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Abstract— This paper addresses the problem of deploying a
group of networked robots on a non-planar surface embedded
in 3D space. Two distributed coverage control algorithms
are presented that both provide a solution to the problem
by discrete coverage of a graph. The first method computes
shortest paths and runs the Lloyd algorithm on the graph to
obtain a centroidal Voronoi tessellation. The second method
uses the Euclidean distance measure and locally exchanges mesh
cells between approximated Voronoi regions to reach an optimal
robot configuration. Both methods are compared and evaluated
in simulations and in experiments with five robots on a curved
surface.

I. INTRODUCTION

Many multi-robot applications require a robot team to be

distributed in an environment for efficient performance of

service or monitoring tasks. Usually, coverage algorithms

are studied in the context of simple 2D environments, in

which a group of networked robots deploys in the plane. A

great potential lies in methods that extend planar coverage

to coverage of sufaces embedded in 3D space. Distributed

coverage on non-planar surfaces is useful for a broad class

of real-world applications, such as multi-robot exploration

in rough terrain with slopes and varying traversability, or

collaborative inspection of industrial structures by a team of

climbing robots.

We address the distributed coverage of such non-planar

surfaces in this paper. The two proposed coverage control

algorithms both divide the surface by a centroidal Voronoi

tessellation (CVT) and distribute the robots in an optimal

placement on the surface in 3D space (see Figure 1). The

algorithms are executed directly on a graph and are dis-

cretized versions related to the Voronoi coverage method

introduced in [1]. This basic method has further been studied

in [2], [3], [4] for robotic coverage of two- and three-

dimensional convex space and more generally works in con-

vex environments of N dimensions. However, the coverage

of a surface embedded in 3D space is no straightforward

extension to higher dimensions and in fact presents a con-

strained optimization problem. The Voronoi region is part
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Fig. 1. Distributed coverage of a curved surface with hole. Five e-puck
robots run Algorithm 2 and cover the non-planar non-convex surface (left:
top view with surface mesh and Voronoi partition overlay, right: side view).

of the surface and its centroid must be constrained to the

surface. In [5], a constrained CVT is computed on non-planar

surfaces by projecting the centroids of the Voronoi regions

onto the surface in each iteration step. This approach assumes

knowledge of the analytical expression for the parametric

surface and is limited to simple standard geometries, though.

Voronoi coverage on a non-planar surface is related to the

problem of covering a planar non-convex environment. In

the latter case, the obstacles in the environment introduce

constraints and the non-convexity of the environment again

makes it hard to find general solutions for the Voronoi

coverage method (see [2], [6], [7], [8] for creative approaches

to the problem).

In this paper, we use a mesh to represent the environment

and the distributed coverage algorithms work on this graph

in the discrete domain. Coverage on a graph results in

approximated solutions but resolves problems that arise from

topological constraints (e.g. curved surfaces, obstacles in

non-convex environments), as a graph is an abstract rep-

resentation. Moreover, relying on graphs when developing

coverage control strategies allows us to benefit from findings

in graph theory and computer graphics.

In computer graphics, Voronoi tessellations are a widely

used concept in the context of 3D surface mesh generation.

3D surface meshes are most commonly triangle meshes,

which are either generated manually with a CAD tool or

automatically from 3D point clouds (see [9], [10] and ref-

erences therein). In terms of robotics, the meshes represent

maps of the environment and are either known a priori or
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retrieved by a robot online with a laser range finder for

example. A method for isotropic remeshing of triangulated

surfaces is proposed in [11]. The surfaces are parameterized

and mapped into a planar parameter space, in which the CVT

is calculated. This technique requires cutting of the mesh

before mapping if the mesh is closed or of genus > 0, which

presents a problem of its own and furthermore complicates

the application of the method on robots. In [12], mesh

partitioning based on geodesic centroidal tessellation is used

to segment the surface, whereas the CVT is approximated

and applied to coarsening of surface meshes in [13]. The

two methods from [12] and [13] offer interesting ideas for

robot coverage control. We adapted some elements from

these centralized methods to develop the two decentralized

coverage control algorithms of this paper.

Meshes or grid representations are also extensively used in

robotics. As a prominent example, occupancy grids present

a well-known model in robot mapping and exploration [14].

With respect to coverage control and Voronoi coverage in

particular, the work in [15] is the first that proposes Voronoi

coverage on a graph representing a discretized environment.

We have independently followed a similar approach using

the discretization of Voronoi partitioning in our algorithms.

However, we target a different problem of covering non-

planar surfaces. Moreover, we verify our approach with a

group of robots in physical experiments.

The paper is organized as follows. The problem of gen-

erating Voronoi partitions on a surface mesh is formulated

in Section II. Two different coverage control algorithms

that both lead to coverage of surfaces in 3D space are

described in Section III. Simulations on surface meshes with

varying complexity and number of robots demonstrate the

functionality of the two algorithms in Section IV. Then,

Section V presents results from experiments on a curved

surface with a real robot team. Finally, conclusions are given

in Section VI.

II. PROBLEM FORMULATION

A group of n networked robots must be distributed on a

non-planar surface, i.e. a 2D manifold embedded in R
3. Let

P = [pi]
n
i=1 ∈ R

3n be the positions of the robots in the

continuous domain, P∗ = [p∗
i]

n

i=1 ∈ R
3n the constrained

positions of the robots on a graph embedded in R
3 and

P ∗ = {p∗1, ..., p
∗
n} the set of robots’ position nodes on the

graph. The surface is approximated by a polygon mesh and

represented by an undirected graph G = (Q,E) with node

set Q and edge set E = Q × Q.

Voronoi coverage from [1] works in the continuous domain

and optimizes the robot configuration by minimizing

Hcon(P) =
n

∑

i=1

Hconi
(pi) =

n
∑

i=1

∫

Vi

D(pi, x)2 φ(x) dx ,

(1)

which results in a CVT, i.e. the generators for the Voronoi

tessellation are themselves the centroids of the Voronoi

regions Vi. The distance measure D(·) depends on the metric

used (e.g. Euclidean distance). The CVT can be computed

in a fixed point iteration by the Lloyd algorithm [16].

Next we formulate the CVT for the discrete case, making

use of its equivalent in graph theory, the graph Voronoi dia-

gram [17]. Q is divided according to the Voronoi partitions

V ∗
1i

=
{

q ∈ Q | D(q, p∗i ) < D(q, p∗j ), ∀ j 6= i
}

of the graph

G, where j ∈ {1, ..., n} and D(u, w) a distance measure;

here the shortest path d(u, w) between two nodes u and w
on the graph is used. Nodes q with equal distance from two

generators are assigned to a partition according to the priority

given to the robots.

Each Voronoi region can alternatively be defined by a

union of several mesh cells Ck, or respectively the set

of nodes of G′ = (Q′, E′), the dual graph of G, which

represents the cells of the polygon mesh. This leads to

V ∗
2i

= {q′ ∈ Q′ | C =
⋃

Ck(q′)} , where q′ 7→ Ck(q′) and

the set C approximates the continuous Voronoi region Vi.

Both formulations of Voronoi regions result in an approx-

imation due to discretization. Resolution and accuracy are

given by the cell size and misadjustments of the mesh may

result in suboptimal performance of the overall approach.

The cost from Equation (1) is discretized to

Hdis(P
∗) =

n
∑

i=1

Hdisi
(p∗i ) =

n
∑

i=1

∑

v∈V ∗

i

D(p∗i , v)2 φ(v) .

(2)

The CVT is then obtained by running the Lloyd algorithm

directly on the graph. For v ∈ V ∗
i = V ∗

1i
the nodes q of graph

G, D(p∗i , v) = d(p∗i , q) the shortest path and φ(q) the weight

of the nodes, each generator converges to an intrinsic center

of mass

γV ∗

1i
= argmin

p∗

i
∈V ∗

1i

Hdisi
(p∗i ) (3)

contained in the graph, which is a minimizer of the single

cost Hdisi
(p∗i ) in (2) (see [12] for the continuous version).

An alternative approach for CVT computation, different

from methods relying on the Lloyd algorithm, is described

in [13]. This approach approximates the CVT by iteratively

minimizing the cost function (2) using local boundary tests

on the mesh cells only. In this case, v ∈ V ∗
i = V ∗

2i
are

nodes q′ of the dual graph G′, D(p∗i , v) = ‖ck − p∗
i ‖

is the Euclidean distance with ck ∈ R
3 the centroid and

φ(ck) the density of a cell Ck(q′). In order to minimize

the cost in (2) and guarantee convergence to a CVT, the

generators must be placed in the centroids of the Voronoi

regions. We compute the centroids of each partition V ∗
2i

as

γV ∗

2i
=

∑

q′∈V ∗

2i

ck φ(ck)/
∑

q′∈V ∗

2i

φ(ck) and substitute the

generators p∗i in (2) by these centroids γV ∗

2i
. In accordance

with [13] we get

Hdis approx =

n
∑

i=1

∑

q′∈V ∗

2i

‖ck − γV ∗

2i
‖
2

φ(ck) . (4)

As consequence, the cost function Hdis approx depends no

more on the generators p∗i and can simply be minimized by

a local cell exchange between neighboring Voronoi regions.
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For each mesh cell CA in a Voronoi region V ∗
2A

that lies at a

boundary to a cell CB of a neighboring Voronoi region V ∗
2B

a local test is executed. The change in the cost function (4) is

calculated for the case that: 1) CA is added to V ∗
2B

, 2) CB is

added to V ∗
2A

or 3) no cell is exchanged across the boundary.

The case resulting in the highest reduction of cost is selected

and the Voronoi regions are updated accordingly. If a mesh

cell at the boundary of a Voronoi region V ∗
2C

has not yet been

assigned to any other Voronoi region, i.e. the cell is free,

it is incorporated directly into V ∗
2C

without any calculation

of cost. This way, the Voronoi regions grow into areas of

unassigned mesh cells to partition the free surface, while the

ongoing exchange of cells with other Voronoi regions helps

to minimize the overall cost in (4).

Remark 1: In this paper, we use a homogeneous triangle

mesh but other types of polygon meshes could be applied

without loss of generality (e.g. a grid map as in [15]).

Remark 2: By exchanging triangle cells for minimization,

the Voronoi regions of the final partition become equal

in size. However, equitable partitioning does not result by

nature when using the Lloyd algorithm. We do not make

use of edge weights here. Edge weights different from unity

offer a possibility to control the size and shape of the Voronoi

regions.

III. TWO DISTRIBUTED ALGORITHMS FOR COVERAGE

CONTROL ON NON-PLANAR SURFACES

We assume here that the triangle mesh has been generated

in advance and is available as input to the algorithms.

However, we will investigate the problem under two variable

assumptions: the robots operate in synchronous or asyn-

chronous mode and the environment may be known or

unknown. Asynchronous mode (as opposed to synchronous

mode) means that the robots do not wait for the other

robots in order to calculate the Voronoi regions and regions’

centroids. If the environment is known, the robots will

directly know all the nodes in the surface mesh (given by

graph G). In an unknown environment, the robots are able

to sense the surface and discover mesh nodes within a sensor

range of Rs as they move. The detected nodes are added to

the already discovered subgraph Gi ⊂ G. The robots can

further communicate and exchange information among each

other within a communication range of Rc. If two robots

are within Rc and share at least one common node, i.e. their

subgraphs Gi and Gj are connected, the nodes are exchanged

and the subgraphs merged (Gi ∪ Gj).

A. Front propagation algorithm

The first coverage control algorithm minimizes the cost

function (2) by computing the Lloyd algorithm in decen-

tralized fashion. The graph Voronoi regions are obtained

from shortest path calculation based on the propagation of a

discrete wave front on the graph. For the propagations a label

correcting method based on the Dijkstra algorithm after [18]

is used. Each robot i can either be in a COMPUTE or a MOVE

state. When a robot has reached its current goal node, it

enters the COMPUTE state and calculates the next goal node

Algorithm 1 FRONT PROPAGATION

Require: Set of robots i ∈ {1, ..., n} with initial positions

p∗
i0

on the surface, and each robot i provided with:

- surface mesh represented by graph G (known env.)

or subgraph Gi (unknown env.)

- localization, sensing and communication with neigh-

bor robots (synchronous or asynchronous mode)

1: loop

2: if (state == COMPUTE) then

3: Request neighbor positions p∗
j = p∗

jNEW
, j 6= i

4: Compute Voronoi region V ∗
1i

(Dijkstra algorithm)

5: Calculate p∗iNEW
(= first node toward γV ∗

1i
)

6: Update state

7: else {state == MOVE}
8: Move to p∗

iNEW
and update p∗i

9: Update state

10: end if

11: end loop

p∗iNEW
. Then the robot switches to the MOVE state and drives

from p∗
i to p∗

iNEW
while updating its position in the graph

(see Algorithm 1).

During runtime the robots keep track of the nodes in the

graph using following data structures: a priority queue with

a sorted candidate list LF of the nodes at the propagating

wave front, a distance map M(q) with the shortest paths

from each node to the closest robot and an identity set I(q)
with the identity of that closest robot.

In the COMPUTE state the robot detects the positions p∗j of

the neighboring robots constrained to the graph and executes

one iteration of the Lloyd algorithm. Robot i initiates a front

propagation that proceeds until the wave front reaches a

neighbor robot (M(q) and I(q) are generated). At that point

the propagation is paused and a back propagation starts on

the visited nodes. The back propagation terminates when the

nodes at the front are going to be closer to robot i than to

its neighbor again (checking against M(q)). All the nodes

which are closer to the neighbor robot are then reassigned to

the neighbor robot (correcting the labels in the identity set

I(q)). After the back propagation ends, the front propagation

continues until the next neighbor of robot i is reached (where

another back propagation starts), or the algorithm terminates

as the priority queue LF is empty (M(q) for all nodes in the

graph has been calculated) or an abort criterion is reached.

Our abort criterion is based on the technique introduced

in [1], where the circle around robot i is iteratively enlarged

to the minimum size that enables to compute the Voronoi

region completely. In the discrete domain, the abort criterion

is M(l) ≥ 2 max(q∈Q|I(q)=I(p∗

i
))d(p∗i , q), ∀l ∈ LF .

In the second step of the Lloyd algorithm, the new goal

node p∗iNEW
is determined from the one-ring neighborhood

of p∗i . The selection of p∗iNEW
as the node the robot

encounters first on the shortest path to γV ∗

1i
is motivated

by 1) following a gradient descent procedure to minimize

the cost function similar to the continuous case (see [2])
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and 2) lowering the computational effort by avoiding the

calculation of the intrinsic center of mass γV ∗

1i
of the

Voronoi region V ∗
1i

itself. The new target position p∗iNEW

is the neighboring node ni(p
∗
i ) of p∗i which maximizes

∑

(q∈V ∗

1i
|ni(p∗

i
)∈Sq) M(q), where Sq is the sequence of nodes

in the shortest path from p∗i to q. Permanent decrease in the

local cost Hdisi
(p∗i ) through transitions from p∗i to p∗iNEW

=
ni(p

∗
i ) is assured by requiring Hdisi

(p∗iNEW
) < Hdisi

(p∗i ).

B. Local cell exchange algorithm

Our second coverage control algorithm is based on the Eu-

clidean distance metric and minimizes the cost function (2)

through local optimization steps on the mesh cells at the

boundary of the Voronoi regions. The underlying structure

of the algorithm, as shown in Algorithm 2, is similar to

the one of the first algorithm. The robots are either in a

COMPUTE or a MOVE state. In the COMPUTE state, robot i
updates its Voronoi region V ∗

2i
by exchanging boundary cells

with adjacent Voronoi regions, and calculates the centroid

γV ∗

2i
. The robot then approaches this goal point during the

MOVE state, moving along the cell centroids ck on the dual

graph G′. G′ is constructed from graph G. Each robot i stores

information about the mesh cells of its Voronoi region, such

as the set of boundary edges and the identity of the adjacent

mesh cells outside the own Voronoi region, in memory.

First all those boundary cells adjacent to free mesh cells

are updated. Robot i synchronizes its boundaries by request-

ing the identities of the boundary cells of the neighboring

robots. If the free mesh cells have not been occupied by

another robot since the last COMPUTE state, the cells are

added to V ∗
2i

and its boundary is adjusted appropriately.

The cells that belong to a neighbor robot and adjoin V ∗
2i

undergo the procedure of local cell exchange (see Section II).

The local cell assignment that results in minimum cost is

determined. In case a Voronoi region is split in two segments

due to the cell exchange, the respective mesh cell will not

be exchanged. Thus convergence of the algorithm is not

affected; the cost is not minimized but remains unchanged.

Robot i updates the information about the mesh cells ac-

cording to the assignment and communicates these changes

to the other robots. Hence robot i requests data to perform the

local optimization and sends the result back to each neighbor.

While this bidirectional communication takes place, both

robots are not allowed to answer another request.

Remark 3: The real robots move in the continuous

domain. Our environment representation is a graph

embedded in the surface, i.e. each node q relates to a

point in R
3. Positions P are projected to positions P∗ and

mapped to nodes P ∗ on the graph. In Algorithm 1, the

robots’ positions are represented by the next goal nodes

p∗i = p∗iNEW
during the MOVE state to enable calculations

in the discrete domain. Algorithm 2 uses the Euclidean

distance measure, i.e. the centroids γV ∗

2i
may fall out of the

surface and need to be constrained on a triangle centroid

ck. The closest centroid in V ∗
2i

is chosen as the new goal

point, p∗
iNEW

= argmin(ck|q′∈V ∗

2i
) ‖ ck − γV ∗

2i
‖.

Algorithm 2 LOCAL CELL EXCHANGE

Require: Set of robots i ∈ {1, ..., n} with initial positions

p∗
i0

on the surface, and each robot i provided with:

- surface mesh represented by graph G (known env.)

or subgraph Gi (unknown env.)

- localization, sensing and communication with neigh-

bor robots (synchronous or asynchronous mode)

1: loop

2: if (state == COMPUTE) then

3: Assign free cells to Voronoi region V ∗
2i

4: Compute cell assignments (local cell exchange)

5: Calculate p∗
iNEW

(= γV ∗

2i
constrained on G′)

6: Update state

7: else {state == MOVE}
8: Move to p∗

iNEW
and update p∗i

9: Update state

10: end if

11: end loop

C. Convergence of algorithms

In the following, graph G for Algorithm 1 and its dual

graph G′ for Algorithm 2 are assumed to be finite. We

prove convergence of the algorithms in the case of known

environments. The proofs for unknown environments are

omitted due to limited space. They are extensions relying on

the fact that the subgraphs Gi, or G′
i respectively, covered

by robots at nodes P ∗ only change for a finite number of

times given finite graphs. Convergence then results from the

concatenation of sequences, in which the subgraphs remain

unchanged.

Proposition 1 (Convergence of Algorithm 1): A group of

robots covers a graph G and converges to a local minimum

configuration of the cost in (2), i.e. each robot becomes a

minimizer of (3), by performing Algorithm 1.

Proof: D(p∗i , q) = d(p∗i , q) is strictly increasing on

Sq, the sequence of nodes given by the shortest path from

p∗i to q. Therefore the Voronoi partition V ∗
1 for any fixed

robot configuration {p∗1, ..., p
∗
n} minimizes Hdis(P

∗), i.e.

Hdis(P
∗, V ∗

1 (P ∗)) ≤ Hdis(P
∗,W ) and W any partition.

Let T (P ∗) be the mapping from nodes P ∗ to goal nodes

P ∗
NEW , the set of neighboring nodes ni(p

∗
i ) on the shortest

paths to γV ∗

1i
, i ∈ {1, ..., n}. In synchronous mode we have

T : {p∗1, ..., p
∗
i , ..., p

∗
n} −→ {p∗1NEW

, ..., p∗iNEW
, ..., p∗nNEW

},

and in asynchronous mode T : {p∗1, ..., p
∗
i , ..., p

∗
n} −→

{p∗1, ..., p
∗
iNEW

, ..., p∗n}. The mapping T has the property

Hdis(T (P ∗),W ) ≤ Hdis(P
∗,W ), which is guaranteed

by Algorithm 1 that requires Hdisi
(p∗iNEW

) < Hdisi
(p∗i )

for each robot. Inequality Hdis(T (P ∗), V ∗
1 (T (P ∗))) ≤

Hdis(T (P ∗), V ∗
1 (P ∗)) follows directly from the optimality

of a Voronoi tessellation for a fixed set of points. Since

the property of T holds for an arbitrary tessellation W , we

finally get with W = V ∗
1 (P ∗): Hdis(T (P ∗), V ∗

1 (T (P ∗))) ≤
Hdis(T (P ∗), V ∗

1 (P ∗)) ≤ Hdis(P
∗, V ∗

1 (P ∗)), and thus the

cost is minimized in each iteration step of Algorithm 1.
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time =0.45s

Fig. 2. Simulation on the “Beetle” 3D model. A group of five point robots covers the surface of the car using Algorithm 1 (top row) and Algorithm 2
(bottom row). Both algorithms result in full coverage of the surface mesh.

Proposition 2 (Convergence of Algorithm 2): Given the

connectivity of single Voronoi regions, a group of robots

covers a graph G′ and converges to a local minimum

configuration of the cost in (4) by performing Algorithm 2.

Proof: The Voronoi regions V ∗
2i

grow to cover the

free nodes of graph G′. Until full coverage of the graph

is reached, Hdis approx(P ∗) increases constantly. An upper

bound in the cost is given by the size of G′; otherwise

no increase of the cost is induced. In order to maintain

the connectivity of Voronoi regions, cells may not be ex-

changed, i.e. further minimization is suppressed but the cost

is not increased either. Hdis approx(P ∗) is positive and the

exchanges of mesh cells across the boundaries of V ∗
2i

reduce

the cost locally in each iteration step (in synchronous as well

as asynchronous mode). A point is reached, where no cells

can be exchanged to further decrease the cost. From this

it follows that Algorithm 2 converges to a configuration of

local minimum cost.

IV. SIMULATIONS ON 3D SURFACE MESHES

We use Matlab as simulation environment. The two pro-

posed algorithms are implemented in C++ and integrated in

Matlab via *.mex files. For initialization and visualization of

the mesh, toolboxes from [12] are used 1 .

The two coverage control algorithms are simulated for

two environments of different complexity. Figure 3 shows

the first environment, a simple curved surface. A test setup

was additionally built for the curved surface to realize

experiments with real robots (see Section V). The second

environment is a more complex 3D model, the “Beetle”

model from computer graphics 1.

Figure 2 illustrates how a group of five point robots covers

the surface of the car on a triangle mesh with edge lengths of

100 mm. The simulation results of Figure 2 were achieved

with a sensor range Rs of roughly a 1/3 of the car length and

all robots connected (infinite Rc) under asynchronous mode

and for unknown environment. Besides, simulations for all

four combinations of assumptions and with varying initial

1The reader refers to www.ceremade.dauphine.fr/∼peyre

positions were run and succeeded in covering the surface.

The simulation for the “Beetle” 3D model demonstrates the

basic functionality of our approach to cover arbitrary surfaces

in 3D space.

The behavior of the two algorithms is further analyzed

for an increasing number of robots. 20 simulation runs were

executed per group, with groups of 5, 10 and 20 robots,

on a 50 mm mesh of the curved surface, in synchronous

mode and known environment. The initial configuration of

the robots on the mesh was selected at random for each run

and thus the simulations converged to different local minima.

The graphs with the plots of all 20 simulations (black lines)

with their final values (blue squares) are visualized for the

group with 10 robots for both algorithms in Figure 4. The

average convergence time is 6.5 s for Algorithm 1 and

24.8 s for Algorithm 2 (red dashed line) and the average

final cost (blue dashed line) for Algorithm 1 is 18.8 % and

for Algorithm 2 6.5 % above the best possible final cost

(black dashed line). The best possible final cost approximates

the global minimum of Hdis and is computed as an upper

bound by the Lagrangean relaxation heuristics according

to [19]. The best possible cost at final configuration decreases

due to the summation over smaller and smaller distances

with increasing number of robots (for 5 robots: 2.23 · 107,

10 robots: 1.45 · 107, 20 robots: 0.52 · 107). On the other

hand, we found that the average deviation in cost increases

approximately linear in the number of robots. A reason for

this effect is the increasing robot density on the graph, which

causes the robots to block each other when badly initialized.

Fig. 3. Test environment: triangle mesh and real setup of curved surface.
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Fig. 4. Simulation on the curved surface. A group of ten robots covers the surface mesh. The best final configurations and the cost from 20 simulation
runs are shown for (a) Algorithm 1 and (b) Algorithm 2. The best possible cost, average final cost and average convergence time are added in the plots.

Remark 4: As the cost in (4) is approximated and the

Voronoi regions grow during execution of Algorithm 2,

the developing of the cost functions of Algorithm 1 and

Algorithm 2 cannot be compared directly. Therefore the cost

of Algorithm 2 is recalculated for evaluation purposes based

on the latest robot positions in each time step by using

Equation (2) as applied in Algorithm 1.

V. EXPERIMENTS ON REAL SURFACE

The test environment in Figure 3 is built from plywood and

a thin carbon steel sheet covered with a flexible magnet is

laid on top of the wooden frame. The base area measures

1.2 x 1.2 m2. Five e-puck robots [20] are used for the

experiments. They come with a bluetooth module, a Li-

ion battery and two differentially-driven wheels, and have

additionally been equipped with markers on the top for

tracking and small magnets at the bottom for climbing

ferromagnetic surfaces. We kept the kinematic model of the

robots simple: the e-pucks rotate until their front direction is

near to parallel to the goal direction (within ± 5◦) and then

drive straight to the goal.

The e-pucks receive the commands via bluetooth. An

overhead camera (sampling rate of 0.5 - 1 Hz, resolution

of 1280 x 1024 pixels, maximum distance to surface of

1 m) captures the frames and passes them on to the base

station and further to Matlab. The image is read in the

ARToolkit [21], which extracts the markers and delivers the

position and orientation of each robot (the final position

accuracy was evaluated to be a ball of radius 3 cm around

the robots’ centers). Depending on the state of the robot,

the next goal position is calculated by Algorithm 1 or

Algorithm 2 (COMPUTE state), or the new control inputs are

sent via bluetooth to the e-pucks (MOVE state), which closes

the control loop. The memory as well as the data transfer

between the robots are simulated in Matlab. However, all

the calculations are executed decentralized and the robots

form a distributed system.

The performance of Algorithm 1 and Algorithm 2 was an-

alyzed with the five robots and the mesh from Figure 3 with

edge lengths of 50 mm, 100 mm and 200 mm. The 200 mm

mesh is too coarse for Algorithm 1 and the robots get stuck

very easily in a suboptimal local minimum. Algorithm 2

is more robust against the size of the mesh cells and also

works for 200 mm meshes. Basically, coarser meshes have

the advantage of faster convergence as the number of nodes

and mesh cells, and thus the computational cost, are greatly

reduced. Additionally, the robots move over longer distances

until they reach a next COMPUTE state, where they rotate

before driving straight again. The reduction in rotations saves

additional time. Convergence time grows by a factor of 1.5 at

each transition from the 200 mm mesh to the 100 mm mesh

and the 100 mm mesh to the 50 mm mesh. In conclusion,

the 100 mm mesh showed fast convergence to a good final

tessellation in simulation as well as in experiments. The

number of nodes is ideally as low as possible, but without

losing details of the structure due to low mesh resolution.

In general, the robots converge faster to the final

configuration for experiments in asynchronous mode than

in synchronous mode. As expected, the robots do not have

to wait for the other robots when computing their next

goal positions, which speeds up the distribution. The time

difference is more distinct for Algorithm 2 since the robots

can drive along several triangle centroids until they reach

their goal point, i.e. a sequence in the MOVE state may take

longer than in Algorithm 1. This results in longer waiting

times in the synchronous mode.

In total over 50 experiments were run for each of the two

algorithms on the test environment in Figure 3. Thereof 25

experimental runs were performed in asynchronous mode

and for unknown environment, which are the settings that

may be most desirable in a real application. A triangle

mesh with triangle edges of 100 mm was used. The sensor

range Rs was set to 0.5 m and the communication range

Rc was kept infinite. A sequence from an experimental

run is shown in Figure 6 for both of the algorithms. The

video accompanying this paper 2 offers further illustration

of the coverage of curved surfaces. The five robots’ initial

configuration was chosen as shown in the top of Figure 6(a)

and 6(b).

Over the 25 experimental runs, Algorithm 1 results in an

average convergence time of 137 s with a standard deviation

of 28.6 s (see Figure 7(a) on the right). Algorithm 2 needs

longer to converge than Algorithm 1 and evaluations in

Figure 7(b) show an average convergence time of 303 s with

standard deviation of 55.8 s. The lower convergence rate

2The reader also refers to www.asl.ethz.ch
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Fig. 5. Suboptimal distribution of robots on the curved surface with hole.
Under Algorithm 1 the five e-pucks get stuck in a suboptimal local minimum
when starting from the initial configuration depicted in Figure 1 (left: top
view with surface mesh and Voronoi partition overlay, right: side view).

is in accordance with the simulation results and is caused

by “zig-zag movement” and “cell growing” of Algorithm 2.

The robots move from triangle centroid to triangle centroid

on straight lines. These trajectories describe a zig-zag path

and the robots rotate more often than for Algorithm 1. In

addition, the Voronoi regions are growing cell by cell and

thus are created slower than with Algorithm 1.

Algorithm 1 mostly converges to the same final config-

uration over 25 experimental runs in asynchronous mode

and unknown environment (see Figure 7(a) on the left). The

final configuration of Algorithm 1 strongly depends on the

initial configuration. Experiments with Algorithm 2 show

that the robots distribute into different final configurations

(see Figure 7(b) on the left). The order, in which the

boundaries of the Voronoi regions are updated, influences the

cell assignments and the Voronoi regions evolve differently

from run to run. Thereby Algorithm 2 reaches slightly lower

values in cost compared to Algorithm 1. The average cost of

the final configuration for Algorithm 2 lies 10.4 % above the

best possible cost, whereas the average cost of Algorithm 1 is

12.8 % above. Besides, the final cost of Algorithm 2 varies in

a bigger range since different minima of the cost are reached

in the final configurations.

For our last experiment, we modified the test environment

by removing the middle part from the test setup to add a

hole obstacle to the curved surface. Coverage control now

must deal with an additional non-convexity. The resulting

coverage is shown in Figure 1 for Algorithm 2 and Figure 5

for Algorithm 1 on a 100 mm mesh in asynchronous mode

and unknown environment. While Algorithm 2 generates

well-balanced partitions, Algorithm 1 converges to a local

minimum with suboptimal distribution of the robots on

the surface (see Figure 5). A reason for the suboptimal

coverage is the strong dependence of Algorithm 1 on the

initial configuration and the unfavorable start positions in

this particular case (all the robots are lined up one after the

other on the narrow branch). Tests with the 50 mm mesh

showed that the use of a denser mesh improves the final

partitions, however enhanced methods on the side of the

algorithms, such as equitable partitioning through different

edge weights, must be investigated.

VI. CONCLUSIONS

We have introduced an approach to deploy a group of

robots on a non-planar surface in 3D space in this paper.

Two coverage control algorithms have been presented that

achieve discrete Voronoi coverage on a surface mesh. The

front propagation algorithm uses label correcting methods

and the Lloyd algorithm to directly cover the graph. The local

cell exchange algorithm approximates the Voronoi regions

by mesh cells and locally reassigns cells to adjacent regions

to minimize the cost of the overall Voronoi configuration.

Both algorithms have been tested thoroughly. Simulations

on a complex 3D model and with varying number of robots

verified the functionality of the algorithms. Experiments

with a group of five e-puck robots were conducted on

a test setup with curved surface and showed convergence

to good final configurations. The analysis further revealed

some complementary trends in the characteristics of the two

coverage control algorithms: the convergence rate is higher

for Algorithm 1 than Algorithm 2, Algorithm 1 is more

likely to converge to a suboptimal local minimum and the

cost of the final configuration remains above the cost of

Algorithm 2, the initial configuration influences the perfor-

mance of Algorithm 1 more than for Algorithm 2 as observed

from tests on the curved surface with hole, the deterioration

of partitions due to defects or constraints in the mesh is

generally lower for Algorithm 1 compared to Algorithm 2,

and the requirements for computation and communication

among the robots differ for the two algorithms.

In our future work, we are going to extend the

algorithms to account for varying curvature and to adapt

the final tessellation to edges and obstacles on the surface.

Future approaches could also search for improvements

by combining elements of the two algorithms. A further

direction in our reseach is to embed the algorithms on

robots with higher climbing mobility and robot-to-robot

communication, also taking uncertainties into account.

Eventually, as both control algorithms are based on surface

meshes, we will investigate ways to generate 3D meshes

from the environment directly on the robots.
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