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Abstract— In this paper we show our work on enabling
service robot systems to distribute parts of the image process-
ing functions to different off-board computer systems in the
working environment of the robot. Thus complex algorithms
can be carried out on high performance systems circumventing
the restrictions considering space and power consumption that
a mobile platform imposes. As high resolution cameras provide
a huge amount of image data and the bandwidth of a wireless
network connection is strongly limited, we are using intelligent
camera systems on the mobile robot platform to execute parts
of the image processing functions directly on the robot. This
way only preprocessed image information will be transmitted
instead of raw image data. We are using a flexible modular
software framework that allows us to split image processing
tasks into a pipeline of modular functions that can run on
different systems. We show how our approach can be used
to enable a service robot system to speed up high resolution
SIFT-based object detection.

I. INTRODUCTION

In recent years a lot of research has been done on
autonomous mobile service robots. Progress has been made
in all related disciplines. But there is still a big gap between
the state of development of traditional robots and mobile
service robots that need to cope with an unstructured and
dynamically changing environment. One general challenge of
mobile robot systems is the perception of this environment.
Only if enough information on the position of the robot itself,
on obstacles, objects and interaction partners can be acquired,
it is possible to perform actions autonomously.

Vision is one of the most promising but also challenging
sensor modalities that are used for robot systems. The
challenge for the integration of vision systems into service
robots is the high computational effort that current image
processing algorithms generate. Furthermore the actual effort
depends on the resolution, the format and on the number of
frames processed each second. Only high-quality image data
provides precise information about the environment, while
a high frame rate is necessary for the system to react in
real-time. On the other hand, mobile robot systems provide
only a limited amount of computing capabilities, that are
furthermore needed for other real-time critical sensor and
actuator systems.

Therefore we are working on smart camera systems in-
tended for the use on service robots. The general idea
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of smart camera systems is to generate image information
instead of raw image data. This way high level results
of image analysis can directly be incorporated in the task
planning software of the service robot system. We are devel-
oping a software architecture to distribute parts of the image
processing functions to those smart camera systems. Due to
an universal implementation this architecture also allows us
to integrate further dedicated systems on the robot as well
as systems in the surroundings of the robot. Studies revealed
that typical desktop PC are idle most of the time [1]. As
the office environment of the testing platform provides many
PCs, we try to take advantage of their computing power.

In this paper we will show how our distributed approach
can yield advantages in the object detection process of the
robot system. We chose the SIFT algorithm since it has
proved to be an effective method for object detection in
various research projects. The problem is that this algorithm
generates high computational effort, especially if many ob-
jects need to be detected in parallel.

This research is not proposed as an advance of the SIFT-
algorithm itself. Instead we take the SIFT algorithm as an
example and show how a distributed implementation and a
smart camera architecture can be used to integrate complex
vision algorithms.

The remainder of this paper is organized as follows: In
section II we present our research background and discuss
the challenges that processing of image data provides. We
introduce approaches of similar research projects and refer
to our prior work in this research field. Section III intro-
duces the developed software architecture for running image
processing functions on intelligent cameras as well as on
arbitrary computer systems. The integration of the SIFT
algorithm into this framework is described in section IV.
Experimental results are discussed in section V. A conclusion
on the achievements and an outlook to future research is
given in section VI.

II. RELATED RESEARCH

The TAMS group is doing research on mobile robot
systems with different sensor and actuator systems. The main
research platform is the service robot TASER. It is mainly
used for delivery tasks in an office environment with its sub-
tasks like human interaction, localization, object detection
and grasping. Descriptions of the whole architecture of
TASER and of the occurring problems can be found in [2].
In the initial setup all actuator and sensor systems have
been connected to one control PC. Several real-time critical
components need to be operated in parallel, but especially if
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Fig. 1. This figure shows the systems that will take part in the distributed
processing of visual information. The Smart camera will be connected to
the control PC via Gigabit Ethernet. Additional dedicated systems may be
added to increase the overall performance. The robot system can connect
to external systems via a wireless network connection.

the system is loaded with computationally intensive image
processing tasks, these response times cannot be guaranteed.
A similar problem occurred with the connection of the
laser range finders. It was solved by the development of an
embedded system that preprocesses the data and transmits
them via Ethernet [3]. Regarding the camera systems a
similar solution is under development. As mentioned above
image processing tasks can be sourced out to an intelligent
camera system, to dedicated systems or to arbitrary systems
in the surroundings. The setup of the connections is shown
in Fig. 1. In [4] we have shown how our approach can yield
advantages in face detection applications. The smart camera
can be configured to transmit only image regions where faces
are found. Therefore the amount of data that needs to be
processed by further systems is reduced.

There are different approaches of adding smart capabilities
to camera systems. One possibility is to directly integrate
processing elements into so-called intelligent image sensors.
An application of these kinds of sensors in high-speed object
recognition and tracking is shown in [5]. The resolution of
this chip is significantly better than that of prior types but
still lags behind classical digital camera systems. Due to the
fixed processing strategy the flexibility is strongly limited.

Smart cameras can also base on embedded processors. A
comparison of two different smart camera systems using low-
power embedded boards with ARM9 CPUs is shown in [6].
These systems are intended to be used for traffic surveillance.
Benchmark results show that performance lags behind a
desktop system. An application of face recognition running
on a smart camera system with a multi-processor architecture
is shown in [7]. Due to a DSP-based hardware and an
optimized implementation, the process of face recognition
runs in real-time.

Dedicated hardware is another way of realizing computing
capabilities of smart camera systems. In [8] the authors
propose an active vision system that can apply various

preprocessing functions implemented as dedicated hardware.
They introduce an algorithm to track an object based on
a template and color segmentation based region-of-interest
selection. In [9] a smart camera system intended for tracking
applications is shown that can be configured to read out only
a partial area of the image sensor and reaches up to 1000
frames per second.

Compared to these projects, the innovative feature of
our system is that the image processing algorithms are
not fixed and can be exchanged at run-time. This way we
want to fulfill the needs of the heterogeneous tasks that
may be assigned to a service robot system. As this paper
describes our way of enhancing the use of SIFT features
with intelligent camera systems and dedicated hardware,
we will give some references about fundamental and recent
research. The general idea of the SIFT algorithm is to find
significant points in an image and describe them in a way
that the description is invariant to rotation, translation and
scaling. Extracted features of images can be compared to
find corresponding points. If multiple corresponding points
can be found, a transformation matrix can be calculated. A
detailed description of SIFT-features can be found in [10].

In [11] a service robot system is described that uses SIFT-
features to detect objects and build a complete model of the
scene. It is stated that the described system needs about 8 s
for matching the feature vector to a database. Actually all
known objects are stored in this database and are matched
at a stroke.

A different object detection algorithm is described in [12].
It uses Gabor wavelet transformation and chooses points with
the Shi-Tomasi algorithm. The matching procedure with a
database of 50 objects lasts 27 s.

We see a big potential in our approach of distributed
detection and matching. It should be possible to speed up
the object detection process significantly.

III. DISTRIBUTED SOFTWARE ARCHITECTURE

Using several systems invokes the problem that image
processing sub-tasks need to be distributed to these systems
properly. The overall image processing strategy needs to be
divided into several parts. This possibility is necessary in
order to integrate smart camera systems, dedicated systems as
well as external networks systems into the visual information
processing robot system.

We are developing a widespread software architecture that
is capable of controlling the camera hardware and carrying
out software-based preprocessing. Our general idea is to
provide modular based image processing functions that are
connected to a pipeline. Those pipelines can also be set up
across network connections.

Our distributed software architecture can control the pro-
cessing function of many systems from a single instance.
The software is written for Linux, but could be transferred
to other operating systems, too. Transfer and processing
of image data will be done within the GStreamer [13]
framework. This open-source multimedia framework is used
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by many multimedia applications under Linux. Many func-
tions needed for this application are already implemented in
GStreamer, like format conversion, image resizing, encoding,
decoding, timing issues and network data transmission. The
GStreamer framework is plugin-based, so the functionality
can be expanded by new elements that also can define
their own data types. There is also the possibility to set up
branched pipelines where data of one image is processed by
many elements in parallel.

Image processing functions can also be run on dedicated
systems without camera hardware, so the tasks can be run
on many systems in parallel. This can be useful when the
computational effort is large compared to the additional
overhead of transferring image data over the network.

Timing issues can be analyzed by the so-called timestamps
that every unit of data (i.e. one image of a video-stream)
provides. We set this value to the current NTP [14] timestamp
directly after the image was captured. In different stages
of the processing pipeline, the latency can be determined
by comparing the timestamp to the current system time.
Therefore, we have to synchronize all systems including the
smart camera by an NTP timeserver. The achievable accuracy
is better than 1 ms in a local area network. Considering the
usual processing times of image processing functions and
jitter caused by the scheduler of the operating system, this
accuracy is sufficient.

The framework for distributed image processing is inte-
grated in the control software system of the robot. Closely
in relation to the ability to assign tasks to systems in the
network environment is the possibility to come to know
which systems in the surroundings are available. We are
using the Roblet-framework [15] to announce the availability
and handle changes dynamically.

IV. DISTRIBUTED SIFT BASED OBJECT
DETECTION

In this section we will describe the implementation of the
SIFT-algorithm into our software framework.

Our implementation needs to provide flexibility for many
use cases. It should be possible to match camera images
with features stored in a database for object detection as
well as with live camera images from another camera. We
take advantage of the modular idea of our architecture
and split feature extraction and feature matching into two
different plugins. Different timing modes will support both
live streams and static images.

A. Feature Extraction Elements

The feature extraction element is the element that takes
an input image in various formats and chooses significant
points that are described by the SIFT algorithm. The im-
plementation uses a modified version of the OpenCV-based
[16] implementation of Hess [17]. Some performance en-
hancements were applied and the memory consumption was
lowered by reusing the allocated memory for multiple frames
of a video stream. Since feature extraction and matching take
place in different elements, the representation of feature data

is relevant. We implemented different methods of storing and
transmitting SIFT vectors:

• Internal memory representation (1140 bytes per feature)
• Lowe-representation (361 bytes per feature (string))
• Lowe(modified) (160 bytes per feature (raw))

One method is to directly copy the internal memory represen-
tation of the applied implementation. As a lot of additional
information like pointers to matching features is already
stored within this structure, this method consumes quite a
lot of memory. If both extraction and matching take place
on one machine, it is still advantageous to use this method as
no additional effort needs to be spent on format conversion.
The implementation of Lowe is using plain-text represen-
tation with space-separated values. Floating point values are
normalized to the range of char values. The advantage of this
type of storage is that it is readable by humans, independent
of the endianness of the machine and it is quite compact. But
storing integer information inside of plain-text wastes a lot
of memory. Therefore we implemented a modified version
of Lowe’s approach of storing the information in a machine
readable form. This way we could shrink the amount of data
significantly.

As an example we analyzed several typical scenes of the
workspace of the robot with the camera system. Analyzing
the gray-scale image from the 1.45 MPixel camera system
yielded about 300 extracted feature points. Considering the
amount of data, it is possible to store the significant image
information of an image with a size of 1.41 MB in about
50 kB. This data can easily be transferred over wireless and
wide area network connections.

B. Feature Matching Element

The matching element takes two different feature vectors
and calculates matching features. It has two input pads for
the two feature vectors. To make it work with vectors of a
video stream as well as with those of still images, it keeps
the latest incoming data and matches each data against the
latest available data if triggering is enabled for this input.
For performance reasons it makes sense to build a KD-tree
[18] of the features of one of the images, preferably of the
still image as it only needs to be built once.

Depending on the format of input data, the first step is
to convert the types of data to the internal representation.
After the matching process there are several possibilities of
treating the results. They can be put out as a coordinate-list
of matching features. This can be useful for visualization or
for external processing. It is also implemented to directly
calculate a transformation between two images using the
RANSAC algorithm [19]. If one of the source images con-
tains one object, the position of this object in the second
image can be calculated. For grasping tasks of the robot
system this method is applied. The element can also be
configured to match against many objects sequentially. This
so called agglomerating mode will save all vectors received
from one input (at system start) and match each incoming
feature vector of the second input against each of them (at
run-time). Our implementation builds a separate KD-tree for
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Fig. 2. This figure shows the function of distributed SIFT feature
extraction. The image(a) is split into different overlapping partitions(b).
Feature extraction processes(c) are run on these regions independently, the
feature vectors are merged(d) into one resulting vector(e).

every object as the chance of mismatches increases with
bigger KD-trees. Actually this partial aspect is a tradeoff
between accuracy and speed and will not be considered any
further within this work.

C. Distributed feature detection

The elements described so far in combination with basic
elements of GStreamer allow us to match the feature vector
of one image against many objects. Results of this analysis
will be sent to the higher-level robot control that integrates
this information in its task planning process. Anticipating
the results of the performance analysis, the extraction process
take a lot of processing time. Therefore we analyzed ways of
speeding it up. One possibility is to split the input image into
several partitions and run the feature extraction process on
each of them independently. The general problem here is that
SIFT features are selected and described by their neighbor-
hood. Especially the features at the border could be skipped
or described incorrectly. Therefore we add an overlap to
each image region. After being processed on different paths,
the different feature vectors are merged in another element
that checks whether features in the overlapping regions are
duplicates. The principle of distributed feature detection is
shown in Fig. 2.

Tests so far yielded no negative influence on the detec-
tion quality. Sometimes additional features are chosen as
significant and get included in the resulting vector. This is
because finding features is a process of building a Gaussian
pyramid and calculating the difference of Gaussians. This
implies that a large neighborhood has influence on the choice
of key-points. In general, SIFT-based object detection is a
probabilistic process with a lot of parameters. From tests
it can be assumed that it works reliably, but it cannot be
guaranteed. As the SIFT algorithm is developed to allow
matching under difficult circumstances like partial occlusion
of the object or different backgrounds, it can be assumed that
the detection quality will not suffer from this measure.

Splitting and processing in different paths can also be
applied to different image processing strategies like convolu-
tion. Here the possibility of adding overlaps is also necessary.
In the described examples splitting is done along a horizontal
axis. It could also be configured to be done along the vertical
axis, but this would be less efficient. Due to the fact that

Fig. 3. This figure shows the first two setups of the processing pipelines.
The actual pipelines need some more elements like format converters,
queues and additional timestamp comparators. Also, the redistribution of the
feature vector is not shown. The smart camera system (left side) calculates
feature vectors that are sent to the systems in the surroundings (Setup 1,
top). At the end of the pipeline the timestamp of the source data is compared
to the current time.
Within the second setup (bottom) the smart camera splits the images of
the video stream and transmits these streams independently to different
dedicated embedded systems on the robot. After the resulting feature vector
is calculated, it is treated like in the first setup.
Elements that are used in this setup:
SRC: access to the camera driver libraries, generating raw image data
SIFT: extracts feature vectors of images
MAT: matches sets of feature vectors, calculates transformation
MER: merges two feature vectors, eliminates duplicates
FILE: reads file(s)
TCP: transmits data through a TCP connection
TIM: compares the timestamp of data to current NTP time

images are stored in the memory line by line, the single slices
can still use the same memory region. Thus no additional
copy operations need to be done on splitting.

V. EXPERIMENTAL RESULTS

Our implementations are tested with the commercially
available smart camera Basler “eXcite exA1390-19c”. This
camera can be regarded as a prototype for a future type
of smart cameras. A plugin integrating the camera in the
GStreamer framework has also been developed. A Gigabit
Ethernet switch is installed on the robot to connect all the
different systems. If the robot needs to transfer data to
systems in the surroundings, the WLAN connection needs to
be used. As a first test, the data-rate of the WLAN connection
(802.11g) is measured, because it will have influence on the
results of the tests. Therefore the robot is placed at different
positions in its workspace. The test is done measuring the
speed of a TCP data transfer. In places near the access point,
the data rate nearly stays constant at about 2.2 MB/s. In
borders of the workspace it drops to 1.4 MB/s. The following
experiments are carried out in regions where the signal
quality is good.

We compare four possible setups of the feature detection
process. For these tests we are searching for 100 objects in
parallel. Different systems take part in the image processing
tasks. The first two setups are explained in Fig. 3, the setups
of the latter ones are similar.
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A. Setup 1: Preprocessing on the Intelligent Camera System

In the first setup, SIFT vectors of the captured images
are directly computed on the intelligent camera system and
then analyzed in a cloud of computer systems. This setup
pursues the goal of directly reducing the amount of data and
taking advantage of the computing power of the smart camera
system as much as possible. Instead of image data the camera
will put out a vector of detected features. Thus the amount
of data will be far beyond the amount of transmitting raw
images. Within our framework we will set up an element
that transmits the detected feature vector.

We distribute the matching process over eight systems in
the network (Core 2 Duo, 2.4 GHz). Each of these systems
generates sets of feature vectors of the objects to be detected
and tries to find matches to the current feature vector. To keep
the load on the wireless network as low as possible, one of
these systems is used to redistribute the feature vector to all
other systems. The feature matching task with the goal of
detecting 100 objects is distributed to the eight systems the
way that the processing times on the systems are similar.
Depending of the type of the object the complexity of the
matching process varies.

B. Setup 2: Extended Preprocessing on Dedicated Systems

The second setup uses additional hardware on the service
robot TASER. Two dedicated laptop computer with dual-core
processors (Core 2 Duo, 2.2 GHz) are installed on the robot
and can be used to compute the SIFT-vectors of the images.
Here the smart camera is used to split the image in two
regions that are analyzed on the two laptops independently.
On each laptop they are split again into two parts to take
advantage of the dual-core architecture. The SIFT-vectors are
collected on one of the systems, analyzed for duplicates in
the overlapping region and merged into one vector that is
treated the same way as in the first example. This setup can
also be seen as a simulation of future types of smart camera
systems that feature more powerful processors.

C. Setup 3: Transmission of Raw images

In the third setup the complete set of processing functions
will be run on networked systems, so that the full images
need to be transmitted over the wireless network connection.
Within this setup the smart camera acts like a conventional
Ethernet camera. The dedicated laptop systems as they are
described in setup 2 are connected to the stationary network
in the surroundings of the robot. From the point of view of
system configuration this test is similar to setup 2 with the
difference that no preprocessing will be done on the robot
platform. By comparing these setups we want to show the
advantages of preprocessing directly on the robot system.

D. Setup 4: Processing on the Control PC of TASER

Within the fourth setup, all functions are run on the
control PC of the service robot (Intel Pentium 4, 2.4 GHz).
In this setup, the camera is also configured to apply no
preprocessing to image data. This setup is used to compare
our approach to the classical approach of computing all

image processing functions on the control PC. This PC is
running several real-time critical tasks that load the system
to about 60 % so the available computing capabilities are
strongly limited.

E. Results

Within testing procedures it emerged that image content
has a significant influence on the feature extraction time.
The more features are found, the higher is the effort to
calculate them. Therefore for all benchmarks the robot will
analyze the same table scene. The processing steps are
analyzed individually for their duration. The extraction step
is declared to be finished when all parts of the feature vector
have been merged together. Matching is finished, when the
last system has finished its part of the matching procedure.
The data transfer concludes all steps like transferring data
from the camera to systems on the robot, wireless data
transfer from the robot to stationary systems as well as
transfer of the results to the control PC of the robot.

Setup Extraction Matching Data Transfer
1 6781ms 381ms 16ms
2 269ms 376ms 62ms
3 274ms 383ms 695ms
4 4110ms 10428ms 50ms

The sequence of processing steps with their durations
is also shown in Fig. 4. Compared to the setup where all
processing functions are run on the control PC of the service
robot, the distributed processing approach yields significant
advantages. The total duration until results of scene
interpretation are available could be reduced from 14.6 s to
0.7 s. Therefore it becomes possible to do scene recognition
without generating noteworthy delay. The biggest advantage
is achieved by distributing the task of feature matching to
several systems. This approach is scalable in great measure,
so even more systems could be integrated or the database
of objects could be extended. Distributed feature extraction
also contributes to the performance of the overall system.
By way of comparison the feature extraction on the full
image has been carried out on one of the same system and
took about 622ms. On the control PC of the service robot
it took about 2 s without any additional load. A further
advantage of our approach is that the amount of data that
is transmitted over the wireless connection is reduced by
preprocessing (setup 1 & 2). This leads to a lower latency
and ensures that enough bandwidth will be available for
other tasks. The results also show that the processing
power of the currently used smart camera system is too
low in consideration of the complexity of recent image
processing functions. If the camera would provide a more
powerful CPU, results like those of the second setup could
be achieved without the need for additional systems. The
tests can also be seen as a demonstration of the flexibility
of our developed architecture since all the different complex
tests were set up using just few basic processing elements.
A visualization, where the detected objects and the matches
are overlayed above the image is shown in Fig. 5.
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Fig. 4. This figure shows the results of timing analysis of the different
setups and the overall latency. Significant data transfer time occurs only in
the third setup.

Fig. 5. This images shows a table scene with detected objects and the
matches between features of the model and the corresponding ones of the
image. Some mismatches occur but due to the high amount of correct
matches these can be filtered out.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented how our framework for in-
telligent camera systems can be used to distribute parts of
the image processing functions to different systems via a
network connection.

The image processing functions on the camera systems and
further systems can be adapted according to the current task
of the robot. We showed different configurations where the
overall system is configured to detect objects based on SIFT-
features. The latency could be reduced significantly using the
computing capabilities of desktop PCs in the surroundings
and additional dedicated systems on the robot. This way
the robot system is now also able to build a model of its
environment online without interrupting its workflow.

As current smart camera systems provide strongly lim-
ited computing capabilities, we presented some benchmarks
where dedicated mobile computer systems were also installed
on the robot platform to simulate future types of camera
systems. Due to the portability of our framework we could
easily take advantage of additional computing power by a
simple reconfiguration of processing elements.

As a future extension, it is planned to integrate GPU-based

implementations into our architecture. The modular approach
makes it easy to exchange the the processing elements while
keeping the rest of the pipeline configuration. Therefore
we could take advantage of systems in the network with
high performance GPUs, but it is also thinkable that future
types of cameras will provide chipsets that feature GPUs for
general purpose computing tasks.
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