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Abstract— A pentapod is usually defined as a 5-degree-of-
freedom fully-parallel manipulator with an axial spindle as
moving platform. This kind of manipulators have revealed as an
interesting alternative to serial robots handling axisymmetric
tools. Their particular geometry permits that, in one tool axis,
inclination angles of up to 90 degrees are possible thus over-
coming the orientation limits of the classical Stewart platform.

This paper presents a solution to the problem of finding those
changes in the location of the leg attachments of a pentapod
that leave its singularity locus invariant. Although the solution
to this problem does not provide a fully characterization of the
singularities, it provides a lot of insight into its nature. It is
shown, for example, that there are four different architectures
for a pentapod with a completely different behavior from the
point of view of their singularities.

The kinematics of pentaponds with coplanar attachments at
the fixed base has previously been studied as rigid subassemblies
of a Stewart platforms. In this paper, we treat the general case
in which the base attachments are arbitrarily located in 3D
space.

Index Terms— Pentapod, fully-parallel robots, singularities,
singularity-invariant transformations.

I. INTRODUCTION

The Stewart platform consists of a base and a moving plat-

form connected by six UPS (Universal-Prismatic-Spherical)

legs, where the underline indicates that the prismatic joint

is actuated. Thus, it is usually referenced to as a 6-UPS,

or equivalently as a 6-SPU, parallel mechanism [7]. If one

of these legs is eliminated to obtain a 5-DoF parallel robot,

the resulting platform is clearly uncontrollable. For example,

if the universal joints are properly aligned, the moving

platform can freely rotate around the axis defined by these

five aligned universal joints. Nevertheless, observe that in

this particular case the uncontrolled motion is irrelevant

in some applications. Indeed, there are important industrial

tasks requiring a tool to be perpendicular to a 3D free-from

surface along a given trajectory without caring about its

axial orientation. They include, for example, 5-axis milling,

laser-engraving, spray-based painting, and water-jet cutting.

In this context, the study of the kinematics properties of 5-

SPU parallel robots with collinear universal joints becomes

highly relevant for many applications [9]. Kong and Gosselin

refer to this particular arrangement of five legs as a line-

body component as it can always be considered as a rigid

subassembly in a standard Stewart platform [4]. We will refer

to it simply as a pentapod.
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Fig. 1. A 5-axis milling machine, based on a pentapod, developed by
Metrom Mechatronische Maschinen GmbH (reproduced with permission).

There are some variations on the basic described pentapod

that consists in substituting the universal joints by two

consecutive revolute joints. The axes of the last revolute

joints remain collinear with the axis of the tool while the

axis of the other revolute joint axis no longer intersect

with the tool axis. This is the joint arrangement used by

Metrom in its Pentapod machine (Fig. 1). This arrangement

simplifies the construction of the resulting pentapod but its

kinematic analysis is far from trivial. Actually, the solutions

to its direct kinematics are given by the roots of a system

of 5 polynomials of degree 4 together with a quadratic

normalizing condition. Therefore, the number of solutions

is not greater than 2048 [1], [10]. When this number is

compared to the 16 possible direct kinematic solutions of

the basic pentapod, one also gets an idea of the relative

complexity between the singularity loci of the basic and the
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modified design.

In this paper, we concentrate ourselves in the analysis

of the singularities of the basic design which, despite its

practical interest, has received little attention in the past.

Indeed, most of the related previous works deal with the

case in which the spherical joints are coplanar. For example,

Zhang and Song solved the forward kinematics problem for

the coplanar case showing that it can have up to 8 assembly

modes [11]. Husty and Karger studied the conditions for a

pentapod with coplanar spherical joints to be architecturally

singular [3]. More recently, Borràs and Thomas analyzed the

role of cross-ratios between the location of the leg attach-

ments in the characterization of architectural singularities,

and in singularity-invariant architectural changes, also for the

coplanar case [2].

The characterization of the singularities of spatial parallel

mechanisms is, in general, a difficult task. To obtain this

characterization, we will follow an indirect approach: we will

find those changes in the location of the leg attachments of

a pentapod that leave its singularity locus invariant.

Even when there is no known solution to a given math-

ematical problem, it is always possible to try to find the

set of transformations to the problem that leave its solution

invariant. Although this does not solve the problem itself, it

provides a lot of insight into its nature. This way of thinking

is at the root of the development of Group Theory and it is the

one applied herein for the characterization of the singularity

loci of pentapods.

The paper is organized as follows. The next section

presents a new formulation for the characterization of the sin-

gularities of a pentapod. Section III presents a solution to the

problem of changing the location of the attachments of one of

the legs of the pentapod without altering its singularity locus.

Section IV shows that there are four different architectures

for a pentapod attending to the characteristics of the possible

locations for the base attachment of the new leg in these

singularity-invariant leg substitutions. Section V presents

three examples corresponding to three different architectures.

Finally, Section VII summarizes the main contributions.

II. THE SINGULARITIES OF A PENTAPOD

Let us consider a Stewart platform containing a pentapod,

that is, a Stewart platform with five collinear attachments

on its moving platform. Let Λ denote the line to which

these collinear attachments are incident. According to Fig. 2,

the pose of Λ is defined by a position vector of a point

in it, p = (px, py, pz), and a unit vector, i = (u, v, w),
pointing in its direction. Finally, let leg i have base and

platform attachments with coordinates, in the base reference

frame, ai = (xi, yi, zi)
T and bi = p + rii, i = 1, . . . , 5,

respectively. In what follows, the base reference frame is

chosen, without loss of generality, such that x1 = y1 =
z1 = r1 = 0.

It is well-known that the singularities of a Stewart platform

are given by the determinant of the Jacobian matrix whose
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Fig. 2. Notation associated with a pentapod.

rows are the Plücker coordinates of the leg lines [6]:

J =







cT
1

...

cT
6






where ci =

(

bi − ai

ai × (bi − ai)

)

. (1)

Then, substituting the point coordinates in terms of the

introduced notation,

ci =

















px + riu − xi

py + riv − yi

pz + riw − zi

zi(py + r1v) − yi(pz + riw)
xi(pz + r1w) − zi(px + riu)
yi(px + r1u) − xi(py + riv)

















(2)

for i = 1, . . . , 5.

It is also well-known that when a Stewart platform

contains rigid components, the determinant of its Jacobian

factors into several terms. For the analyzed Stewart platform,

the Jacobian determinant factors as follows:

det(J) = F1(c1, ...c5)F2(c6), (3)

where the factor F2(c6) depends only on geometric param-

eters of the sixth leg and platform pose parameters, so the

factor F1(c1, ...c5) accounts for the singularities of the penta-

pod embedded in the considered platform. It can be checked,

using a computer algebra system, that F1(c1, ...c5) —the

singularity polynomial of the pentapod— can be expressed

as the determinant of the following matrix:

S =





















1 u v w px py pz

0 px py pz 0 0 0
0 0 0 0 u v w

r2 x2 y2 z2 r2x2 r2y2 r2z2

r3 x3 y3 z3 r3x3 r3y3 r3z3

r4 x4 y4 z4 r4x4 r4y4 r4z4

r5 x5 y5 z5 r5x5 r5y5 r5z5





















. (4)
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This is a very convenient representation of the singularities

of a pentapod because the first three rows depend only on

its pose and the remaining four, on the coordinates of the

attachments.

Let Ŝ denote the 4×7 matrix formed by the last four rows

of S. Since the coefficients of the singularity polynomial of

the pentapod are the 4 × 4 minors of this matrix, we can

conclude this section with the following two observations:

1) If Ŝ is rank defective, the pentapod will always be

singular irrespective of its leg lengths. In other words,

it will be architecturally singular [5].

2) If one of the four rows of Ŝ is substituted by another

row linearly dependent on these four row vectors, the

resulting matrix will have the same 4×4 minors up to

a constant multiple. This observation will allow us, in

the next section, to obtain leg substitutions that leave

the pentapod singularities invariant.

III. SINGULARITY-INVARIANT LEG SUBSTITUTIONS

We are interested in substituting leg i by another leg with

base and platform attachment coordinates a = (x, y, z)T and

b = pT + riT , respectively. Next, we deduce the conditions

that (x, y, z, r) must satisfy to leave the singularities of the

pentapod unaltered. To this end, consider the matrix

P =













r2 x2 y2 z2 r2x2 r2y2 r2z2

r3 x3 y3 z3 r3x3 r3y3 r3z3

r4 x4 y4 z4 r4x4 r4y4 r4z4

r5 x5 y5 z5 r5x5 r5y5 r5z5

r x y z rx ry rz













(5)

and take (x, y, z, r) such that P is rank defective. Then,

we can substitute any row in Ŝ by (r, x, y, z, rx, ry, rz) so

that all the 4 × 4 minors of the resulting matrix will be

equal to those of Ŝ up to a constant multiple. Hence, the

corresponding singularity polynomial will be also the same,

up to a constant factor. In other words, if any of the legs of

the analyzed pentapod is substituted by another leg whose

attachments coordinates are defined by a set of values for

(x, y, z, r) that make P rank defective, the singularity locus

of the pentapod will remain unchanged.

If Gaussian Elimination is applied on P1, the last row of

the resulting matrix is:

1

P567

(

0 0 0 0 0 P67 P57 P56

)

,

where Pij is the determinant of the matrix obtained from P

after removing the columns i and j, and Pijk the determinant

of the matrix formed by the first four rows of P after

removing the columns i, j and k. Then, assuming that

1Gaussian Elimination uses elementary row operations to reduce a given
matrix into a rank-equivalent one, with an upper triangular shape. Then,
rank deficiency occurs when all the elements of the last row are zero.

P567 6= 0, P is rank defective if, and only if,

P67 =
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(6)

Since this system is linear in x, y, and z, it can be

rewritten, after cofactor expansion, in matrix form as:
(

P267 − P567r −P367 P467

P257 −P357 − P567r P457

P256 −P356 P456 − P567r

)(

x

y

z

)

=

(

P167r

P157r

P156r

)

,

(7)

whose solution, using Crammer’s rule, yields:
{

x =
f1(r)

f(r)
, y =

f2(r)

f(r)
, z =

f3(r)

f(r)

}

, (8)

where f(r), f1(r), f2(r) and f3(r) are cubic polynomials in

r. Thus, it can be concluded that all singularity-invariant leg

substitutions will be defined by a correspondence between

points on Λ and points on a cubic space curve attached to

the base.

IV. DEGENERATE CASES

In this section, we analyze the case in which the determi-

nant of the linear system (7) is null, i.e., the case in which

the solutions given by (8) are undefined because f(r) = 0.

In this case, two situations arise:

1) System (7) is consistent. One of the equations can be

discarded and, for a given value of r, infinitely many

solutions can be found for (x, y, z) which correspond

to points of a line (as they correspond to the intersec-

tion of two planes).

2) System (7) is inconsistent. It represents a system of

three parallel planes.

If the determinant of the linear system (7) is null, the

system is consistent if, and only if, f1(r) = 0, f2(r) = 0, or

f3(r) = 0. Let us suppose that r0 is a real root of f(r) = 0
that makes the system consistent. Then, if one of the platform

attachments of the new leg is placed at b0 = p + r0i, the

corresponding base attachment can be placed at any point on

the corresponding line in the base. This situation is interest-

ing to build reconfigurable robots where the attachments can

be rearranged on actuated guides following the singularity-

invariant lines. This allows the manipulator to reconfigure
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itself for different tasks, increasing its useful workspace and

maintaining the singularities always at the same location.

TABLE I

THE 4 POSSIBLE ARCHITECTURES FOR A PENTAPOD

Number of consistent Base attachment locus
real roots

0 1 cubic curve

1 1 line and 1 plane conic

2 3 non-concurrent lines

3 3 concurrent lines

We can classify the possible architectures of a pentapod

depending on the number of real roots of f(r) = 0 that lead

to a consistent linear system. Depending on this number, the

cubic curve obtained for the general case degenerates into

a plane conic curve and a line, or a set of lines. Table I

summarizes the different possibilities.

V. EXAMPLES

A. Generic Case: No Consistent Real Roots

TABLE II

COORDINATES OF THE ATTACHMENTS, ai = (xi, yi, zi) AND

bi = p + rii, FOR A PENTAPOD WITH GENERIC ARCHITECTURE

i xi yi zi ri

1 0 0 0 0
2 6 0 10 1
3 13 10 12 3
4 9 16 7 5
5 −3 16 3 7

Consider the pentapod with the attachment coordinates in

table II. Substituting them in (7), we get
(

288r − 6612 6306 5676
−3136 288r + 3904 3520
1076 −2306 288r − 1484

)(

x

y

z

)

=

(

18816r

16384r

−5504r

)

,

(9)

whose determinant is 2654208(9r3 − 131r2 − r − 1365).
The roots are 15.22, −0.33+3.14i, and −0.33− 3.14i. The

evaluation of system (9) for r = 15.22 yields an inconsistent

linear system. As a consequence, the base attachment locus

for a leg substituting any of the legs of the analyzed pentapod

that would leave its singularity locus invariant is a cubic.

Solving (9) using Crammer’s rule gives

x =
12r(49r2 − 240r − 553)

9r3 − 131r2 − r − 1365
,

y =
256r(−23r + 2r2 + 21)

9r3 − 131r2 − r − 1365
,

z =
−4r(−880r + 4557 + 43r2)

9r3 − 131r2 − r − 1365
.

(10)

Fig. 3 shows the manipulator and the cubic curve defined

by these equations. All legs in gray satisfy the correspon-

dence between r and (x, y, z) through the above curve

parameterization, so any of the original pentapod legs can be

substituted by any of these legs in gray without modifying

the singularity locus of the analyzed pentapod.

Fig. 3. In general, a singularity-invariant leg substitution is defined by
a 1-1 correspondence between the points on the moving platform and the
points on a cubic attached to the base. Some candidates for a leg substitution
appear in gray.

B. Degenerate Case: Three Consistent Real Roots

TABLE III

COORDINATES OF THE ATTACHMENTS, ai = (xi, yi, zi) AND

bi = p + rii, FOR A PENTAPOD WITH DEGENERATE ARCHITECTURE

i xi yi zi ri

1 0 0 0 0
2 0 0 0 2
3 2 2 −2 4
4 4 −4 −4 5
5 0 −4 −4 6

Consider the pentapod with the attachment coordinates in

Table III. Substituting them in (7), we get





2304 − 512r −128 128
−256 2688 − 512r 384
256 384 2688 − 512r









x

y

z



 = 0

(11)

whose determinant is −134217728(r − 5)(r − 6)(r − 4).
All the roots are real and make the system consistent. This

system has the trivial solution x = y = z = 0 for any value

of r. In other words, any leg can be substituted, without

modifying the singularities of the analyzed pentapod, by any

other with attachments located at (0, 0, 0) in the base and

anywhere in the moving platform.

Now, consider one of the above roots, for example r = 4.
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s

a3 a4

a5

a1 = a2
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b4

b5

b2 = b3

(b)

a3 a4

a5

a1 = a2

b1

b4

b5

b2 = b3

(c)

Fig. 4. Example of a pentapod with degenerate architecture. In this case the
cubic curve degenerates into three lines. The base attachments can be moved
along these lines without modifying the singularity locus of the pentapod
(a). This permits coalescing two attachments in the moving platform (b), or
two attachments in the base and the platform at the same time (c).

The substitution of this value in (11) yields

2x − y + z = 0
2x − 5y − 3z = 0
2x + 3y + 5z = 0







which is a consistent linear system. That is, the three plane

equations intersect at the same line. Solving this system for

x and y leads to a parametrization of such line: {(x, y, z) |
x = −t, y = −t, z = t, t ∈ R}. Proceeding in a similar

way for the other two roots, we obtain two more line

parameterizations. Summarizing, we have four solution sets,

namely:

s1 = {(x, y, z, r) | r = 4, x = −t, y = −t, z = t, t ∈ R}
s2 = {(x, y, z, r) | r = 5, x = t, y = −t, z = t, t ∈ R}
s3 = {(x, y, z, r) | r = 6, x = 0, y = t, z = t, t ∈ R}
s4 = {(x, y, z, r) | r = t, x = 0, y = 0, z = 0, t ∈ R}

In Fig. 4-(a), the legs in gray have attachments whose

coordinates are in one of the above solution sets. The

legs with platform attachments coordinates b3, b4 and b5

correspond to solutions in s1, s2 and s3, respectively. The

solution set s4 corresponds to legs with base attachment at

(0, 0, 0) and platform attachment anywhere in the moving

platform line.

Several equivalent manipulators, from the point of view of

their singularities, can be obtained by substituting only leg 2.

For example, in Fig. 4-(b), this leg has been substituted by a

leg whose attachments coordinates are in s1. Its attachments

are a2 = (4, 4,−4) and b2 = p+4i, thus making coincident

b2 and b3. In Fig. 4-(c), leg 2 has been substituted by a leg

whose attachments coordinates are in s4. In this case, the new

attachments have coordinates a2 = (0, 0, 0) and b2 = p+4i
thus making coincident a1 with a2, and b2 with b3.

If actuated guides are placed on the lines defined by s1, s2,

and s3, the manipulator can reconfigure its base attachments

following singularity-invariant leg rearrangements. This in-

creases its usable workspace because, though singularities

remain unchanged, its stiffness does change at each recon-

figuration, so that it can be optimized for each specific task

at different regions of the workspace.

C. Degenerate Case: One Consistent Real Root

TABLE IV

COORDINATES OF THE ATTACHMENTS, ai = (xi, yi, zi) AND

bi = p + rii), FOR A PENTAPOD WITH DEGENERATE ARCHITECTURE

i xi yi zi ri

1 0 0 0 0

2 −2 2
√

3 −1 1

3 −9 4
√

3 −3 3
4 −8 0 −1 5

5 −6 −2
√

3 0 7

Consider the pentapod with the attachment coordinates in

Table IV. Substituting them in (7), we get
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Fig. 5. One consistent real root results in a base attachment locus formed
by a line and a conic.





√
3(−18r + 70) 84 40

√
3

−144 18
√

3(1 − r) 72
20

√
3 24

√
3(50 − 18r)





(

x

y

z

)

=

(

24r
√

3
216r

−24r
√

3

)

.

(12)

The solution of the above system, obtained using Crammer’s

rule, is

x =
−4r(r + 11)

3r2 − 14r + 35
,

y =
−12r(r − 5)

√
3

3r2 − 14r + 35
,

z =
4r(r − 7)

3r2 − 14r + 35
.

(13)

which corresponds to a conic parameterized in r.

The determinant of system (12) is −5832
√

3(3r2 − 14r +
35)(r−3). The only real root is r = 3. After evaluating (12)

for this real root, a consistent degenerate system is obtained

whose solution is:
{

r = 3, x = t − 6, y = −2(t − 3)
√

3

3
, z = t

}

, (14)

which corresponds to a line parameterized in t.

In summary, the locus of the base attachments consists of

a line and a conic (see Fig. 5).

VI. CONCLUSIONS

In this paper, we have introduced a new representation

of the singularity polynomial of a pentapod. This new

expression reveals to be very convenient because, among

other properties, it allows to easily define leg substitutions

that keep singularities invariant.

Although finding singularity-invariant leg substitutions

does not solve the problem of characterizing the singularities

themselves, it provides a lot of insight into its geometric

nature. In this context, the obtained leg substitutions are of

practical interest for two main reasons:

1) If the singularity locus of the pentapod at hand has

already been characterized, it could be interesting to

modify the location of its legs to optimize some other

characteristics without altering such locus.

2) If the singularity locus of the analyzed pentapod has

not been characterized yet, it could be of interest to

simplify its geometry by changing the leg attachment

locations, as it has been shown in the example pre-

sented in Section V-B, thus easing the task of obtaining

this characterization.

We have also shown that for any pentapod there is an

intrinsic correspondence between the points on the moving

platform line and the points on a cubic curve placed on the

fixed base. This characterization permits to study degenerate

cases that present interesting practical applications.
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