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Abstract— An autonomous robotic vehicle can drive through
and park in a lot more reliably if it is guided by a parking
lot map. This specialized map creates structure, including the
centerlines of drivable regions and intersection locations in an
often unstructured and unmarked environment and enables the
vehicle to focus its attention on regions that require detailed
analysis. Existing methods of building such maps require manu-
ally driving vehicles for collecting sensor measurements. Instead
of pursuing a labor-intensive approach, we analyze an aerial
image of a parking lot to build a topological map. In particular,
our algorithm produces a lane-graph of a parking lot’s drivable
regions by executing several image processing steps. First it
estimates drivable regions by superimposing detection of a
parking spots onto the parking lot boundary segmentation.
Second, a distance transform is applied to drivable regions to
reveal its skeleton. Lastly our algorithm searches the distance
map to identify a set of the peak points and connects them to
generate a lane-graph that concisely represents drivable regions.
Experiments show promising results of real-world parking lot
aerial-imagery analysis.

I. INTRODUCTION

Parking is an important and uniquely complicated require-

ment for driving an automobile. It involves several activities

that are performed in parallel: recognizing the parking lot

structure (e.g., the geometric structure of the drivable region);

understanding traffic rules; continuously observing moving

obstacles (e.g., pedestrians and other vehicles), and steering.

Despite this complexity, parking is also a mundane task

familiar to many, even when driving new parking lots.

Drivers have long dreamt of self-driving cars that would ease

their daily parking tasks.

Autonomous parking can be implemented with or without

a model of a parking lot. For example, a reactive robotic

vehicle, operating by responding to its environment, might

manage to perform parking itself without such model of a

parking lot. However it would be hard to simultaneously

perceive road-markings and moving obstacles, and infer the

structure of a parking lot for planning its motions, resulting

in inconsistent and inefficient maneuvers.

A model of a parking lot can describe the detailed ge-

ometry of a parking lot such as centerlines and intersection

locations of drivable regions and informs the vehicle where it

can drive. The model would help a robotic vehicle perform

reliable and safe autonomous parking maneuvers in that it

enables a robotic vehicle to focus its attention on regions

that require detailed analysis.

To exploit the benefits of a parking lot’s model, one might

consider existing cartographic databases for retrieving such
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models. However, this would be very difficult because any

roadmap database primarily built for human driving does not

contain such models at all – at best a parking lot in any

roadmap database is depicted as a point in a 2-dimensional

map space.

Alternatively one can build the model of a parking lot by

fitting a geometric model to sensor measurements [6], [8],

[10]. This approach requires a labor-intensive step because

of the need to manually drive a robot to collect sensor

measurements.

In this paper we present ortho-image1 analysis algorithms

that produce a lane-graph of drivable regions by analyzing

a single parking lot image. From our previous work [14],

[15], drivable regions in a parking lot are determined by a

combination of results of parking spot detection and results

of parking lot boundary segmentation. A distance transform

is used to reveal the skeleton of drivable regions’ geometry.

Our lane-graph generation algorithm iteratively searches for

a lane-graph in the distance transform map that concisely

represents drivable regions.

II. RELATED WORK

Robotic vehicles participating in the 2007 DARPA Ur-

ban Challenge2 demonstrate autonomous parking as they

entered parking lots, interacted with other vehicles, and

parked themselves into designated locations. Although their

demonstrations were very complex and well performed, they

are not close to those of daily auto-trips: no traffic rules

are enforced, interactions between vehicles are sparse, and

no pedestrians are around. The robotic vehicle models a

parking lot as an open space with several check points [17]

and iteratively searches for optimal motion trajectories to

reach a check point while ignoring the geometric structure

of drivable regions. This approach should be discouraged

when autonomous parking is applied to the real world.

The majority of research for realizing autonomous parking

is about developing control and planning algorithms for

road-side parallel parking [1], [2], [12], where a model of

a parking lot might not necessarily be required; assumed

to be given; or robotic vehicles are operating reactively,

simplifying complex perception issues.

Top-view aerial imagery are very useful for mapping

the operational environment because it provide structural

overview of environments. Owing to this unique benefit,

overhead imagery has been analyzed to provide alternative,

but important views of environments that enables robots to

1An ortho-image is an aerial image in which terrain relief and camera
tilt are removed through a rectification process.

2Visit the following for more information,
http://www.darpa.mil/grandchallenge/index.asp
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plan globally to achieve their goals. Aerial imagery may

become outdated so in-vehicle sensors would need real-time

assurance that regions are drivable. In combination with other

onboard sensors such as vision sensors and range finders,

aerial images have been used for generating cost maps for

long-range traversal [16], global localization [7], building

and maintenance of robots’ world model [13], [17], and

mapping [11].

In the GIS (Geographic Information System) community,

there has been an extensive amount of research work on

aerial and satellite image analysis for maintaining road map

databases [3], [4], [5]. To the best of our knowledge, our

work is unique in that we recover the geometry of drivable

regions in a parking lot ortho-image by using self-obtained

image cues [15].

There are three similar works in the realm of parking lot

structure analysis. Wang and Hanson present an algorithm

that uses multiple aerial images to extract the structure of a

parking lot for simulation and visualization of parking lot ac-

tivities [18]. Multiple images from different angles are used

to build a 2.5 dimensional elevation map of a parking lot.

This usage of multiple images makes it difficult to generalize

their method because it is not easy to obtain such images

on the same geographic location from publicly available

imagery. Dolgov and Thrun present algorithms that build a

lane-network of a parking lot from sensor measurements [6].

They first build a grid map of static obstacles from range

measurements about a parking lot and use an optimization

technique to infer a topological graph that most likely fits

the grid map. Similarly, Kummerle and his colleagues build

a multilevel (or multilevel surface) map of a parking building

from range sensor measurements [10]. A multilevel-map

is a 2D grid map that each of cells maintains a stack

of patches. As individual patches in a cell correspond to

different height estimates, this multilevel structure is used

to represent drivable regions and vertical objects. To fill in

individual cells, they first formulate a mapping as a graph

construction problem that a node represents a vehicle pose

and an edge represents a relative motion between poses; and

then find optimal nodes based on constraints imposed on

edges. A new node is continuously added to the graph until

a loop closure is found. These two works are very close to

ours in that they are building a road network for autonomous

parking, but different in that they need to drive the robot to

collect sensor measurements, whereas our approach does not

require manual data collection. Another potential problem of

this approach is that it might fail to collect data along the

structure of a parking lot when the parking lot is empty.

III. TOPOLOGICAL MAP OF DRIVABLE REGIONS IN

PARKING LOT

A lane-graph of a parking lot is a topological representa-

tion of drivable regions. Our lane-graph generation algorithm

requires a map of non-drivable (or an obstacle map) as an

input. We built this map by using two aerial image analysis

results from our previous work [14], [15].

Several different of ortho-image analysis algorithms are

developed to detect all of the visible parking spots in a

Algorithm 1 Lane-graph generation algorithm.

Input: - I , a parking lot ortho-image,

- Inon−drivable, a binary image of non-drivable regions

Output: - G, a lane-graph that maximally covers drivable

regions in the parking lot

1: G = {V,E},V = {φ},E = {φ}
2: Idt = generate distance map(Inon−drivable)

3: M = find local maxima(Idt), M = {m1, ...,m|M|}
4: M1 = prune local maxima(M), |M1| ≪ |M|
5: M1 = sort(M1), m1 > m2 >, ..., > m|M1|

6: M2 = define rendezvous point(M1), |M2| ≪ |M1|
7: repeat

8: mci = find maximal circle(mi),mi ∈ M1

9: Remove all of the local maxima within the circle, mci
10: Create a vertex, v ← mi,

11: V = {V ∪ v}
12: until all of the rendezvous points, M2, are visited

13: for all vi ∈ V do

14: Identify neighboring vertices, N(i), of vi
15: Create an edge, eij , if the jth neighboring vertex,vj ∈

N(i), (i 6= j), is visible from the ithe vertex, vi.

16: E = {E ∪ e}
17: end for

18: Return G = {V,E}

parking lot ortho-image. Our self-labeling method analyzes

the spatial layout of extracted lines and automatically obtains

some of the easy-to-detect true parking spots. These self-

labeled parking spot image patches are used for several

purposes. First, the geometric properties of self-labeled ex-

amples, such as average length, width and distance between

them, are used to generate hypotheses that are predictions

of the true parking spot locations. Second, these self-labeled

parking spot images are used to train a binary classifier to fil-

ter out incorrect hypotheses. Lastly, the image characteristics

of self-labeled examples are used to learn a road-marking

classifier and a parking lot boundary segmentor [15]. The

image regions of the estimated parking lot boundary are

overlapped with the detected parking spots to produce the

map of non-drivable regions in a parking lot ortho-image.

A. Connecting Maximal Circles for Discovering Topology of

Lane-Graph

Algorithm 1 describes the procedure of our lane-graph

generation in detail.

The algorithm requires an obstacle map of a parking lot

image. This map of non-drivable regions, Inon−drivable, is

obtained by combining parking spot detection results and

parking lot boundary segmentation results. Figure 1(a) shows

examples of parking spot detection results and parking lot

boundary segmentation results.

A distance transform is often applied to a

robot’s operational environment for identifying

obstacle-free regions. In our case, the function,

generate distance map(Inon−drivable), implements the

brush-fire algorithm to propagate distance values from
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(a) Two inputs for lane-graph generation: Parking block polygons
depicted in (red) rectangles and parking lot boundary segmentation
depicted as a binary image. A parking block polygon is a rectangular
representation of a parking block that is comprised of the detected
parking spots with the same open-end orientations. Individual parking
spots are depicted (green) triangles at their centroids. A blue line is a
convex hull of all of the detected parking spots.

(b) A distance map is computed from the obstacle map of a parking lot.
Red regions are farthest ones from local obstacles depicted in blue. Red
“x” marks represent local maxima in the distance map.

(c) Some of the local maxima are selected as rendezvous points that
are used to determine when the search of a lane-graph topology stops.
Green “*” marks rendezvous points.

(d) The radius of a circle centered on a local maximum is increased
to find its maximal circle. Any local maxima within the maximal circle
will be considered redundant and removed.

(e) Connection of visible neighboring vertices reveals the topology of a
lane-graph.

(f) The output of our lane-graph generation algorithm. A vertex is
represented as an intersection if its edges are more than 2.

Fig. 1: These figures show the sequence of our lane-graph generation algorithm. Viewed best in color.

non-drivable regions. Figure 1(b) depicts the resulting

distance map where farthest points from local obstacles

have highest values. Ridge points on the distance map,

which are local maxima of the map, are good candidates

for building a lane-graph because they are skeleton points

of drivable regions.

To locate these local maxima, we use the discrete analog

of derivative because the second derivative of a distance

map function is zero when the magnitude of the derivative

is extremal. To implement this idea, our search is carried

out by investigating individual columns and rows in the

distance map, Idt. The distance map, Idt, is a m-by-n

real-valued matrix where Idt(i, j) is the distance transform

value of the ith row and the jth column. The function,

find local maxima(Idt), computes numerical derivatives of

individual columns (and rows) in the distance map us-

ing the forward difference, dxi(k) = Idt(i, k + 1) −
Idt(i, k), (dyj(k) = Idt(k + 1, j)− Idt(k, j)), where k =
1, ..., n− 1 3. This is the first derivative of the distance map

that locates the changes of distance values in a column (or

a row). We then compute the second derivative: Compute

3For example, computing the changes of distance values at the ith row,
dxi(2) = Idt(i, 2)−Idt(i, 1), dxi(3) = Idt(i, 3)−Idt(i, 2), ..., dxi(n−
1) = Idt(i, n)− Idt(i, n− 1)
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the forward difference again only for elements which all

of the dxi(k) are greater than zero. The value of the

second derivative is zero when the distance value is a local

extremum. A local extremum is a maximum if the slope of

the second derivatives at its neighbor points is changed from

negative to positive.4 These points correspond to peaks in a

column (or row) of the distance map. A cross-check of these

points with other rows and diagonal elements in the matrix

results in local maxima. Because of the discrete nature of

an image, this method does not always guarantee to find all

of the true extrema, but provide a sufficient number of local

maxima for our lane-graph generation.

A simple connection of all of the detected local maxima

might produce a lane-graph that has an unnecessarily detailed

structure due to an imperfect obstacle map. For example,

there is a small creek in the upper left corner of the figure

1(b) that depicts cracks of the obstacle map and causes the

distance transform to produce a lot of small-valued local

maxima. Therefore we should handpick some of the local

maxima for constructing the topology of a lane-graph.

To facilitate the lane-graph building process, there are

three initialization steps: elimination of irrelevant local max-

ima; sorting of the selected maxima; and generation of

rendezvous points. The function, prune local maxima(M),

remove any local maxima that the radius of its maximal circle

is smaller than the average width of the detected parking

spots because their surrounding regions are not wide enough

for the navigation of a common-size vehicle. To define the

maximal circle of a local maximum, the initial radius of an

inscribed circle is set to the average width of the detected

parking spots. The radius is increased until the circle touches

any of neighboring obstacles. An inscribed circle is maximal

if no other inscribed circle, without touching neighboring

obstacles, contains it properly. The idea of maximal circle has

been studied for shape recognition and abstraction [9]. Figure

1(c) depicts a set of the selected local maxima. A sorting

of the selected local maxima in descending order of their

distance map values is necessary because the surrounding

region of a local maximum with higher value contains

more important geometric structure in a parking lot and it

should be considered before any other local maxima with

smaller values. Lastly we need a criterion to determine when

to stop our topology building step. One might think this

iteration can be stopped when it connects all of the selected

local maxima. However because of incomplete boundary

segmentation result, a connection of all of the selected local

maxima will result in a lane-graph that is inconsistent to

the actual shape of drivable regions. To properly stop the

iteration while ensuring the consistency of a resulting graph,

we utilize the locations of some local maxima. We call them

rendezvous points because their locations must be visited

for building a consistent lane-graph. A rendezvous point is a

local maximum point that represents more than one detected

4One can also find a local minimum by looking at the point where its
second derivative is zero and the slope is changed from positive to negative.
In practice, this extrema search can easily be done by convolving individual
columns (or rows) with a Laplacian operator, [1,−4, 1]T and then looking
for the changes of slopes.

parking spot. Given the fact that our parking spot detection

algorithm recovers the open-end orientation of a parking spot

[14], in the function, define rendezvous point(M1), for each

of the detected parking spots, we find the local maximum

point that is orthogonally closest to that parking spot. These

local maxima points are orthogonal projections of the de-

tected parking spots onto the center-line of drivable regions.

Although the collection of rendezvous points does not

always cover all of the area of the drivable regions, the

ordering of the selected local maxima based on their values

ensures that the topology visiting all of the rendezvous points

completely aligns with the area of drivable regions. Thus the

topology of a lane-graph is consistent to the shape of drivable

regions if it includes all of the rendezvous points. Figure 1(c)

depicts the identified rendezvous points.

Once these initialization steps are completed, our al-

gorithm examines each of the selected local maxima by

investigating its surrounding region. In particular, for each

of local maxima, the function, find maximal circle(mi), de-

fines a maximal circle centered at the local maxima under

investigation. Any local maxima within the maximal circle

can be removed from further consideration. These steps are

repeated until all of the rendezvous points are visited. Figure

1(d) depicts the selected local maxima. In this example, there

are 402 local maxima initially identified and 55 of them are

selected as vertices for possible lane-graphs.

The last step of our algorithm is to connect each of the

identified vertices to neighboring vertices if the vertex is

visible from its neighbors. The visibility test checks whether

a line segment between two vertices passes through any ob-

stacles and any neighboring vertices. In particular, we use the

Bresenham algorithm to examine image coordinates along

the line linking two vertices whether they are overlapped

with any non-drivable regions.

B. Results of Lane-Graph Generation

Figure 2 shows some results of our lane-graph generation

algorithm. Testing ortho-images are downloaded from the

Google map service.5

For each of the testing images, we first execute our parking

spot detection and parking lot boundary segmentation algo-

rithms to produce the map of non-drivable regions in the

image, and then run our lane-graph generation algorithm.

For most test images, our algorithm works well in that

the topologies of resulting lane-graphs concisely represent

drivable regions in parking lot images: edges align with the

center lines of road segments and vertices at intersection

points connect merging road segments. Results shown in

figure 1(f), 2(a), 2(b), 2(c), and 2(d) are example images

of successful cases. These successful results rely on the map

of non-drivable regions: highly accurate results of parking

spot detection and parking lot boundary segmentation. Any

false positive result by either of these tasks overestimates

the true area of drivable regions in a parking lot image.

For example, in the figure 2(a), the shadows of trees are

segmented as non-drivable regions and the resulting edge

5http://map.google.com
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(a) The parking lot area is underestimated due to the shadows of trees.
As a result, some edges of the resulting lane-graph do not align with
the center-lines of drivable regions. There are only 37 (depicted as blue
circle) out of 472 local maxima used as the vertices of the resulting
lane-graph.

(b) Inaccurate segmentation results in extending the resulting lane-graph
to the outside of the parking lot. There are 31 out of 430 local maxima
used as vertices.

(c) Some of the parking spots at the bottom left are missed by the
parking spot detection. This cause our algorithm to overestimate the
actual parking lot area. There are 43 out of 428 local maxima used as
vertices.

(d) There is an isolated vertex at the top left because of inaccurate
segmentation. There are 35 out of 298 local maxima used.

Fig. 2: Four additional examples of lane-graph generation. Viewed best in color.

passing through that region is bended to avoid false non-

drivable regions. A drivable region with different visual

appearances such as shadows and occlusions is one of the

common causes for erroneous segmentation and parking

spot detection results. From our previous study [15], we

developed a very accurate parking spot detector that produces

a very small false positive errors (less than 0.06%). In this

study, most of the overestimated drivable region is caused

by parking lot boundary segmentation.

Figure 3 shows an example that our algorithm did not

work well. The segmentation result in the figure 3(a) pro-

duces the overestimated boundary, resulting in a lane-graph

inconsistent to the actual drivable regions. Owing to the

relatively accurate parking spot detector, the right side of

drivable regions in the figure 3(b) is partially covered by

the resulting lane-graph. The lane-graph is inconsistently

generated primarily due to the simplicity of our segmentation

algorithm in that it connects two neighboring pixels if their

image characteristics (i.e., magnitudes of image gradients

and color) are similar. Thus it fails to correctly segment

regions when the appearance of pixels greatly vary.

By contrast, a false negative one underestimates the true

area of drivable regions in a parking lot image. For example,

in the figure 2(c), the edge of the intersection at the bottom

left is passing through a part of the non-drivable regions

because the parking block is completely missed by our

parking spot detection algorithm.

IV. CONCLUSIONS AND FUTURE WORK

We have presented ortho-image analysis algorithms that

produce a lane-graph of drivable regions in a parking lot

image. Our previous work in parking spot detection and

parking lot boundary segmentation are used to produce a

map of non-drivable regions of a parking lot [14], [15].

Our lane-graph generation algorithm first produces a distance

transform map from the obstacle map to reveal the skeleton

of drivable regions; second it identifies the locations of peaks

in the distance transform map; and lastly connects some of

these peaks to produce a lane-graph consistent to drivable

regions.

Our contribution includes novel computer vision algo-

rithms that parses a static parking lot ortho-image and

produces the lane-graph of a parking lot’s drivable regions.

As the geometric model of a parking lot, the resulting

lane-graph is a step toward creating consistent and reliable

autonomous parking. Additionally, our lane-graph generation
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(a) A fail case. An overestimated parking lot area. (b) Due to the inaccurately estimated parking lot boundary, the resulting
lane-graph fails to capture the topology consistent to drivable regions.

Fig. 3: The topology of the resulting graph is sensitive to the accuracy of non-drivable map. Viewed best in color.

algorithm can be utilized to extract the skeleton of non-

convex polygonal shapes.

Future work will improve the performance of our parking

lot boundary segmentation algorithm because the main draw-

back of our algorithm is inaccurate boundary segmentation.

However it is known to be very hard to achieve a highly

precise segmentation result, particularly in a self-supervised

framework, we will also work on making our lane-graph

generation algorithm robust to noise in the map of non-

drivable regions. Our ultimate goal is to produce the lane-

graph of a route from a series of aerial images and to use the

resulting lane-graph for autonomous driving. In this regard,

we will test resulting lane-graphs with actual autonomous

parking and investigate the applicability of our algorithm for

analyzing the geometry of street aerial images.
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