
  

 

Abstract—In the mobile robotics literature, there is little 

formal discussion of reliability and failure. Moreover, current 

work focuses more on the assessment of existing robots. In 

contrast, our work predicts the impact on reliability on robotic 

missions. In our previous work, we presented a quantitative 

analysis to predict the probability of robot failure during a 

mission and use this to compare the performance of different 

robot team configurations. In order to comprehensively 

characterize robot failure, we proposed a taxonomy system 

which divides planetary robotic missions into three classes and 

showed how the taxonomy can be used as a framework to 

explore the reliability characteristics of each mission class. In 

this paper, we define and simulate common mission scenarios 

for each class in the taxonomy system and attempt to extract 

general reliability trends and mission characteristics for given 

robot and environment parameters. Our results show that, for 

comparable mission scopes with a fixed budget, 

exploration-type missions have maximum mission success 

probability for smaller team sizes than is the case for 

construction-type missions. 

I. INTRODUCTION 

HE current design of NASA planetary robots puts high 

emphasis on robot reliability. This extreme reliability has 

enabled robots to function far beyond their expected lifetime: 

the Mars Pathfinder Sojourner Rover operated 83 days, 12 

times its expected lifetime of seven days [3]; the Mars 

Exploration Rovers (MER) have been operating for more 

than 6 years, rather than the intended 90 days. This reliability 

comes at a high cost, both in initial development costs and in 

the ongoing operational costs for their mission extensions. 

The need to reduce robot development costs has been one of 

the major problems in planning in-situ planetary missions 

[1]. Fiscal problems have delayed some missions: the Mars 

Science Laboratory was given the highest priority in NASA’s 

Mars Program of 2002, but then delayed in the 2006 plan as a 

result of cost constraints [2]. 

Cost reductions can be achieved if overly reliable 

components are exchanged for ones more in line with mission 

requirements. For this, tradeoff analysis between component 

reliability, mission risk, and cost is needed. We introduced a 

quantitative methodology to perform such analysis in 
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previous work [4], [5], but the approach was limited to a 

small number of examples. In order to capture the reliability 

characteristics of planetary robotic missions, it is necessary to 

comprehensively study the mission space. Our approach is 

therefore to use a taxonomy that will allow examination of the 

full range of the mission space in a methodical manner, given 

the vast diversity of planetary robotic missions. 

Several taxonomies for robot teams and robot 

tasks/missions have been proposed. [15] classified multirobot 

teams in terms of team size and composition, 

communications, and processing capability. [16] classified 

multirobot tasks in terms of time, energy, robot movement 

and capabilities. [17] categorized robot tasks by the amount 

and type of human-robot interaction involved. [18] used 

human operator function to classify UAV missions. [19] 

broke down intelligent robotics in terms of technologies and 

functionalities. While the proposed taxonomies mainly focus 

on robot capabilities and coordination, we hypothesize that 

the amount of time spent on mission tasks coupled with the 

reliability of robot components used in respective tasks is 

most determinative of the reliability characteristics of a 

mission.  We therefore analyzed the typical tasks involved in 

mission instances proposed in the NASA Roadmap for the 

exploration of the Solar System over the next 30 years [7] and 

the Mars Exploration Program [8], and classified robot 

missions with respect to the time proportions of the mission 

tasks [6]. In [6], we also devised a methodology to optimize 

mission success rate and help mission designers estimate the 

appropriate robot team size and module reliability under a 

budget limitation in the planning stage. 

Extending our work in that paper, here we propose mission 

completion time as one of the parameters to be considered in 

the optimization. More importantly, we fully define and 

stochastically simulate common mission scenarios for the 

three mission classes in the taxonomy. We analyze the time 

proportion of tasks involved in each class and observe 

dominant mission parameters in determining the stability of 

the time proportions. Finally, we analyze the performance of 

a given robot configuration in three mission classes and 

observe the reliability characteristics in each case to seek a 

general trend in planetary robotic missions. 

II. ROBOT MISSION TAXONOMY 

Based on a comprehensive survey of NASA in-situ 

planetary robotic missions proposed in the Solar System 

Exploration Roadmap (SSER) and Mars Exploration 
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Program (MEP), we identified several fundamental “Basic 

Activities” which can be combined in different time 

proportions to form any mission.  We propose that missions 

can be formed using the following nine basic activities: 

Traverse, Subsurface Access, Instrument Deployment, 

Sampling, Assembly, Communication, Sample Analysis, 

Recharging, Idling. Missions with similar sets of basic 

activities are close in nature and can be grouped together. 

Using this methodology, we categorize planetary robotic 

missions into three classes [6]: Search and Exploration 

(S&E), Sample Acquisition and Composition Analysis 

(SA&CA), and Construction. Mission instances in a given 

class have a distinguishing time proportion of basic activities 

(see section V-A). Though these proportions are not 

absolutely fixed, they fall into a range such that the character 

of a mission significantly changes only when the proportions 

exceed that range. 

III. MISSION SCENARIOS AND ENVIRONMENT MODEL 

We use the taxonomy as a framework for exploring the 

reliability characteristics and design tradeoffs in each 

mission class. We examine each mission class with a 

representative mission scenario allowing variation of mission 

parameters via stochastic simulation using a state transition 

diagram wherein each state corresponds to a basic activity. 

Using the methodology previously used to simulate the 

Construction mission class [6], here we define the general 

scenarios and the corresponding state transition diagrams for 

the remaining two mission classes (S&E and SA&CA). 

A. Search and Exploration Class 

For the S&E Class, we consider a general scenario in a 

planetary environment to explore a bounded square area and 

map it using a team of robots where each robot works 

independently from the others. The area is partitioned into 

uniform cells with adjustable resolution according to the 

robot sensing radius. Each cell is then represented by a node. 

The mission is considered a success when all nodes are 

explored. The robots divide the S&E task such that each node 

is only visited once. We experimented using the path 

planning algorithm introduced in [9], as well as a simple 

lawnmower pattern. If a robot fails, a spare robot (if 

available) is deployed from the starting location and new 

paths are calculated for each robot. We include a daily 

communication link between each robot and the command 

center on earth for robot coordination purposes and status 

updates. We consider energy limitations in the mission such 

that the robots need to generate energy through the use of 

solar panels daily. The robots also minimize the energy 

expended by entering the sleep/idle mode to wait for the sun if 

the battery is below an acceptable level. The availability of the 

sun and its duration are randomized to simulate uncertainty 

(e.g. dust, shadowed terrain, etc.) in battery recharging. 

Making appropriate inferences from the on-line MER log 

[10], we modeled the flow of the simulation as closely as 

possible after the real MER routines. The mission flow is 

defined as the following 3 steps: 

1. Traverse to an assigned node 

2. Constantly capture images/map the area on the way 

3. Analyze the images 

Repeat 1 – 3 until all nodes are visited 

Do a – c in between the steps: 

a. Replenish battery using solar panel whenever the sun is 

available 

b. Communicate with Earth whenever the communication 

link is available 

c. Activate sleep mode when the battery is low 

 

The state diagram of the S&E mission class is shown in 

Figure 1. 

B. Sample Acquisition and Composition Analysis Class 

In a similar manner, here we define a general SA&CA 

mission scenario. For this mission class, a team of robots in a 

planetary environment visits and collects rock samples from 

several sites of interest through the use of manipulator drills. 

, We use the same path planning algorithm and sampling 

environment as in the S&E Class. In this case, however, a 

rock sample needs to be collected from each node in the 

uniform grid. However, there is a major underlying 

difference from the S&E Class in the nature of the tasks 

involved. The S&E Class emphasizes mapping a region of 

interest, so it requires heavy imaging and analysis of the 

images. In contrast, the SA&CA Class requires minimal 

imaging. The mission flow is defined as the following 4 steps: 

1. Traverse to an assigned node 

2. Drill at the node 

3. Collect a soil sample 
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Fig. 1.  State Transition Diagram for Search and Exploration mission class 

generated from the mission scenario described in subsection III.A. 
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4. Analyze the sample 

Repeat 1 – 4 until all nodes are visited 

Do a – c in between the steps: 

a. Replenish battery whenever the sun is available 

b. Communicate with Earth when comm. link is available 

c. Activate sleep mode when the battery is low 

 

The mission is considered successful when samples from 

all nodes are collected. The state transition diagram for this 

mission class is generated in a similar manner to the other 

mission classes and simulated stochastically according to the 

methodology introduced in [5]. 

IV. ROBOTS AND COMPONENTS 

For the purposes of this analysis, we assume that the robots 

on the team are homogeneous. We use the same robot 

specifications when simulating the three different mission 

classes in order to create a baseline by which we can compare 

the reliability characteristics of the mission classes. 

The robots are considered to be made up of several 

subsystems that are independent from the standpoint of 

 
TABLE I 

ROBOT SUBSYSTEMS AND RELIABILITIES 

Subsystem MTTF (h) 

Power 4202 

Computation & Sensing 4769 

Mobility 19724 

Communications 11876 

Manipulator 13793 

 

reliability. The subsystem reliabilities listed in Table I are 

derived from [4]. 

We model the robots as closely as possible on the Mars 

Exploration Rovers (MER), setting the weight to 174 kg [11] 

and equipping them with two 7.15-kg lithium ion batteries 

(150 W-h/kg) for energy storage. The solar panels on the 

robots generate 700 watt-hours per day on average.  
 

TABLE II 

POWER CONSUMPTION MODEL 

Basic Activity Power Consumption 

Traverse 100 W 

Imaging / Mapping 29 W 

Soil Sampling 52 W 

Subsurface Access 55 W 

Sample / Image Analysis 19 W 

Communication 74 W 

Idling 10 W 

The power consumption model used in the simulation is 

derived from [12] and listed in Table II. Based on [13], the 

robot speed is set to a constant 0.01 m/s throughout the 

mission. Inferring from [14], we also introduce a limitation 

on terrain visibility causing the robot to stop and observe its 

surroundings after it has traversed a distance equal to its 

sensing radius. For the SA&CA mission scenario, each robot 

on the team is assumed to have an average drilling time of 3 

hours per site [20]. 

V. RESULTS 

We calculate the probability of the baseline robot 

configuration’s successful completion of the mission 

scenarios described in previous sections. The simulation is 

repeated many times with the average score of all trials giving 

the overall probability of mission completion (PoMC). 

To comprehensively capture the reliability characteristics 

of the three mission classes, for each mission scenario, we 

vary the environment model and observe the resulting PoMC. 

We also record the time spent on each basic activity in a 

mission and analyze the resulting time proportions. The input 

parameters to be varied are the following: 

- Number of robots and spare robots 

- Size of the area to be explored / from which rock 

samples are to be collected 

- Reliability of the robot modules 

- Robot sensing radius 

 

Given the hyper-dimensionality of the model, we simplify 

the analysis by varying only one variable at a time and fixing 

the rest, then looking at the relationship between the varied 

variable and the PoMC, as well as the time proportion of the 

basic activities. We set the baseline variables as shown in 

Table III and then increment one variable along the x-axis 

from the minimum to the maximum expected value.  

 
TABLE III 

BASELINE CONSTANTS USED IN THE SIMULATION 

Variable Baseline Value Range 

#Nodes 30 1 – 100 

Area size 30 x 30m 30x30m – 130x130m 

#Robots 2 1 – 10 

#Spare robots 0 0 – 5 

%MTTF 100% 0 – 100% 

Sensing radius 5m 1 – 5m 

 

Finally, we consider budget constraints in the simulation. 

We adopt a general relationship of module reliability and 

cost, where cost is an exponential function of component 

reliability. Using the cost model and approach introduced in 

[6], we analyze the optimum robot configuration in terms of 

robot team size and component reliability for each mission 

scenario for a given set of input parameters. 
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A. Sensitivity Analysis of the Mission Parameters 

For the Construction class, the resulting time proportion of 

basic activities is relatively stable under a reasonable range of 

mission parameters [6]. The S&E and SA&CA class show 

the same behavior for the majority of the input parameters, 

where the approximate resulting time proportion in Table IV 

can be obtained when the baseline constants (see Table III) 

are used under the specified range. This does not hold true for 

certain parameters discussed in the following. 

The sensitivity analysis of the result shows that the time 

proportion of the basic activities for the S&E class and 

SA&CA class are largely dependent on the number of robots 

used in the mission. This agrees with our previous result for 

the Construction class in [6]. Increasing the number of robots 

causes causes each robot to be allocated fewer nodes to 

explore or collect samples from, thus decreasing the required 

amount of traverse, mapping/imaging, and analysis of the 

images (see Figure 2). 

In contrast to the Construction class, the distance traveled 

by the robots is no longer a major factor in determining the 

time proportions for the S&E and SA&CA classes. The 

Construction class requires robots to carry modules from a 

module depot to the construction sites and assemble them, so 

increasing the size of the environment directly increases the 

relative proportion of Traverse to the remaining basic 

activities. However, due to the nature of the mission, 

increasing the size of the environment in the S&E and 

SA&CA classes only proportionally increases the area the 

robots need to explore or collect samples from, hence the 

stability of the time proportion regardless of the traveled 

distance (see Figure 3). 

Table IV shows the time proportions of the basic activities 

of the three mission classes. Most of the Construction class 

mission time (47% ± 2%) is spent on assembling the modules, 

whereas the S&E class has a balanced basic activity 

proportion between Traverse, Imaging, and Image Analysis 

(21% ± 2% each), which are the core tasks for exploration 

type of missions. The SA&CA class has a time proportion 

characteristic somewhat in between the other two classes. It 

has a small amount of Traverse and more time spent on using 

the manipulator (e.g. Drilling) as in the Construction class. 

This is somewhat counterintuitive at first, because the 

SA&CA mission collects soil samples from the same area 

size as S&E class, so it seems the amount of Traverse should 

be similar. However, under the baseline constants, the time 

spent on drilling each node far outweighs the time required to 

traverse from one node to the other, hence the increased 

Drilling time proportion. 

 
TABLE IV 

TIME PROPORTION FOR THE 3 MISSION CLASSES 

Basic Activities 
C 

(±2%) 

S&E 

 (±2%) 

SA&CA 

(±4%) 

Traverse 4% 21% 4% 

Instrument 

Deployment 
21% 0% 0% 

Module Assembling 47% 0% 0% 

Imaging / 

Soil Sampling 
0% 21% 9% 

Drilling 0% 0% 32% 

Image/Sample 

Analysis 
0% 21% 17% 

Communication 17% 12% 13% 

Recharging 11% 21% 21% 

Sleep/Idle < 1% < 5% < 5% 

 

B. Comparative Performance Analysis of Mission Classes 

We compared the PoMC of a baseline team of 2 robots 

completing each mission scenario of constructing 50 sites on 

a region 25m apart from the module depot, mapping 50 nodes 

on the area with the size of 30 x 30m, and, collecting samples 

 

Fig. 3.  Varying area length in Sample Acquisition and Composition 

Analysis Class. 

 
 

Fig. 2.  Varying number of robots in Search and Exploration Class. 
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from 50 nodes inside 30 x 30m area. We obtain differing 

PoMC values of 60%, 72%, and, 96%, respectively. The 

result shows that the Construction class has the lowest 

mission success rate if performed by the given robot 

configuration. 

Comparing the performance of the same robot 

configuration across different mission scenarios is especially 

useful when the mission designer does not have the ability to 

change the robot specification (e.g. the mission has to be 

performed by the available or surviving robots). Thus, from 

the simple analysis we can determine the most suitable 

mission for the current robot team, which is to collect samples 

from 50 nodes, as it gives the best chance of completion 

compared to the other mission types. 

Alternatively, mission designers can fix the PoMC and ask 

how much can be accomplished by different missions. For 

example, with 60% PoMC, the same team of robots can either  

construct 50 sites or explore 61 sites. Coupled with some 

other measure (e.g. scientific gain) of the relative per-site 

value of performing one or the other mission, this could allow 

a designer to compare expected value of different missions.  

C. Optimizing PoMC and Mission Time with Fixed Cost 

Considering a mission budget constraint, we can seek the 

optimum robot configuration in terms of robot team size and 

module reliability that maximizes the mission success rate for 

the S&E class and SA&CA classes using the cost model 

introduced in [6]: 

 

,              (1) 

 

where R is the percentage of component reliability compared 

to the baseline model. Note that the cost model serves as an 

example and can be replaced with any cost model a mission 

designer has. 

In Figure 4, using the baseline values listed in Table III as 

the input variables, we plot several tradeoff relations between 

component reliability (%MTTF) and mission success rate 

(PoMC) for different robot team sizes. We also fit curves to 

these points, allowing the %MTTF to be estimated for 

intermediate points without running additional simulations. 

The black horizontal line shows the PoMC for the baseline 

configuration (1 robot with 100% of the baseline component 

reliability). Based on the cost model (Equation 1), we are able 

to compute the maximum achievable component reliability 

(%MTTF) under the budget constraint for each team size. 

This is shown as dashed vertical lines.  

The intersection between the dashed vertical lines and the 

PoMC curve (a function of %MTTF) then gives the 

maximum achievable PoMC for each team configuration 

(using the maximum achievable %MTTF) given the budget 

constraint. The intersections are shown as stars on the dashed 

curve. For a S&E mission with area 40m x 40m, the 

configuration of 2 robots with 57.1% MTTF (of the baseline 

MTTF in Table I) gives the highest mission success rate, 

which is 84.9% PoMC. 

Here we extend our work in [6] by also considering mission 

duration as a part of the optimization problem. The cost 

model implemented in the simulation only considers robot 

development cost. Mission designers might have different 

priorities, such as limited mission time to cut the mission 

operational cost. In that case, configurations with a higher 

number of robots and less module reliability might be 

preferable to reduce the time required to complete the task.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 shows the time required to complete the same 

mission for each robot team size. 2 robots with 57.1% MTTF 

require 450 hours (intersection of vertical dashed line with 

the mission time line for 2 robots), whereas 3 robots with 

31.9% MTTF only require 400 hours to complete the 

mission. Thus, the latter might be preferable in some cases, 

with only a slight reduction of PoMC (approximately 7.3%, 

see Figure 4). The solution can also be combined by 

comparing it with the PoMC for the baseline configuration 

(73%) to get the most appropriate robot configuration that 

 
 

Fig. 4.  Optimum robot configuration for Search and Exploration mission 

scenario when area size = 40m x 40m. 

 
 

Fig. 5.  Mission time for Search and Exploration mission scenario when 

area size = 40m x 40m. 
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delivers better PoMC than the baseline and yet satisfies the 

mission time limit. 

 

D. Mission Duration-Based Robot Design Policy 

In [6] we showed that the optimum robot configuration 

(number of robots coupled with specific component 

reliability) changes as the mission duration is prolonged. 

Analyzing and comparing this behavior across three mission 

classes is crucial in understanding the reliability 

characteristics of each mission class. 

For relatively short missions, the PoMC gain per robot 

number increase is likely to be larger than the loss of PoMC 

per component reliability decrease. Thus, under a budget 

constraint, it is more beneficial to use more robots with 

decreased module quality in short missions. And, finally, 

there is a turning point where the PoMC gain per robot 

number increase is equal to the PoMC gain per component 

reliability increase as mission duration is extended. 

Here we gradually increased the mission duration for the 

three mission classes and observed where the turning point 

(optimum configuration change from 3 robots to 2 robots) 

occurs. We discovered that the turning point occurs the 

earliest in the S&E class (270 hours, 92% PoMC), followed 

by SA&CA class (500 hours, 82% PoMC) and Construction 

class (820 hours, 66% PoMC). 

The order of occurrence of the turning points is, of course, 

dependent on the robot and mission parameters. However, 

using robot specifications modeled after the MER and the 

cost model (Equation 1) which is an exponential function of 

component reliability, the S&E class prefers a smaller 

number of higher-quality robots, whereas the Construction 

class is better performed by a larger number of 

lower-reliability robots. 

This methodology is applicable as a metric in determining 

robot design policy (e.g. large team vs. small team 

compatibility on different mission classes) in the conceptual 

mission planning stage. 

VI. CONCLUSION 

This paper extends our work in [6] by detailing common 

mission scenarios for the planetary robotic mission 

taxonomy. Simulating the mission scenarios, we discovered 

that small teams of robots with highly reliable components 

have better performance in executing Exploration type of 

missions, whereas large team of robots with low component 

reliability is preferable in Construction missions for the given 

robot and mission specification. We also extended our 

previous work by considering mission duration when 

optimizing PoMC with respect to robot team size, component 

reliability, and cost. Finally, we confirmed the stability of the 

time proportion for each mission class and analyzed the 

shifting behavior of their optimum robot configuration by 

extending the mission duration. 

In future work, we will perform reliability analysis of each 

mission class on the module level to seek connection between 

the time proportion of the basic activities and PoMC of the 

missions, as well as identification of critical modules to the 

mission. In addition, we intend to introduce heterogeneous 

robots and repair capability in the case of robot failure. 

Another interesting area is the consideration of partial failure 

in the simulation. 
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