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Abstract— An important pre-requisite for many tasks like
Visual Servoing and visual SLAM is the task of tracking the un-
derlying features. The use of planar features for these purposes
has gained importance recently. Complementing current planar
tracking works in the robotics literature, which use multiple
features, we formulate the tracking problem using multiple
planes. Inspired by the maturity in understanding of geometric
quantities like the homography in computer vision, we develop
a system based on the Unscented Kalman Filter (UKF) that
localizes the camera and estimates the plane parameters of
a scene, using homographies as measurement. Homographies
are estimated using tracked feature points. We show that this
framework provides significant robustness and stability to the
system under significant changes of illumination, occlusion
etc. Finally, we also propose a Convex optimization based
solution for the initialization of this system, which is capable of
producing globally optimal estimates, and is a useful algorithm
in its own right. Several synthetic and real results are presented
to demonstrate the efficacy of our approach.

I. INTRODUCTION

The problem of recovering the position and orientation of

a target object in every frame of a video is called visual track-

ing. Tracking can be done in both 2D [1] and 3D [2], and

is useful for various tasks like car following [3], SLAM [2],

PBVS [4] etc.. In 3D tracking, the pose (rotation+translation)

of the object w.r.t. a specified coordinate system is computed

for every frame. When the video contains a single rigid

object, the pose of the object and the pose of the camera

are the same. When the object consists of multiple planes,

tracking its pose corresponds to estimating the homography

of these planes w.r.t. a reference coordinate system in every

frame. In this paper, we present an approach using Unscented

Kalman Filters (UKF) that combines the tracking of multiple

planes with the tracking of pose to achieve robustness over

tracking each of the planes individually.

Several approaches to tracking one or several planes have

been proposed in the past [1], [5] for purposes like IBVS [6],

reconstruction [7], augmentation [8], patch-based SLAM [9]

etc.. In the robotics literature, tracking has been modeled

using various filters, most notable among them being the

Kalman filters [10]. While the traditional Kalman filter is

useful only for linear systems with Gaussian noise, the

Extended Kalman Filter (EKF) allows to model non-linear

systems using a first order approximation. However, since

homographies are highly non-linear quantities, we use an

Unscented Kalman Filter (UKF) [11] in our work, which

approximates non-linear functions better than the EKF.
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In this paper, we track scene plane homographies and

camera pose simultaneously in a UKF framework. Each

individual homography might be computed using robust

methods [1]. By combining information from multiple ho-

mographies for pose computation, we show how the resulting

pose tracking is not only accurate, but also serves to correct

the underlying homographies in case of errors due to illu-

mination changes, occlusion etc. Section II presents works

in the literature that our relevant to our case. Section III

outlines the proposed tracking framework, using UKF [11].

Section IV discusses implementation issues. Experimental

results on challenging sequences (Section V) under varying

conditions of pose and illumination show the robustness of

the tracker. Finally, we summarize with elucidation of future

avenues for research in Section VI.

II. RELATED WORK

Recently, tracking of multiple planes in a scene has

attracted interest [12], [13]. The main advantage of tracking

multiple planes is the fact that, under the assumption of a

static rigid scene, various constraints based on the scene

geometry may be added to simplify the tracking formula-

tion [13] or to increase the accuracy of tracking [12].

In [13], the authors make use of the fact that homographies

induced by multiple planes between two views of a camera

are embedded in a lower dimensional space [14], to reduce

the number of parameters required to track multiple planes.

Another approach is used by [12], who formulate the tracking

of multiple planes as a problem of estimating the pose

parameters of the camera given the parameters of the plane.

Tracking is done using an inverse compositional approach

that uses a gradient descent optimization function over the

pose space for the tracking. Alternatively, the authors of [15]

use the same relationships to construct a set of linear

equations with pose as the unknowns. These equations are

then solved using singular value decomposition to obtain the

least squared pose estimate for every frame.

While in [13], the errors in one plane may affect the

tracking of others because of the coupled estimation strategy,

the algorithm of [12] is not guaranteed to be robust to

illumination change. In this paper, we use an approach close

to [12] to compute homographies and pose simultaneously.

We however incorporate information from multiple planes

into a UKF framework, to ensure more robust tracking.

In [9], the authors present a MonoSLAM system that uses

the EKF to track the pose of the camera and the 3D coor-

dinates of certain features in the environment. Additionally

they also estimate the normals (orientation) of locally planar

features. It is different from our work in the sense that pose
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Fig. 1. The UKF tracking algorithm.

and plane tracking are not coupled together as in our case,

but estimated separately. As a result, we have been able to

show much more robustness in tracking.

Finally, the use of UKF is also not new in the robotics

community. In [16], the authors present a system for SLAM

based on the square root Unscented Kalman Filter (srUKF)

that runs approximately at the same order and speed as the

traditional EKF based SLAM, while providing much better

accuracy.

III. TRACKING FRAMEWORK

We develop the tracking framework in the following

section. Our framework employs plane and pose parameters

as the state vector to be estimated, while homographies are

treated as measurements. This provides both robustness and

stability. Robustness because, the system is not affected by

the tracking of an individual feature beyond a point, so long

as the homography can be effectively estimated, for which

there are many methods available [17]. Stability because,

even with the complete loss of tracking for a particular plane,

the other planes in the environment can contribute to both

pose tracking for the camera and homography tracking for

the missing plane.

A. Parametrization and Motion Model

In the presence of multiple planes (say m), we have

multiple instances of homography Ht = {h1
t , . . . , h

m
t } at

time t that may be computed from point correspondences.

Let us recall that the homography relating two views of a

plane is related to the geometry of the views through the

following relation

hi
t ∼ K

[

Rt
ttn

i⊤

di

]

K−1 (1)

where
[

Rt tt
]

represents the relative pose between the first

and tth views, ni represents the plane normal at distance di

from the coordinate system attached to the first view, and K
represents the internal parameters of the camera.

In this case, assuming a rigid static scene and that

m, K are known apriori, it is possible to estimate the

pose of the camera along with the normals of each of the

planes. Thus the parameters to be estimated are represented

by the vector st =
[

pt n1
t d1

t . . . nm
t dm

t

]

, where

pt =
[

e1
t e2

t e3
t t1t t2t t3t

]

is the pose of the ob-

ject/camera and ni =
[

ni1 ni2 ni3
]

(‖ ni ‖= 1) is

the plane normal. Here, rotation is represented using Euler

angles. Thus for m planes a total of 3m + 7 parameters

need to be tracked, with polar representation for normals. If

ŝt represents our current estimate of the state vector, then

change owing to inter-frame displacement can be written as

ŝt = ŝt−1 + ∆ŝt. (2)

assuming a Markovian model with Brownian motion.

Given that at each iteration of the algorithm, we esti-

mate the homographies induced by each plane as Ĥ =
{ĥ1

t , . . . , ĥ
m
t } the optimal estimate of the state vector ŝt can

be calculated as

ŝ
∗
t = arg min

ŝt

F(Ĥt − f(ŝt)) (3)

where F is a suitable distance measure, f is the function

given in Equation 1, and Ht is a robustly estimated homog-

raphy. In the current work, F is the scaled Euclidean distance

which sets the last element of the homography matrix to 1.

In a filtering framework, the search space for the optimal

solution at every iteration is restricted to the noise covariance

around the prior model. In our case, the two types of

errors: process noise and measurement noise are detrimental

to this search, and correspond to errors in the values of

pose and plane parameters, and errors in the estimation

of homographies. It has been demonstrated earlier that a

Gaussian assumption for process noise is suitable for tracking

the pose of the camera [2]. For homographies, the assumption

of a Gaussian noise source is only an approximation of the

true noise [18], to the first order. Still it is desirable to

represent both noises using a Gaussian model because

• In practice, a Gaussian approximation for noise in

homography has been found to be a useful model for

cases when the underlying images are captured from

similar view points (like successive frames of a video).

• a Gaussian model allows us to employ the widely used

class of Kalman filters [11], that are a close approxi-

mation to the Bayesian filter, which is considered the

most optimal estimator of states, given data.

Since the state transition and observation functions are

highly non-linear in nature (Equation 1), and since a first

order approximation to the observation noise is used, the

Extended Kalman Filter (EKF) seems to be a poor choice

for the filtering. It is for these reasons that an Unscented

Kalman Filter [11] is employed in the current work.

B. Multi-Plane Tracking

We now define the process and measurement functions

that are used in the Unscented Kalman Filter, under the

assumption that m planes are being tracked.

st = st−1 + N (0, R) (4)
[

h1
t . . . hm

t

]

= f(st , vt) (5)

vt = diag(Λh1

t
, . . . ,Λhm

t
) (6)
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where the measurement noise vt is defined as a collection of

the covariances of the individual homographies, as detailed

in Section III-C. It assumes the independent measurement

of the underlying homographies. In order to initialize the

filter, we obtain a rough estimation of the plane normals

by decomposition of the homography between the first two

frames for each plane, followed by a process called Coor-

dinate Normalization, detailed in Section IV-C. The whole

method is summarized in Algorithm 1, and in Figure 1.

C. Cues From Multiple Planes

In order to represent the true process faithfully, we need

a noise covariance that is close to the true covariance in

the measurement process. Assuming that the tracked feature

points are perturbed with Gaussian noise, first order uncer-

tainty analysis may be used to measure the variance of the

computed homography as a function of the variance of the

individual features [18].

Λh = JSJ, J = −Σn
i=1

uku⊤
k

λk

(7)

where (uk, λk) are the eigenvectors and eigenvalues of the

matrix A in the objective function Ah = 0, which is solved

using singular value decomposition to obtain the least square

homography solution h (Please refer [18] for details). The

value of S is obtained from A and the covariances of the

individual features, which represent the uncertainty in the

feature matching process.

We characterize the uncertainty in feature matching by

relating it to the inverse covariance matrix of the image

gradients in their local neighborhoods [19].

Σxi,yi
=

[

∂2I(xi,yi)
∂x2

∂2I(xi,yi)
∂x∂y

∂2I(xi,yi)
∂x∂y

∂2I(xi,yi)
∂y2

]−1

(8)

where I(xi, yi) represents the image under consideration.

IV. IMPLEMENTATION ISSUES

In this section, we discuss some of the major implemen-

tation issues that are of importance to our algorithm.

A. Initialization

We use Singular Value Decomposition (SVD) of homogra-

phy to provide solutions [20], [21] of camera pose and plane

normals, for initializing the tracker. We have observed that

initialization from either algorithm suffices for our case.

B. Data Normalization and Covariance Transfer

Two of the important steps in this algorithm are the nor-

malization of image correspondences before the computation

of the homography, and the transfer of covariance of the

image features across a homography from initial frame to

the previous frame. We describe the equations involved in

these transformations below

1) Data Normalization: The computation of homography

requires a numerical conditioning [22] of the data, which

needs to be included while computing covariances. When

input points are transformed by affine transformations T1 and

T2 respectively, the resultant homography is transformed as

T2 ∗Hactual ∗ inv(T1). Thus covariances for the ith point in

the kth frame and jth plane are computed as

{σest
i }j

1 = Jest
x1 {σi}

j
1(J

est
x1 )⊤ (9)

{σest
i }j

k = Jest
xk {σi}

j
k(Jest

xk )⊤ (10)

Λ{h}j

k

= Jest
hk Λ{hest}j

k

(Jest
hk )⊤ (11)

where Jest
x1 = ∂{xest

i }j
1/∂{xi}

j
1, Jest

xk = ∂{xest
i }j

k/∂{xi}
j
k

and Jest
hk = ∂{h}j

k/∂{hest}j
k, and est is used to denote

quantities in the transformed space.

2) Covariance Transfer: Once the pose estimate for the

previous frame has been established, wrong measurements

(homographies) are corrected by simply assigning the homo-

graphies and associated covariances, values of the posterior

measurement and noise estimates from the previous iteration

of the UKF tracker. This corresponds to the first step within

the loop in Algorithm 1.

Once homographies are corrected, the next step is to cor-

rect feature points to ensure robust tracking. The transferred

variance of the ith feature point in the kth frame and jth

plane may be obtained as [18]

{σi}
j
k =

[

B hj
k

]

[

Λj
k 0

0 {σi}
j
1

] [

B⊤

hj
k

]

(12)

x =
[

({xi}
j
1)

⊤ 1
]

, B =





x 0 0

0 x 0

0 0 x





3×9

(13)

Finally, in order to convert homogeneous coordinates to

in-homogeneous coordinates, a scaling operation is imposed

on the transferred points, where each point is divided by its

3rd coordinate to make it 1. The corresponding change in

the covariance matrices is given by

{σ2×2
i }j

k = ∇f{σi}
j
k∇f⊤ (14)

∇f = 1/W 2

[

W 0 −X
0 W −Y

]

(15)

where {xi}
j
k = [X Y W ]

⊤
. Since Equation 14 is a first order

approximation of the Taylor series expansion around the in-

homogeneous point, the approximation can be poor for large

values of ( X
W

, Y
W

). To avoid this problem, we maintain full

3D covariances at all times.

C. Coordinate Normalization

Each decomposition by the algorithms of Faugeras [20]

and Zhang [24] produce estimates of {R, t, n} assuming

a coordinate system in which the perpendicular distance

between the origin and the plane in consideration is 1.

We call the process of adjusting the perpendicular dis-

tances,“coordinate normalization”.

2916



Algorithm 1 The UKF tracking algorithm

{xi}1 = EF(I1). // Extract Features

{x∗
i }2 = TF(I1, I2, {xi}1). // Track Features

({xi}
1...m
1 , {x∗

i }
1...m
2 ) = SP( I1, I2, {xi}1, {x∗

i }2).

{σi}
1...m
1 = CC(I1, {xi}

1...m
1 ). // Compute Covariances

{σ∗
i }

1...m
2 = CC(I2, {xi}

1...m
2 ).

{h∗,Λ}1...m
2 = CH({xi, σi}

1...m
1 , {x∗

i , σ
∗
i }

1...m
2 ).

(R2, {, t
∗, n∗}1...m

2 ) = DH({h∗}1...m
2 ).

(t2, {n, d}1...m) = CN({, t∗, n∗}1...m
2 ) (Section IV-C).

Initialize UKF tracker.

for (k = 3, . . . , n) do

{h, Λ}1...m
k−1 = HM(Rk−1, tk−1, {n}

1...m, {d}1...m) (Op-

tional).

({xi}
1...m
k−1 , {σi}

1...m
k−1 ) = TPC({h, Λ}1...m

k−1 , {xi}
1...m
1 )

(Section IV-B) (Optional).

{x∗
i }

1...m
k = TF(Ik−1, Ik, {xi}

1...m
k−1 ) [23].

{h∗,Λ∗}1...m
k = CH({xi, σi}

1...m
1 , {x∗

i , σ
∗
i }

1...m
k ) (Sec-

tion IV-B).

{Λ}1...m
k = RW({Λ∗}1...m

k ). (Section IV-D).

(Rk, tk, {n, d}1...m) = UKF({h, Λ}1...m
k }).

end for

// SP, CN - Segment Planes, Coordinate Normalization

// CH, DH - Compute, Decompose Homographies

// HM, RW - Homography Measurement, Robustness

Weights

// TPC - Transfer Points and Covariances

Let the solution of translation obtained by decomposing hj
2

of the jth plane be denoted by tj . Thus the actual translation

vector is represented by t = tjd∗j , where d∗j is the optimum

of an objective function. Since, estimates obtained from

the various planes must converge, we are interested in the

optimum values
[

d∗1, d∗2, . . . , d∗m
]

such that

[

d∗1, . . . , d∗m
]

= min

m
∑

l=1

m
∑

j=1

‖tjdj − tldl‖2 (16)

To obtain a global minima by a Convex reformulation of

Equation 16, we introduce a new set of variables (t∗) which

represent the actual translation of the view up to scale. The

modified functions now become fj(t
∗, dj) = ‖t∗ − tjdj‖2.

Looking closely at fj we find

fj(t
∗
i , d

j) = ‖t∗ − tjdj‖2 = ‖
[

t∗ dj
]

[

1
−tj

]

‖2 (17)

Re-framing the parameter vector as qj =
[

(t∗)⊤ d1 . . . dm
]⊤

, we can rewrite the above function

as fj = ‖Ajq + b‖2, for some Aj’s, which represents a

convex function in the variables [25]. In order to obtain an

optimal result, we finally introduce another variable γ that

puts a bound on the maximum value taken by each of the m
convex functions. This results in a function to be minimized

with convex constraints, defined by the following set of

equations

min
x

γ (18)

such that fj(q) = ‖Ajq + b‖2 < γ (19)

q ∈ R
3+m, (20)

Aj ∈ R
j,3+m, b = 01,1 (21)

There are excellent mathematical packages like SeDuMi[26]

for obtaining globally optimal solutions for such cases.

D. Robustness

Outliers in the data or input do not have a representation

in the estimation process of Kalman filters. Thus, such a

tracker will be sensitive to bad estimates of homography.

The solution to this problem is to detect and exclude such

measurements from the estimation process. By not including

outlier measurements, we ensure an accurate estimate of

the state vector, and with an accurate estimate of the state

vector, we can obtain an accurate replacement of the outlier

measurements.

A bad estimate of the homography may be obtained

due to either incorrect feature correspondences, or due to

bad conditioning of the underlying homography estimation

process which may be the result of a smaller set of feature

correspondences than desired. Assuming an algorithm like

RANSAC [17] is used to weed out both outlier correspon-

dences, and badly conditioned homographies, we are only

left with the case when we need a measure of the accuracy

of the feature correspondence.

In order to get an estimate of how reasonablea particular

feature correspondence is, we use the Normalized Cross

Correlation (ncc) function [17], and incorporate it as an

inverse scale factor in Equation 8 to use this information.

With the above robustness measures, we may introduce

suitable weights into the estimation process. When in the

presence of illumination or occlusion, however, the homog-

raphy estimation may fail even with the above robustness

heuristics. It is here that the Kalman Filter takes over to

predict the maximum likelihood observation (homography)

based on the measured state vector values (pose and plane

parameters).

V. EXPERIMENTS AND RESULTS

We conducted a series of synthetic and real experiments

to systematically verify each of the various components of

our algorithm.

a) Initialization: The first experiment pitted the co-

ordinate normalization algorithm (Section IV-C) against a

standard SVD based solution. This experiment was aimed at

testing the accuracy and error resilience of the initialization.

Ten random planes with errors were projected on to two

random cameras, and resulting homographies were decom-

posed to obtain initial estimates. This was then passed to

both the algorithms to generate estimates of the perpendicular

distances. Figure 4 shows the resultant errors in estimates

of the perpendicular distances. The convex optimization

solution has a very low root mean square error as compared
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to the SVD based solution (Figure 4(a) is shown in log

space). Also, the convex optimization solution is much more

resilient to error than the SVD based solution.

b) Parameter Estimation: To test the parameter es-

timation process, a set of points on 3 random planes were

generated. Then, image points formed by 200 randomly gen-

erated cameras were perturbed with noise. The homographies

computed were then fed into an appropriately initialized

UKF tracker. The initialization of the plane parameters was

highly erroneous because of the noisy homography. Figure

5 illustrates the results of UKF based tracking of the plane

and pose parameters. As expected, the estimation of plane

parameters shows a sharp decrease over time, suggesting that

even with a large initialization error in a plane parameter

due to noisy homography, the other planes contribute to

a decrease in error by keeping the pose error, which in

turn “stabilizes” the value of the plane parameters. This

experiment verifies our claim that other planes contribute

to the overall robustness and stability of the system.

c) Real Data: Finally, three experiments on real data

were conducted to illustrate the application to pose esti-

mation and the robustness of the tracker to conditions like

change in perspective, change in illumination and occlusion.

Figure 2 shows pose estimation on a sequence shot along a

corridor. Features were mainly found on the corners of the

doors, and on the ceiling. Ground truth was generated with

manually marked correspondences. As can be seen, the pose

estimation is quite accurate.

The second and third experiments use 3 planes over

considerable changes in perspective to test the algorithm

(Figure 3, top two rows). The second experiment has large

changes in illumination, while the third experiment intro-

duces an occluding object in the video. In the second

experiment, our algorithm is able to correct homographies

wrongly estimated by the failing KLT tracker, which is then

re-initialized. In the third experiment, our algorithm is able

to estimate the homography of the third plane by using the

normal and pose estimates obtained from the previous frames

and the other planes respectively. In both cases, the simple

KLT tracker fails (Figure 3 bottom two rows).

VI. CONCLUSION

In this paper, we proposed a tracking framework that tracks

multiple planes robustly, by fusing the various homography

estimates using an Unscented Kalman Filter. The framework

has applications to the areas of Visual Servoing and visual

SLAM. In the future, we plan to investigate extensions

along this front, along with algorithms for real-time planar

segmentation. To conclude, we believe that our framework

has good potential for research and application to various

problems in robotics.
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