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Abstract— Predictability is an important factor for determin-
ing robot motions. This paper presents a model to generate
robot motions based on reliable predictability evaluated through
a dynamics learning model which self-organizes object features.
The model is composed of a dynamics learning module, namely
Recurrent Neural Network with Parametric Bias (RNNPB),
and a hierarchical neural network as a feature extraction
module. The model inputs raw object images and robot motions.
Through bi-directional training of the two models, object
features which describe the object motion are self-organized in
the output of the hierarchical neural network, which is linked
to the input of RNNPB. After training, the model searches
for the robot motion with high reliable predictability of object
motion. Experiments were performed with the robot’s pushing
motion with a variety of objects to generate sliding, falling over,
bouncing, and rolling motions. For objects with single motion
possibility, the robot tended to generate motions that induce
the object motion. For objects with two motion possibilities,
the robot evenly generated motions that induce the two object
motions.

I. INTRODUCTION

Recently, researches on creating intelligent robots based

on KUKANCHI is being actively pursued. KUKANCHI

is a Japanese term that represents intelligent space

(KUKAN:space, CHI:intelligent) designed for humans and

robots to interact. Two main approaches exist for creating

robot behaviors [1]. The first is to embed behavior informa-

tion into the environment for robots to acquire. This approach

is often introduced in well-defined environments. Robots

would recover embedded information for generating their

behaviors. In unknown environments, however, behavior

information are required to be obtained from the natural

environment, as such information cannot be embedded be-

forehand. The second approach is to extract behavior infor-

mation from the natural environment. This approach is based

on human perception, affordance theory [2] in particular,

to create robot’s perception/behavior system. Our method

adopts the second approach, using active sensing [3] with

the environment to develop the robot’s perception/behavior

mechanism.

Application of active sensing for motion generation have

been conducted, aiming functionalization of affordance. Fitz-

patrick, et al. applied active sensing for learning the rela-

tion between robot motion and resulting object motion [4].
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Stoytchev focused on tool affordance to relate the relation

between robot, object, and tool [5]. Uǧur, et al. evaluated

traversability for determining navigation motions of robots

[6]. Although these works have shown highly effective

results, they contain two issues.

1) Predefinition of object features.

2) Predesign of robot motions.

Therefore, these methods were mostly focused on selecting

appropriate robot behaviors to move a target object to a

desired position. Our research focuses on resolving these two

issues based on the following approaches.

1) Self-organization of object features based on robot’s

active sensing experiences.

2) Generation of robot motion based on predictability of

target object motions.

The contribution of our work is that our model can deal with

larger variety of objects and object motions (slide, roll, fall

over, and bounce).

In our previous studies, we presented methods for solving

each of the two issues. For the first issue, we proposed

a bidirectional training method for self-organizing object

features [7]. The result has shown that object features rep-

resenting object motions have been self-organized by the

robot’s experience. For the second issue, we formulated

reliable predictability for generating rolling motions with

cylindrical objects [8]. Predictability is said to be one of the

important factors for humans to decide their behaviors [9].

The model is created using neural networks for the following

reasons.

1) Bidirectional training method requires mutual training

of the feature extraction module and dynamics learning

module

2) Generalization capability to adapt to unknown environ-

ment from few training data

The method requires compatibility between the feature ex-

traction module and dynamics learning module. As neural

networks possess both functionalities, we utilize neural net-

works to create our model.

In this paper, we present our work combining the two

works applying the model to general tabletop objects. The

method is comprised of three phases. In the first phase, the

robot acquires training data by using its motion with various

objects. In the second phase, we train our model composed of

a dynamics learning module and a feature extraction module

using the acquired data through bi-directional training. In

the third phase, the robot searches through the trained model

based on the predictability of object motion, to generate it’s
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motion. The results of the experiment show that the method

tends to generate robot motions that induce affordable (pos-

sible) object motions.

The rest of the paper is composed as follows. Section II

describes the overview of the technique. Section III describes

the setup of the experiment. In Section IV, we present the

results of the experiment. In Section V, we discuss the results

of the experiment. Conclusions and future work are presented

in Section VI.

II. OVERVIEW OF TECHNIQUE

In this section, we describe the overview of the technique.

The training model is composed of a dynamics learning

module and a feature extraction module. Recurrent Neural

Network with Parametric Bias (RNNPB) [10] is used for

the dynamics learning module to self-organize robot/object

motions. A hierarchical neural network is linked to RNNPB

as a feature extraction module. It inputs raw object images

while outputting object features. The construction of the

model is shown in Fig. 1.

The whole model is trained through bi-directional training

of the two modules to self-organize object features. After

training, the model searches for the robot motion with high

reliable predictability. In the following subsections, we first

describe the RNNPB model. Then the bi-directional training

method is introduced. Finally, the robot motion searching

method is described.

A. RNNPB

RNNPB, shown in the upper half of Fig. 1, is a predictor

which inputs the current state S(t) to calculate the next

state S(t + 1) as the output. It possesses Parametric Bias

(PB) nodes connected to the Jordan-type RNN [11], which

is used to learn multiple sequential data in a single model.

The values of the PB nodes (PB values) in RNNPB are

altered to generate different sequences, while conventional

RNN can calculate a unique output sequence from the input

and context value. In this RNNPB model, the input/output

nodes are divided and assigned into nodes that input/output

robot motor values and object feature values.

Input S(t)

Output S(t+1)
X(t+1)

Context Loop X(t)
Parametric
Bias (PB)

ObjectRobot

(Next State)

(Current State)

Raw Image Input

Robot

Object

RNNPB

Hierarchical
Neural Network

Fig. 1. Construction of the Model

As is the Jordan-type RNN, RNNPB is also a supervised

learning system which requires teacher signals. In this paper,

we apply the Back Propagation Through Time (BPTT) algo-

rithm [12] for training RNNPB. During training, the back-

propagated errors of the weights are accumulated along the

sequence to update the PB values. Denoting the step length

of a sequence as T , the update equations for PB during the

training phase are

∆ρ = ε ·

T∑

t=1

δ
bp
t

p = sigmoid(ρ). (2)

First, the delta force ∆ρ for updating the internal values

of PB p is calculated by (1). The delta error δ
bp
t in (1)

is calculated by back propagating the output errors from

the output nodes to the PB nodes. The new PB value p

is calculated by (2) applying the sigmoid function to the

internal value ρ which is updated using the delta force. ε is

a learning constant.

Training of RNNPB self-organizes the PB space based on

the trained sequences. By training RNNPB, each trained se-

quence is encoded into PB values according to the similarity

of the sequences. These PB values form the PB space by

creating clusters of similar sequences. The sequences could

be reconstructed from the PB values by recursively inputting

the output S(t+1) back into the input S(t). This process is

called Closed Loop Calculation, which calculates the whole

sequence from an initial state S(0), initial context X(0), and

a PB value.

B. Bi-directional Training

Training of the model requires a bi-directional method

using teacher signals from each other module. The original

bi-directional training method was proposed by Buessler and

Urban [13]. Their idea was to develop a training algorithm

for a model decomposed into two models, linked in a sequen-

tial composition. This decomposition is often conducted to

reduce the dimensionalities of the modules.

Supervised training of a sequential composition of two

modules is a difficult task as it requires intermediate variables

that are not defined in the response model. Figure 2 shows

an example of such model. The model cannot be trained

straightforward as the training signal for the intermediate

variable, ẑ1, is not given. To solve this, Buessler and Urban

introduced an inverted model of R2, R2inv , as shown in Fig.

3. In this model, the intermediate variable ẑ1 acts as a teacher

signal for R2inv , and the output of R2inv , ẑ2 can be used as

the teacher signal for R1.

We apply this training architecture to our model. A sim-

plified diagram of Fig. 1 is shown in Fig. 4. In Fig. 4, the

intermediate variable, ẑR1,k, represents the object features

that describe object motions. A major difference between our

model and Buessler and Urban’s model, is that the inverted

model cannot be introduced, since teacher signals for both

R1 and R2 are not given.
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Fig. 3. Bi-directional Exten-
sional Training Model Proposed
by Buessler and Urban
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Fig. 4. Simplified Construction of Training Model

A characteristic of our model is that the output of R1 for

step k+1, input of R2 for step k+1, and output of R2 for step

k are composed of the same variant ẑ (they all represent the

object features for step k+1). Considering this characteristic,

we use the output of R1 for step k + 1 (ẑR1,k+1) as teacher

signal for training R2 for step k, and the output of R2 for

step k(ẑR2,k) as teacher signal for training R1 for step k+1.

This process would be done recursively from the last step to

the initial. The training model is shown in Fig. 5. The whole

model is trained using the teacher signals from the output of

each other module.

C. Searching for Motion with High Reliable Predictability

For motion searching, we apply the method presented in

[8]. The method searches through the PB space based on an

evaluation function,

E(p) =
δO2

δp
, (3)

where O is the object motion calculated by Closed Loop

Calculation and p is the PB value. This equation evaluates

the fluctuation of object dynamics relative to change of PB
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Fig. 5. Bi-directional Training Model for Our System

(representing change of robot motion). Therefore, minimiz-

ing (3) would provide the PB value that generates robot

motion with high reliable predictability.

The steepest descent method is used to calculate the local

minimum of (3), which represents the robot motion with high

reliable predictability. Discretizing (3), a similar equation can

be derived as

E =
1

µ

∑

i,j,t

(O(p1, p2, t) − O(p1 + iµ, p2 + jµ, t))2

(i, j = −1, 0, 1) (i · j = 0), (4)

where t is the step number in the sequence, O(p1, p2, t) is the

object sequence calculated from the PB value (p1, p2) and

t, and µ is the discretization width. Equation (4) is written

for the case of two PB nodes, but a similar equation can be

derived for a larger number of nodes.

As steepest descent method is an initial value dependent

method possessing multiple local minimums, we evaluate the

convergence in the PB space to determine a unique PB. As

shown in [8], it is expected that a wider basin would be

created in the PB space for reliable motions. We divide the

PB space defined as [0, 1] into lattice points, using each

lattice point as initial points to converge to a local minimum.

The PB with the largest number of initial points to converge

is the PB (p∗) encoding robot motion with high reliable

predictability. The overview of the method is shown in Fig.

6.

III. SETUP OF EXPERIMENT

We used the humanoid robot Robovie-IIs [14], shown in

Fig. 7, for evaluation of the method. Robovie-IIs has three

DOF (degrees of freedom) on the neck and four DOF on each

arm. It also has two CCD cameras on the head for processing

visual information, one of which was used in the experiment.

Objects shown in Fig. 8 were used in the experiment.

The procedure of the experiment is as follows.

PB1

PB2

1. Divide PB Space

into Lattice Points

2. Converge Each Lattice

Point to Local Minimum

PB1

PB2

Steepest Descent Method

3. Select Point with Largest Number of Converging Points
PB1

PB2

p*

PB1

PB2

Fig. 6. Overview of Motion Searching
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Fig. 7. Humanoid Robot Robovie-IIs
Fig. 8. Objects used in Ex-
periment

1) Acquire sequences of images and robot motor values

while the robot pushes objects.

2) Extract the object from images by deleting background

using color information.

3) Train model using motion sequences.

4) For each object, search for the reliably predictable

motion for generation.

Procedures 1) - 3) are done for training the model, and 4) is

done for evaluation.

A. Motion Sequence Acquisition from Active Sensing

For acquiring training data, we used the pushing motion

with Robovie II-s’ left arm for each of the objects shown

in Fig. 8. Motions were generated at five different heights

by altering Robovie II-s’ shoulder pitch angle. The pushing

motions induced the sliding, falling over, bouncing, and

rolling motions of the objects. The balls were put on a cup

to create bouncing motions. A total of 59 sequences were

acquired, excluding those that object motions could not be

extracted due to occlusions, illumination conditions, etc. The

breakdown for each motion is shown in Table I.

During the pushing motion of the robot, image and motor

sequences were acquired at 10 frames/sec. Acquisition of the

sequences were started just before the robot’s arm has had

contact with the object, and ended after acquiring 10 steps

of data, since some objects went out of sight at the eleventh

step. Although this experiment was conducted under a fixed

neck condition, the model could also be modified to adapt

to cases where the robot constantly tracks the object [15].

B. Configuration of the Neural Networks

In this paper, the configuration of the neural networks were

decided empirically. The configurations of RNNPB and the

hierarchical neural network are shown in Table II and Table

III, respectively. The initial weights of the neural networks

were decided randomly within a value between [-0.7, 0.7].

The total number of input/output nodes in RNNPB are 5;

1 for the robot shoulder pitch angle normalized to [0,1],

and 4 for the dynamic object features to be automatically

extracted. The robot shoulder pitch angle is set to 0.5 at the

TABLE I

NUMBER OF EACH OBJECT MOTION

Slide Fall Over Bounce Roll

24 9 13 13

TABLE II

CONFIGURATION OF RNNPB

Number of Motor Input/Output Nodes 1

Number of Object Input/Output Nodes 4

Number of Middle Nodes 20

Number of Context Nodes 20

Number of PB Nodes 2

Learning Constant ε 0.01

TABLE III

CONFIGURATION OF HIERARCHICAL NEURAL NETWORK

Number of Input Nodes 500

Number of Middle Nodes 30

Number of Output Nodes 4

Learning Constant ε

′

0.1

initial step to prevent inclusion of contextual information.

The input of the hierarchical neural network consists of the

grayscale sequential object image, reduced to the resolution

25 × 20. The output is linked to the object input nodes of

RNNPB. The model was trained by iterating the BPTT and

BP calculation one million times.

C. Motion Generation

For evaluation of the experiment, we used the objects

shown in Fig. 8. These objects can be divided into four

categories based on object motions.

1) Objects that can be slided or fallen over.

2) Objects that can only be slided.

3) Objects that can only be bounced.

4) Objects that can only be rolled.

The number of objects in each category is shown in Table

IV. In this paper, we neglect the Slide category, since the

robot was capable of sliding the object regardless of how

the robot pushed the object. Therefore, the experiment was

conducted with objects in Slide or Fall Over, Bounce, and

Roll categories.

IV. EXPERIMENTAL RESULT

We present the results of the experiment in this section.

The self-organization result for training RNNPB using

training data is shown in Fig. 9. As can be seen from Fig.

9, each object motion is self-organized into the PB space,

creating clusters of PB values representing each motion. The

rhombi, square, triangle, and circle each represent PB values

of Slide, Fall Over, Bounce, and Roll motions. The robot

motion axis is also formed as the PB2 axis. The robot pushes

high when the value of PB2 is small, and it pushes low when

the value of PB2 is large.

TABLE IV

NUMBER OF OBJECTS FOR EACH CATEGORY

Slide or Fall Over 23

Slide 10

Bounce 13

Roll 13
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For each of the objects for the categories in Table IV, we

calculated and plotted the searched PB values into the PB

space. The results are shown in Fig. 10, 11, 12 for Categories

Slide or Fall Over, Bounce, and Roll, respectively. For each

of the PB values in Fig. 10-12, we generated robot motions

from the searched PB values. An example of the pushing

motion is shown in Fig. 13-18 for the PB values circled in

Fig. 10-12. For Fig. 10, we selected the PB values with a

clear visual representation of the motion. For Fig. 11 and 12,

we selected the PB values near the boundary of success and

failure.

PB values in Fig. 10 are categorized based on the actual

object motion. Sliding motions are represented as rhombi,

while fall over motions are represented as squares. A total

of 12 sliding motions and 11 falling over motions were

generated. This result shows that the slide and fall over

motions are generated at an equal possibility for objects

possessing both slide and fall over motion possibilities. An

example of the generated motions are shown in Fig. 13

and 14. Fig. 13 represents a trigger sprayer sliding. Fig. 14

represents a plastic yellow bottle falling.

PB values in Fig. 11 are categorized based on whether

the object has bounced or not when the robot pushed the

object using the searched PB. The triangles represent PB

values when bouncing motion was observed, and the x marks

represent PB values when they weren’t observed. From the

result, it is notable that a majority of PB values (9/13) gen-

0.25

0.5

0.75

1

O 0.25 0.5 0.75 1
PB 1

P
B

2

Slide Fall Over Bounce Roll

Robot
Motor
Axis

Low

High

Fig. 9. Self-organized PB Space

O 1

1

PB1

P
B

2

Slide PB Fall Over PB

Motion Example

Motion Example

Fig. 10. PB Distribution for Slide

or Fall Over Category

O 1

1

PB1

P
B

2

Motion Examples

Bounce Motions Other Motions

Fig. 11. PB Distribution for
Bounce Category

O 1

1

PB1

P
B

2

Motion Examples

Roll Motions Other Motions

Fig. 12. PB Distribution for Roll

Category

erated bouncing motion. Examples of the motion generation

are shown when the robot succeeded and failed to generate

bouncing motions with the plastic red ball and tennis ball

placed on a cup in Fig. 15 and Fig. 16, respectively.

PB values in Fig. 12 are categorized based on whether the

object has rolled or not when the robot pushed the object

using the searched PB. The circles represent PB values when

rolling motion was observed, and the x marks represent

PB values when they weren’t observed. As with bouncing

motion, a majority of PB values (9/13) generated rolling

motion. Examples of the motion generation are shown when

the robot succeeded and failed to generate rolling motions

with a money box and plastic container in Fig. 17 and Fig.

18, respectively.

V. DISCUSSIONS

In this section, we present discussions considering the

experimental results.

A. Motion Generation based on Reliable Predictability

The largest characteristic of the result is that the majority

of searched PB values generated robot motions that induce

possible object motion (bounce or roll) as shown in Fig. 11

and Fig. 12. Seventy percent of the objects in the “Bounce”

Fig. 13. Sliding Motion Genera-
tion

Fig. 14. Falling Over Motion
Generation

Fig. 15. Success for Bouncing
Motion Generation

Fig. 16. Failure for Bouncing
Motion Generation

Fig. 17. Success for Rolling
Motion Generation

Fig. 18. Failure for Rolling Mo-
tion Generation
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and “Roll” categories generated the appropriate motions,

while an equal number of sliding and falling over motions

were generated for the objects in the “Slide or Fall Over”

category. This result implies that the evaluation of reliable

predictability would narrow down the robot’s motion to the

affordance the object possesses.

An issue of the motion searching technique is that the

motions are all trained using a single RNNPB model.

Therefore, every data was related to each other during the

training process. Since the training data were composed of

a number of sliding motions, the PB space created a wide

basin for the sliding motion. This resulted as a bias in the

PB space towards the sliding motion, affecting the motion

searching result. Although generalization is indispensible for

relating training data (such as in generating medial motions),

differentiation is also required when the data should not be

related. The model is required to be improved to perform

generalization and differentiation simultaneously.

B. Relation to Affordance Theory

As described in Gibson’s proposal of affordance, the

environment (object) possesses information about human

actions [2]. Human’s perceptual/behavior mechanisms are

said to be divided into inherent factors and experiential

factors. Our approach mainly focused on experiential factor.

The perceptual model, where RNNPB and the hierarchical

neural network were trained through bi-directional training,

is based on transformational invariants which describe what

the motions are. In the experiment conducted in this paper,

the object features self-organized as the input of RNNPB and

output of hierarchical neural network correspond to transfor-

mational invariants, since they are used to self-organize the

PB space creating clusters of the four object motions.

For motion generation, we focused on predictability of the

object as a criterion to search for the affordance the object

possesses. Using the pushing motion, the robot tended to

generate motions that would induce possible object motions

(affordance of the object). The results of the experiment show

the capability of using predictability as a criterion to search

for the affordance of the object. In order to functionalize

the ability to perceive affordance, the robot is required to

integrate these experiences with other motions at a higher

level. This would require a local representation of the model,

such as the MOSAIC model [16], to determine which motion

to generate (e.g. push or grasp) at a higher level, and how

to move (e.g. push from left or push from front) at a lower

level. These works are still left as future works.

VI. CONCLUSIONS

In this paper, we described a method to generate pre-

dictable motions for general tabletop objects based on the

robot’s experience. The model is constructed by a dynamics

learning module, namely RNNPB, and a feature extraction

module which are trained by bi-directional training. Steepest

descent method is applied to search for robot motion with

high reliable predictability. Experiments were conducted with

general objects with four object motions: sliding, falling over,

bouncing, and rolling. The results have shown that the model

tends to generate robot motions that induce possible object

motions (object affordance).

As future work, we plan to evaluate the model with

more complex robot motions such as grasping motions. This

will require improvement of the motion searching method

and learning model. We plan to integrate our model with

other works to create an efficient model for more practical

cases. We believe that our work would lead to acquisition

of robot behavior through it’s own experience, leading to

functionalization of affordance to the robot’s ability.
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