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Abstract— We describe integration of preprocessing and
automatic speech recognition based on Missing-Feature-Theory
(MFT) to recognize a highly interfered speech signal, such as
the signal in a narrow angle between a desired and interfered
speakers. As a speech signal separated from a mixture of
speech signals includes the leakage from other speech signals,
recognition performance of the separated speech degrades. An
important problem is estimating the leakage in time-frequency
components. Once the leakage is estimated, we can generate
missing feature masks (MFM) automatically by using our
method. A new weighted sigmoid function is introduced for
our MFM generation method. An experiment shows that a
word correct rate improves from 66 % to 74 % by using our
MFM generation method tuned by a search base approach in
the parameter space.

I. INTRODUCTION

Human-robot interaction (HRI) is one of the most essential

topics in humanoid robot research. HRI definitely of a

humanoid robot with robot-embedded microphones improves

by a function of a natural speech interaction because speech

communication is usually used in the daily communication

between humans.

A humanoid robot has to deal with multiple sound sources

simultaneously because the robot might have to listen to a

mixture of speech signals uttered by several users at the same

time, which is called “simultaneous speech.” As the robot

receives the simultaneous speech by the robot-embedded

microphones, each microphone receives a mixture of speech

signals. Therefore, sound source separation is required before

recognizing a desired speech signal. However, a conventional

approach used in HRI was to use microphones near the

speaker’s mouth to collect only the desired speech.

“Robot Audition” was proposed to realize hearing capa-

bility that makes a robot listen to several things simultane-

ously by using robot-embedded microphones in [1]. In robot

audition [2], sound source separation as preprocessing of

automatic speech recognition (ASR) is an actively-studied

research topic [3]. Valin et al. have developed sound source

localization and separation by Geometric Source Separation

(GSS) and a multi-channel post-filter with 8 microphones to

perform speaker tracking [4], [5].

A problem in robot audition is an integration of pre-

processing and ASR because there is a mismatch between
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preprocessing (e.g. sound source separation) and the con-

ventional ASR systems. As sound source separation is an

ill-posed, sound source separation produces separation errors.

It is impossible to perfectly estimate effects of reverberations

and environmental noises which change dynamically using

microphones embedded in a mobile robot. Conventional

ASR systems assume that the input speech is clean or

contaminated with a known noise source, because their target

is a mainly telephony application, which is able to assume a

high signal-to-noise ratio (SNR).

To integrate them, Missing-feature-theory base ASR

(MFT-ASR) is used [6], [7]. It is considered as a recog-

nition system for dealing with weighted acoustic features.

A problem is to generate missing-feature-masks (MFM), i.e.

hard and soft masks.

In this paper, we design an automatic soft MFM generation

method based on two weighted sigmoid functions. We imple-

ment the proposed soft MFM generation as a module of our

open-sourced robot audition software HARK [8]. After that,

to show validity of the proposed weighted soft MFM, we

show effectiveness through simultaneous speech recognition.

The rest of this paper is organized as follows: Section II

describes MFT. Section III describes the design of the soft

MFM generation algorithm for robot audition. Section IV

describes the implementation of robot audition with the

proposed soft MFM method generation using our robot

audition software HARK. Section V evaluates our proposed

soft MFM generation method through recognition of three si-

multaneous speeches and a human-robot interaction scenario.

The last section concludes this paper.

II. MISSING FEATURE THEORY

Missing-Feature-Theory (MFT) is a promising approach

for such integration of the preprocessing and the ASR.

MFT is known as a technique to improve noise-robustness

of speech recognition by masking out unreliable acoustic

features using a so-called missing feature mask (MFM)

[9], [10], [11]. The effectiveness of MFT has been widely

reported [6], [7].

Yamamoto et al. are the first research group which intro-

duced a MFT to integrate ASR into preprocessing [12]. They

showed the remarkable improvement of speech recognition

of separated sounds although they use a priori knowledge to

generate MFMs. First, the reliability of each time-frequency

(TF) component was calculated by comparing separated

speech with the corresponding clean speech (pre-mixed

sound source signal). Then, a hard MFM consisting of 0 or

1 for each TF component was calculated from the reliability
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based on a manually-defined threshold. The generated MFM

is called a priori MFM.

An automatic MFM generation rises as an issue without a

priori knowledge. Actually, this is the primary issue in MFT

approaches. Regardless of a lot of studies on MFT, this is

still an open question. Although most studies on automatic

MFM generation focused on single channel input or on

binaural input, Yamamoto et al. have developed an automatic

MFM generation based on microphone array processing [13].

First, they showed that unreliable features generated by

preprocessing are mainly caused by leakage energy from

other sound sources. They developed a microphone array

based technique to estimate the reliability of each TF com-

ponent from this leakage energy by taking the property of

the multi-channel post-filter and environmental noises into

consideration. Their automatic MFM generation was able to

correctly estimate around 70% of unreliable TF components

compared to a priori MFM. Thus, the ASR performance

drastically improved, and simultaneous speech recognition

by three speakers was attained. However, they still used a

hard MFM consisting of 0 or 1, while the reliability of each

TF component is estimated as a continuous value from 0 to

1. This means that some useful information included in the

estimated reliability may be thrown away with hard MFM.

A soft MFM with a continuous value from 0 to 1 was

reported as a better masking approach[11], because soft

masking can directly deal with the reliability of an input

signal and probabilistic methods can be applied at the same

time. Actually, Bayesian mask estimation algorithms were

proposed in [14], [15]. Barker et al.[7] used a sigmoid

function to estimate a soft MFM. Therefore, we believe

that a soft MFM also improves the performance of robot

audition in recognition of preprocessed (separated) speeches.

A hard MFM approach may work when a small number

of TF components are overlapped between a target speech

and a noise, but in speech noise cases like barge-in and

simultaneous speech, many TF components are overlapped.

Since a soft masking approach directly uses reliability, it can

also deal with overlapped TF components properly.

III. THE DESIGN OF SOFT MISSING FEATURE MASK

This section describes the design of our soft MFM. It is

based on reliability estimation of TF components. First, the

reliability of TF component is defined, and then, separated

speeches are analyzed based on the reliability to model

soft MFM generation, and parameter optimization for the

modeled soft MFM generation is also shown.

A. Definition of reliability

Figure 1 shows the components in HARK. An automatic

MFM generation component integrates the preprocessing

with the ASR components. Geometric Source Separation

(GSS) and multi-channel post-filtering are the preprocessing

components. Acoustic feature and ASR components are

common components of speech recognition system. GSS is

a hybrid sound source separation method between beam-

forming and blind source separation. Thus, an N -channel
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Fig. 1. Geometric source separation with multi-channel post-filter.

input signal S which consists of M sound sources sm is

separated into each sound source, ym. We use an 8 channel

microphone array (N = 8), and the number of sound sources,

M , is decided in a sound localization module (see Sec.IV-

A). However, as mentioned in the previous section, sound

source separation is an ill-posed problem, and thus ym still

includes non-stationary cross-talk (leakage) and stationary

background noises. Multi-channel post-filtering suppresses

these two types of noises and produces a noise-suppressed

signal ŝm.

The reliability of ŝm for each TF component (frame and

frequency indices are omitted for simplification) was defined

by

L =
ŝm + bn

ym
. (1)

where bn is a background noise separately-estimated by

using a minima controlled recursive algorithm (MCRA).

Note that L corresponds to leakage level because leakage

is a dominant factor to make a TF component unreliable.

When a background noise level is zeros, L means the ratio

estimation between leakage and source levels. Thus, L = 0.5
corresponds to 0 dB.

B. Analysis of separated speech based on reliability

We analyzed the characteristics of L. We found that

there are two peaks in a histogram of L for separated

speeches when three speeches were uttered simultaneously.

One corresponds to leakage components, and the other target

speech components. We found the same tendency for some

interval from 10 to 90 degrees.

C. Modeling a soft mask

In hard masking, a hard MFM is generated by thresholding

as follows:

HMm =

{

1, L > θ

0, otherwise
(2)

where θ is a threshold. Dynamic acoustic features called ∆
features are commonly used with static acoustic features to

improve the ASR performance. ∆ features are calculated

by linear regression of five consecutive frames. Let static

acoustic features be m(k), ∆ features are defined by

∆m(k) =
1

∑2
i=−2 i

2

2
∑

i=−2

i ·m(k + i), (3)
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Fig. 2. Sigmoid function (Eq.(9) for soft mask generation.

where k is frequency indices. Thus, hard masks for ∆
features are defined in the same way.

∆HMm(n) =

n+2
∏

i=n−2,i�=n

HMm(i). (4)

where n shows the frame index. However, such a linear

discrimination with θ makes misclassified TF components.

Thus, we decided to introduce soft masking. We assume

that these two groups follow Gaussian distributions. The

distribution function for Gaussian is defined by

d(x) =
1

2

(

1 + erf

(

x− µ

σ
√
2

))

(5)

erf(x) =
2√
π

∫ x

0

e−t2dt (6)

Let the distribution functions for leakage and target speech

be dn(R) and ds(R), respectively. A normalized speech

reliability can be defined by

B(R) =
ds(R)

ds(R) + dn(R)
(7)

This is a sigmoid-like function defined using error functions

erf(·). Since the calculation cost of B(R) is expensive, we

decided to use a typical sigmoid function Q(R) rather than

to use this complicated function directly. We, then, defined

a soft MFM based on Q(R) as follows [16]:

SMm = w1Q(R|a, b), (8)

Q(x|a, b) =

{ 1
1+exp(−a(x−b)) , x > b

0, otherwise
, (9)

where w1 is an weight factor for static features (0.0 ≤
w1). Q(·|a, b) is a modified sigmoid function which has

two tunable parameters. a corresponds to a trend of the

sigmoid function. b corresponds to an x-offset of the sigmoid

function. We also defined soft masks for ∆ features as

∆SMm(k) = w2

k+2
∏

i=k−2,i�=k

Q(R(i|a, b)). (10)

where w2 is an weight factor for ∆ features (0.0 ≤ w2).

TABLE I

A SEARCH SPACE FOR SOFT MFM PARAMETERS

parameter range step

a 20 – 80 20
b 0.5 –
w1, w2 0.1 – 1.5 0.1

D. Parameter optimization for soft masking

Figure 2 shows the relationship between soft and hard

MFMs. When a is infinity and w = 1.0 in Eq. (9), a

soft MFM works as a hard MFM. In this case, b works as

threshold, θ. a and b can be derived from Eqs. (9) and (7),

but it is difficult to attain analytical solutions for them. In

addition, for w1 and w2, we have no theoretical evidence

for parameter estimation. We, thus, the measured recogni-

tion performance of three simultaneous speech signals to

optimize these parameters by using a robot having eight

omni-directional microphones shown in Fig. 4. Simultaneous

speech signals were recorded in a room with RT20 = 0.35.

Three different words were played simultaneously with the

same loudness from three loudspeakers located 1 m away

from the robot. Each word was selected from the ATR

phonetically balanced wordset consisting of 216 Japanese

words. The direction of a loudspeaker was fixed in front of

the robot, and the others were located at ±30, ±60, ±90,

±120, ±150 degrees to the robot. For each configuration,

200 combinations of the three different words were played.

Table I shows a search space for a soft MFM parameter set

p = (a, b, w1, w2). Figure 3 shows an example of the average

case over loud speaker angles where three loudspeakers were

localed at (0. θ. −θ), (θ = 30, 60, 90, 120, 150). For the

other conditions, we obtained a similar tendency for w1-

w2 parameter optimization. We also performed parameter

optimization for a and b, and found that the result with a

common tendency is obtained for every layout. Therefore,

we obtained the optimized parameter set popt defined by

popt = argmax
p

1

5 · 3
∑

θ∈{30,...,150}

(

WCθ(a, b, w1, w2)

+WRθ(a, b, w1, w2) +WLθ(a, b, w1, w2)
)

,

where WCθ , WRθ , and WLθ show word correct rates for

the center, right and left loudspeakers where their locations

are (0, θ,−θ) degrees, respectively.

Finally, we attained the optimal parameter set for the soft

MFM as popt = (40, 0.5, 0.1, 0.1).

IV. A ROBOT AUDITION SYSTEM

Our robot audition system consists of five major compo-

nents shown in Fig. 1. Our proposed soft MFM generation

was described in the previous section. This section explains

the other four components, A: Geometric Source Separation,

B: Multi-channel post-filter, C: Acoustic feature extraction,

and D: MFT-ASR. Our robot audition system uses several

techniques such as sound source localization and tracking,

which are described in [17].
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A. Geometric source separation

GSS is a hybrid algorithm of Blind Source Separation

(BSS) and beamforming. It relaxes BSS’s limitations such as

permutation and scaling problems by introducing “geometric

constraints” obtained from the locations of microphones and

sound sources. Unlike the Linearly Constrained Minimum

Variance (LCMV) beamformer that minimizes the output

power subject to a distortion-less constraint, GSS explic-

itly minimizes cross-talk, leading to faster adaptation. The

method is also interesting for use in the mobile robotics

context because it allows easy addition and removal of

sources. Using some approximation, it is also possible to

implement separation with relatively low complexity.

Our GSS was modified so as to provide faster adaptation

using stochastic gradient and shorter time frame estimation.

The locations of sound sources are estimated with Multiple

Signal Classification (MUSIC). It is a frequency-domain

adaptive bearmforming method that produces a sharp local

peak corresponding to a sound source direction, thus its noise

robustness improves in the real world.

The formulation of GSS is described. Suppose that there

are M sources and N (≥ M ) microphones. A spectrum

vector of M sources at frequency ω, s(ω), is denoted as

[s1(ω)s2(ω) . . . sM (ω)]T , and a spectrum vector of signals

captured by the N microphones at frequency ω, x(ω), is

denoted as [x1(ω)x2(ω) . . . xN (ω)]T , where T represents a

transpose operator. x(ω) is, then, calculated as

x(ω) = H(ω)s(ω), (11)

where H(ω) is a transfer function matrix. Each component

Hnm of the transfer function matrix represents the transfer

function from the m-th source to the n-th microphone. The

source separation is generally formulated as

y(ω) = W (ω)x(ω), (12)

where W (ω) is called a separation matrix. The separation

is defined as finding W (ω) which satisfies the condition that

output signal y(ω) is the same as s(ω). In order to estimate

W (ω), GSS introduces two cost functions, that is, separation

sharpness (JSS) and geometric constraints (JGC ) defined by

JSS(W ) = ‖E[yyH − diag[yyH ]]‖2, (13)

JGC(W ) = ‖diag[WD − I]‖2, (14)

where ‖ · ‖2 indicates the Frobenius norm, diag[·] is the

diagonal operator, E[·] represents the expectation operator

and H represents the conjugate transpose operator. D shows

a transfer function matrix based on a direct sound path

between a sound source and each microphone. The total cost

function J(W ) is represented as

J(W ) = αSJSS(W ) + JGC(W ), (15)

where αS means the weight parameter that controls the

weight between the separation cost and the cost of the geo-

metric constraint. This parameter is usually set to ‖xHx‖−2

according to [4]. In an online version of GSS, W is updated

by minimizing J(W )

W t+1 = W t − µJ ′(W t), (16)

where W t denotes W at the current time step t, J ′(W ) is

defined as an update direction of W , and µ means a step-size

parameter.

B. Multi-channel post-filter

A multi-channel post-filter is used to enhance the output

of the GSS algorithm. It is a spectral filter using an optimal

noise estimator. This method is a kind of spectral subtraction,

but it generates less musical noises and distortion, because

it takes temporal and spectral continuities into account.

We extended the original noise estimator to estimate both

stationary and non-stationary noise by using multi-channel

information, while most post-filters address the reduction of

a type of noise, stationary background noise.An input of the

multi-channel post-filter is the output of GSS; y. An output

of the multi-channel post-filter is ŝ, which is defined as

ŝ = Gy, (17)

where G is a spectral gain. The estimation of G is based

on minimum mean-square error estimation of spectral am-

plitude. To estimate G, noise variance is estimated.

The noise variance estimation λm is expressed as

λm = λstat.
m + λleak

m , (18)

where λstat.
m is the estimate of the stationary component of

the noise for source m at frame t for frequency f , and λ leak
m

is the estimate of source leakage.

We computed the stationary noise estimate, λstat.
m , using

MCRA technique To estimate λleak
m , we assumed that the

interference from other sources is reduced by factor η

(typically -10dB ≤ η ≤ -5 dB) by LSS. The leakage estimate

is thus expressed as

λleak
m = η

M−1
∑

i=0,i�=m

Zi, (19)
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where Zi is the smoothed spectrum of the m-th source, Ym

and recursively defined (with α− 0.7) [18]:

Zm(f, t) = αZm(f, t− 1) + (1 − α)Ym(f, t). (20)

C. Acoustic feature extraction

To estimate reliability of acoustic features, we have to

exploit the fact that noises and distortions are usually

concentrated in some areas in the spectro-temporal space.

Most conventional ASR systems use Mel-Frequency Cepstral

Coefficient (MFCC) as an acoustic feature, but noises and

distortions are spread to all coefficients in MFCC. In general,

Cepstrum based acoustic features like MFCC are not suitable

for MFT-ASR, Therefore, we use Mel-Scale Log Spectrum

(MSLS) as an acoustic feature.

MSLS is obtained by applying inverse discrete cosine

transformation to MFCCs Then three normalization pro-

cesses are applied to obtain noise-robust acoustic features;

mean power normalization, spectrum peak emphasis and

spectrum mean normalization. The details are described in

[19]. These three normalization processes correspond to three

normalization performed against MFCC; C0 normalization,

liftering, and Cepstrum mean normalization. The acoustic

feature vector composes 13 MSLS features, their derivatives

and ∆ log power, i.e., a 27-dimensional MSLS-based acous-

tic vector was used.

D. Missing Feature Theory based ASR

Two critical issues remain; what kinds of preprocessing

are required for ASR, and how does ASR use the character-

istics of preprocessing besides using an acoustic model with

multi-condition training. We exploited an interfacing scheme

between preprocessing and ASR based on MFT.

MFT uses MFMs in a temporal-frequency map to improve

ASR. Each MFM specifies whether a spectral value for a

frequency bin at a specific time frame is reliable or not. Un-

reliable acoustic features caused by errors in preprocessing

are masked using MFMs, and only reliable ones are used for

a likelihood calculation in the ASR decoder. The decoder

is an HMM-based recognizer, which is commonly used in

conventional ASR systems. The estimation process of output

probability in the decoder is modified in MFT-ASR.

Let M(i) be a MFM vector that represents the reliability

of the i-th acoustic feature. The output probability b j(x) is

given by the following equation:

bj(x) =

L
∑

l=1

P (l|Sj) exp

{

N
∑

i=1

M(i) log f(x(i)|l, Sj)

}

,

(21)

where P (·) is a probability operator, x(i) is an acoustic

feature vector, N is the size of the acoustic feature vector,

and Sj is the j-th state.

For implementation, we used Multiband Julian, which is

based on the Japanese real-time large vocabulary speech

recognition engine Julian. It supports various HMM types

such as shared-state triphones and tied-mixture models. Net-

work grammar is supported for a language model. It works as

a standalone or client-server application. To run as a server,

a) A humanoid robot HRP-2.

b) Layout of microphones.

Fig. 4. A humanoid robot HRP-2 with an 8 ch microphone array.

we modified the system to be able to communicate acoustic

features and MFM via a network.

V. EVALUATION

To evaluate the proposed robot audition system with soft

MFM generation, simultaneous speech recognition was per-

formed in a manner of isolated word recognition. Also, the

system was introduced to a human-robot interaction scenario,

that is, a meal order taking task.

A. Experimental setup

We used a humanoid robot HRP-2 with eight microphones

around the top of the head for an experiment of simultaneous

speech recognition. It was placed at the center of a circle in

Fig. 4. Three loudspeakers were used to play three speeches

simultaneously. A loudspeaker was fixed in front of the robot,

and two other loudspeakers were located at ±30, ±60, ±90,

±120, or ±150. The distance between the robot and each

loudspeaker was 1 m. Three males are used as sound sources.

Each test dataset consists of 200 combinations of three

different words randomly-selected from ATR phonetically

balanced 216 Japanese words.

For an acoustic model in ASR, we trained a 3-state

and 16-mixture triphone model based on Hidden Markov

Model (HMM) using 27 dimensional MSLS features. To

make evaluation fair, we performed an open test, that is, the

acoustic model was trained with a different speech corpus

from test data. For training data, we used Japanese News

Article Speech Database containing 47,308 utterances by

300 speakers [20]. After adding 20 dB of white noise to the

speech data, the acoustic model was trained, which is a well-

known technique to improve noise-robustness of an acoustic.

B. Recognition of three simultaneous speeches

For comparison, we evaluated two kinds of MFMs, the

hard and soft masks. The conventional hard MFM is defined

by Eqs. (2) and (4). The proposed soft MFM is defined by

Eqs. (8) and (10). The parameters for the mask generation are

optimized. Word correct rates (WCR) were measured with

these MFMs for a test dataset. Figures 5,6 illustrate averaged

word correct rates for the center and the left speakers.

For the center, left and right speakers, we can say that

our proposed soft MFM drastically improved the ASR per-

formance. The improvement is better, especially, when the

angle between loudspeakers. When the angle is wider, the

number of overlapping TF components is smaller. Thus the
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Fig. 6. Word correct rate for the left speaker.

difference of the ASR performance between hard and soft

masks is less.

In case of 150 degrees, the angle between the left and right

speakers is 60 degrees. Thus, the WCR of the left speaker

degrades because this is a kind of the high interfered speech

signal recognition. In this condition, our proposed soft MFM

also improved the ASR performance, drastically. This proves

that the proposed soft MFM is able to cope with the large

number of overlapping TF components even in the highly-

overlapped cases. The improvement of the proposed soft

MFM reached around 8 points by averaging three speaker

cases. For the right speakers, its trend is similar to the left

speaker. The average WCR is depends on a speaker. For some

speakers, WCR is less than the other speakers, but average

WCR over speakers is almost same as the result showed in

Figs. 5, 6.

VI. CONCLUSION AND FUTURE WORK

We presented the integration method between the prepro-

cessing and the MFT-ASR to recognize a highly interfered

speech signal. The MFT is adopted to integrate microphone-

array-based preprocessing with sound source localization,

and separation into ASR. For generating missing feature

masks, we used a weighted soft missing feature mask taking

a continuous value between 0 and w instead of a conventional

hard missing feature mask taking a binary value, 0 or 1.

The resulting HARK-based robot audition system with

automatic soft mask generation improves the performance

of ASR in three simultaneous speeches, in particular for

narrower intervals of two adjacent speakers up to 30 degrees.

In 30 degrees condition, we improved word correct rate

from 66% to 74% in the simultaneous speech recognition

of robot audition to realize natural human-robot interaction.

The conventional system worked up to 60 degrees. Therefore,

the soft mask system provides opportunities to deploy a robot

audition system to more realistic multi-party interaction.

Future work includes simultaneous speech recognition

experiment with different distance values, the development

of the automatic tuning method, the detailed analysis, and

more applications. For example, extensive benchmarking to

analysis the performance of ASR with a wide variation of

speaker configurations under various acoustic environments.

Our research is partially supported by the Grant-in-Aid for

Scientific Research and Global COE Program.
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