not

feasible. The dimension of the problem depends on the

number of the interior control points along the trajectory,

therefore it depends on the polynomial degree it was chosen.

For instance a 4 degree polynomial trajectory has two control

points so the objective function will have the dimension 6

(each point has 3 coordinates).

We have chosen and implemented the downhill simplex

method [19] to minimize our function, since it requires

only function evaluation and matches very well with our

geometric model.

The dimension of the Euclidean space where the downhill

simplex algorithm operates is given by the dimension of the

domain of the objective function. A d degree polynomial

trajectory yields 3d − 3 coordinates of the interior control

points; to construct a simplex in this space we need 3d − 2
points.

A simplex is the convex hull of a set of (n + 1) affinely

independent points in some Euclidean space of dimension n

or higher.

The downhill simplex method iterates on simplices. On

every step the algorithm uses a n + 1 dimensional simplex,

where n is the dimension of the problem , reflecting, expand-

ing or contracting this simplex by moving just one point, in
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Fig. 6. A simulation of the trajectory with the MSM surgical simulator. The organs are moved and deformed while the probe is moving along the
trajectory.

order to find a nearest position to the local minimum. The

termination criteria must be imposed using a threshold on

the magnitude of the distance vector that moves the point of

the simplex.

Every point of the downhill simplex method represents

a trajectory in our case. The algorithm starts with a n + 1
arbitrary points. The initial n + 1 points must be affinely

independents to form a simplex. A method to chose these

points, once we have a starting point T0 (or an initial

trajectory), is to take other n points to be

Ti = T0 + λei (9)

where ei are n unit vectors and λ is a constant according

to the problem’s characteristic length scale (or it may be

different for each vector direction).

The main advantage of this method is that we can decide

to continue our search when we find a local minimum Tmin

by just reinitializating the simplex using Tmin and other n

values from the domain of our objective function as in (9).

We have used for our tests, as the initial trajectory, a

random configuration of the control points inside a bounding

box containing the environment. Some better initial guess

could be chosen with the help of a physician.

This method moves the interior control points toward a

configuration where the objective function is minimal.

Since the domain of our function is spatially limited inside

the abdomen (we do not want to have a trajectory passing

outside the abdomen), we had to limit the search inside a

bounding box containing the organs.

V. EXPERIMENTAL RESULTS AND SIMULATIONS

We developed our test code in C++ and compiled with

gcc (GNU Compiler Collection).

As the trajectory function, we used polynomials of degree

from 3 to 7 in order to assure smoothness but also the

capability to overcome more than one obstacle.

In our scenario each of the organs has about 3000 vertices.

Function PD is null outside the objects and because of

this, the algorithm pushes the computed trajectory to the

border of the obstacles, but not farther.

Table I shows a comparison of the performance results

of different degree polynomial functions, using different

numbers of discrete steps. We have used the same entering

point (red in Fig. 5) and the same initial and final points (red

and white) to compare the performance. The comparison is

based on the minimal cost function and the computation time.

According to the number of steps considered, the initial and

the final values of the penetration depth function was scaled.

The initial PD value (4-th column ) is the minimum value

of the PD function when the initial trajectory T0 is as a

random set of control points and the other n values compose

an affinely independent set of points, as described by the

equation (9).

As we expected, increasing the polynomial degree we

increase the computation time but, in most of the cases, we

achieve better results. There are no problems in handling

an increasing number of objects, because the tests are only

between the probe and single objects; of course, depending

on the complexity of the environment, the optimization

process may need more time to find a good solution, but

the algorithm should scale well to bigger environments.

However, we can decide a priori the degree, considering the

total number of the objects and the computational time we

want to achieve.

The feasibility of each trajectory was then checked manu-

ally with the surgical simulator (Fig. 6). Since the penetration

depth values were small, the amount of the deformations

perceived by the user was also small and, in this case, the ge-

ometric model fits well with the physical model implemented

by the simulator. By having the force feed-back implemented

in the simulator, the tests could be done by virtually guiding

the user along the precomputed trajectory.
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TABLE I

PERFORMANCE COMPARISON BETWEEN TRAJECTORIES OF DIFFERENT POLYNOMIAL DEGREES.

num polynomial discrete initial PD PD value after number of function time(msec)
degree steps value minimization evaluation

1 3 50 290.702 165.344 326 160312
2 4 50 282.760 153.460 257 130047
3 5 50 252.268 135.461 363 175454
4 6 50 243.555 105.708 591 214266
5 7 50 229.885 107.961 755 242125
6 3 100 280.403 163.300 246 349328
7 4 100 288.315 140.787 436 419657
8 5 100 255.329 120.066 520 516609
9 6 100 285.796 92.348 681 670547

10 7 100 280.060 80.218 719 783171
11 3 150 291.246 169.687 340 523031
12 4 150 283.398 137.283 466 639047
13 5 150 275.463 128.130 329 392094
14 6 150 249.794 97.001 444 756500
15 7 150 236.260 86.485 558 980313

VI. CONCLUSIONS

In this paper we presented an approach to path planning

in environments densely filled with non-rigid objects.

Using point based representation of the environment we

are able to detect collision and rapidly compute the pene-

tration depth and an associated penalty value, used by the

minimization algorithm as a measure when searching for the

best path.

An optimization method to obtain trajectories that mini-

mizes the sum of the penalties is used. The planner developed

computes collision free trajectories or trajectories with soft

object interaction if the free trajectory is not feasible.

In our simulation we imposed constraints regarding the

movement of the mobile probe (it passes always through a

fixed point) and constraints on the domain of the objective

function (the interior control points move only inside the

bounding box surrounding the organs), together with con-

straints on the objects themselves (each penetration depth

value is multiplied with a parameter representing the stiffness

of an organ).

The main contribution of this work is the use of a

geometric description of the environment that goes straight to

the penetration function used by the optimization algorithm

to compute a feasible path.

Optimization is a powerful framework for formulating and

computing motion plans that maximizes the probability of

successfully achieving clinical goals while minimizing tissue

damage and other negative side effects.

Our results encourage the use of such method for the spe-

cial problem class we are addressing, i.e. MIRS (Minimally

Invasive Robotic Surgery) scenario.
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