
Monocular Graph SLAM with Complexity Reduction

Ethan Eade, Philip Fong, and Mario E. Munich
Evolution Robotics

Abstract— We present a graph-based SLAM approach, using
monocular vision and odometry, designed to operate on compu-
tationally constrained platforms. When computation and mem-
ory are limited, visual tracking becomes difficult or impossible,
and map representation and update costs must remain low. Our
system constructs a map of structured views using only weak
temporal assumptions, and performs recognition and relative
pose estimation over the set of views. Visual observations are
fused with differential sensors in an incrementally optimized
graph representation. Using variable elimination and constraint
pruning, the graph complexity and storage is kept linear in
explored space rather than in time. We evaluate performance
on sequences with ground truth, and also compare to a standard
graph SLAM approach.

I. INTRODUCTION

Visual localization and mapping is attractive for a variety
of applications due to the rich input and the low cost and
footprint of visual sensors. The difficulties lie in robustly
extracting a critical subset of information from the high-
rate visual data stream and processing it efficiently to yield
useful output. Despite steady increases in the computational
power of most platforms, such challenges are nonetheless
exacerbated by the limited processing and storage provided
by low-cost, embedded systems appropriate for low-power
applications or consumer products. Many state-of-the-art
approaches to visual SLAM depend on a per-frame process-
ing rate sufficiently high, relative to the speed of camera
motion, to permit strong temporal assumptions on the image
sequence. Additionally, common constraint graph SLAM
methods for agglomerating sensor information often incur
computation and storage costs that grow with time, rather
than with space explored. For a robot operating for extended
periods within a limited spatial area – typical of practical
applications – this is an undesirable trade-off.

This paper presents an approach to visual localization and
mapping designed for a low-cost robotic platform equipped
with simple odometry and a single camera. Operating pri-
marily as a recognition engine, the visual measurement
subsystem requires only occasional, weak assumptions on
processing rate, and intrinsically provides robust loop closing
when previously mapped areas are revisited. The visual mea-
surements and odometry are fused in a graph representation
and optimized incrementally. Our main contributions are
techniques for bounding the SLAM graph complexity during
operation, using variable elimination and constraint pruning
with heuristic schedules. These methods keep optimization
and storage costs commensurate with explored area rather
than with time of exploration, while causing minimal loss in
mapping and localization accuracy.

An instantiation of the approach is evaluated on real
datasets with planar ground-truth reference, showing that
the system operates successfully even at frame rates below
2 Hz. Comparing the results with and without complexity
reduction demonstrates that the reduced graph yields similar
localization accuracy at a small fraction of the computational
cost.

II. RELATED WORK

A. View Recognition for SLAM

View recognition engines have proven attractive compo-
nents for SLAM systems because they permit robust and
flexible loop closing. Instead of making correspondences
between individual features or measurements, visual or other-
wise, view recognition engines typically match constellations
of features or entire images, without requiring tracking.

Williams et al.[18] rely on tracking for normal EKF SLAM
operation, but use view recognition to recover from failure.
Several features are matched to the existing map using
appearance and structure constraints in order to reinitialize
tracking.

The Parallel Tracking and Mapping (PTAM)[8] system
also employs view recognition for recovery from tracking
failure. Instead of using feature-based methods for identify-
ing candidate views, the system instead performs image-to-
image correlation using heavily blurred, low resolution ver-
sions of the reference and query images. A crude pose esti-
mate is deduced from the result of the inverse-compositional
matching, and tracking resumes.

Eade and Drummond[3] group subsets of features into
local maps during tracking-based SLAM, and correspon-
dences are made between local maps to connect them or to
recover from tracking failures. The image-to-map matching
first selects a subset of local maps to consider using a
bag-of-words ranking, and then performs local matching
to determine feature-to-feature correspondences. This two-
step process is common to many view recognition systems,
often instantiated as a bag-of-words prefilter followed by re-
ranking using geometric constraints[15].

The above approaches rely on tracking and use view
recognition as an out-of-band method for failure recovery.
Our approach instead performs recognition at every time
step as the primary source of observations. The system of
Karlsson et al.[7] is similar, constructing landmarks out of
constellations of SIFT[12] features and employing nearest
neighbors and a simple Hough transform as the recogni-
tion algorithm. The work of Cummins et al.[1] takes a
more sophisticated approach to recognition, building a visual

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 3017



vocabulary offline and approximating the joint probability
distribution of visual words with a Chow-Liu tree. Each
view’s appearance model is updated upon recognition.

Our view recognition front end bears many similarities to
the view-based maps of Konolige et al.[10]. That system
constructs views from stereo images, and performs two-
step recognition using first a vocabulary tree and then a
geometric matching stage. Views (called skeleton frames)
are constructed from the output of visual odometry, which
requires a frame-rate sufficient for tracking. We require
only monocular imagery, constructing structured appearance
models from two matched views of the same scene. While
Konolige et al. use randomized tree signatures for feature
matching, we use a simple variant on SIFT features and a
local and global feature databases.

B. Graph-based SLAM

Storing observations and poses in a constraint graph is
now a well-explored technique for localization and map-
ping. The graph formulation provides a straightforward and
flexible representation of the underlying Gaussian Markov
random field (GMRF) problem that SLAM attempts to solve.
The general framework is described in [16], including a
description of a graph relaxation procedure identical to
batch bundle adjustment in photogrammetry[17]. Relaxation
algorithms for SLAM graphs have received much attention,
especially with online operation in mind. Olson et al.[14]
suggest a stochastic gradient descent method, and Grisetti et
al.[5] reviews that and related methods for incremental graph
optimization.

The system of Eade and Drummond[2] forms a graph
where each node is a joint distribution over a local map, and
the relative nonlinear constraints between nodes are derived
from shared features. The graph is relaxed by imposing
cycle constraints using preconditioned gradient descent. The
network constructed by PTAM is effectively a graph of rela-
tive constraints between keyframes, though the optimization,
performed asynchronously to the primary tracking task, acts
on individual structure elements.

The view-based mapping of Konolige et al.[10] constructs
a reduced graph of poses by consolidating consecutive frames
tracked by visual odometry into skeleton frames. Then the
constraint graph over skeleton frames is incrementally re-
laxed using the Toro method[6].

While existing graph-based SLAM methods employ in-
cremental graph optimizers to allow online operation, the
number of poses in the graph continues to grow with time.
One technique suggested for bounding this growth is that the
robot be occasionally virtually “kidnapped”, disconnecting
its current pose in the graph from previous poses and
re-inserting it in using only recent observations[6]. This
assumes both that the recent observations are sufficiently
accurate to allow relocalization, and that the effective uncer-
tainty of these observations is zero. These assumptions are
routinely violated in practice, especially in visual systems,
where the accuracy and uncertainty of relative pose estimates
depends heavily on viewpoint and scene structure.

Front End Back End

Camera

Differential 
Motion

Estimates

View
Creation

View
Recognition

Global
Appearance
Database

Views

SLAM
Graph

Graph
Construction

Graph
Reduction

Graph
Optimization

Relative 
Pose

Estimates Localization

Fig. 1. System structure overview

We instead apply probabilistically sound graph reduction
methods that limit the complexity of the graph to a linear
factor of the complexity of the explored space. Past poses
of the robot that are not used for view recognition can be
marginalized out of the estimation, and their incident con-
straints are collapsed back into the graph. The marginaliza-
tion procedure, equivalent to the update step of the Kalman
filter or the variable elimination step of the GraphSLAM
algorithm, is described by Konolige in [9].

To our knowledge, the only other work using marginaliza-
tion to systematically limit graph complexity in existing sys-
tems is the very recent work of Kretzschmar et al.[11], which
employs an approximation rather than exact marginalization.
The approximate form is used to bound edge connectivity in
the graph. In contrast, we selectively prunes edges incident
to nodes of high degree, removing their constraints from the
GMRF in a conservative manner. The adaptive application
of marginalization and edge removal, discussed in Section
VIII, constitutes a primary contribution of this paper.

III. SYSTEM OVERVIEW

The input to the system is a sequence of images from
the camera and a sequence of differential motion estimates,
derived from wheel odometry measurements or other differ-
ential sensors. We refer to these differential measurements
collectively as odometry. The system outputs an incremen-
tally updated estimate of the device’s current pose (localiza-
tion) and estimates of a subset of its previous poses during
operation (mapping).

Two high-level components constitute the system: the
visual recognition front end and the constraint graph SLAM
back end (Figure 1). The front end processes the video
stream, yielding a global appearance database, a set of struc-
tured local appearance models called views, and a sequence
of pose estimates relative to these models. The back end
fuses the relative pose and differential motion estimates
together in a graph representation, incrementally optimizing
and distilling it synchronously with updates. The graph nodes
include estimates of current and selected previous poses of
the robot.

The front end inherently yields 6DoF relative pose es-
timates and 3D structured views; the back end can be
instantiated in 3DoF for planar robot motion or 6DoF in
the general case. This paper shows results for the 3DoF case
(Section IX).

3018



Task Core2 Atom ARM9
(2.4GHz) (1.6GHz) (266MHz)

Pyramid (ms) 2.0 9.1 42
Detector (ms) 0.6 2.0 8.9

Descriptors (µs / desc) 14 81 219

TABLE I
TIMINGS FOR SIFT FEATURE COMPUTATION

IV. VIEWPOINT INVARIANT FEATURES

The view recognition engine identifies previously con-
structed appearance models from novel viewpoints, based
on correspondences between image features. Thus the image
features themselves must have a representation robust to
viewpoint and lighting changes. Any efficient feature de-
tector/descriptor combination providing these properties is
suitable for this purpose.

We employ difference-of-Gaussian (DoG) interest points
and reduced-dimension SIFT[12] descriptors. Our descriptors
are computed similarly to 128D SIFT descriptors, but using
a 3 × 3 spatial grid and four angular histogram bins per
cell, instead of the 4 × 4 grid and eight angular bins of
the standard configuration. We have determined empirically
through recognition tasks that these 36D descriptors perform
nearly as well as the higher-dimensional variants, but with
reduced memory and computational costs.

The detection and description algorithms can be imple-
mented efficiently. Table I shows the computational viability
of our implementation on different platforms.

V. VIEW CREATION

The view creation process extracts from the image se-
quence a set of structured appearance models, consisting
of features with associated three-dimensional geometry esti-
mates and appearance descriptors. These sets of features are
accessible through a database for use by the view recognition
process.

View creation proceeds in three steps (see Figure 2):

1) Robust Matching: Correspondences are established be-
tween features in two or more temporally local images,
while enforcing geometric constraints.

2) Structure Estimation: From the feature correspon-
dences, three dimensional point structure is estimated
and stored. The (optional) differential motion estimate
is used to determine the common scale of the structure.

Robust Matching Structure/Motion Estimation Database Update

Fig. 2. View creation process

3) Database management: The appearance model of the
view (comprising a set of feature descriptors) is added
to a global database for later recognition.

A. Robust Matching

The inter-frame matching procedure for view creation
first establishes putative correspondences, and then partitions
these correspondences into inlier (correct) and outlier (incor-
rect) correspondences using geometric constraints.

Putative correspondences can be generated using only the
feature descriptors, or by taking advantage of any differential
motion estimates supplied by other sensors, such as wheel
odometry. In the first case, each feature in the current
image is paired with the feature in a recent older image
according to distance in the feature descriptor space using an
approximate nearest neighbors (ANN) method. In the second
case a motion estimate constrains the search for putative
correspondences. The nearest feature in descriptor space that
also satisfies the corresponding epipolar constraint is taken
as a putative correspondence to the older feature.

Given a set of putative correspondences, geometric con-
straints are applied iteratively to eliminate outliers. If no
prior on camera motion is provided, a starting point for
the procedure can be computed using RanSAC[4] and the
five point algorithm[13]. This yields an estimate of camera
motion (up to scale) and a set of inlier correspondences.
When a prior differential motion estimate is available, it is
a sufficient starting point for iteration.

The iteration proceeds as follows:
1) An error threshold factor r̃ is chosen as a multiple of

the desired final acceptance threshold r.
2) All putative correspondences within a threshold dis-

tance of the epipolar line given by the current motion
estimate, and with positive depth, are labelled as in-
liers. The threshold distance for a feature with scale s
is given by r̃ · s, modeling larger location uncertainty
associated with larger-scale features.

3) The motion estimate is refined by nonlinear maximum
likelihood estimation over the current set of inlier
correspondences.

4) The threshold factor r̃ is decreased multiplicatively,
and the process is repeated from step 2 until r̃ ≈ r.

We use this approximation to a standard M-estimator scheme
(e.g. iterated reweighted least squares with Tukey weighting)
in order to reduce the computational cost on embedded
platforms.

B. Structure Estimation

Given feature correspondences between two views, bundle
adjustment[17] is performed over the reprojection objective
function to yield joint estimates on structure and camera
motion. The scale is left unconstrained by the feature cor-
respondences, so the gauge freedom is eliminated by fixing
the camera translation to unit magnitude while performing
the optimization. The scale is assigned to the view using
the differential odometry between the two views used for
estimation. Further views can be added to the optimization

3019



either at the point of view creation or upon later observation.
In this case of upgrading the structure, the camera translation
magnitude is constrained only between the first two views,
and all six degrees of freedom vary among the others. The
previously computed parameter values are used as a starting
point in the new, larger optimization.

C. Database Management

A global appearance database is maintained to aid view
recognition. When a new view is created, its appearance
model is added to this database.

The global database could take one of many forms,
depending on the desired appearance model representation.
We describe a simple but effective approach here.

The database contains descriptors for features in all views,
in a collection of kd-trees for efficient ANN searches. The
time required to add new views to the global database is
bounded: Upon view creation, all descriptors in the view are
added to the current kd-tree, which is then rebalanced. If the
number of descriptors in the tree exceeds a predetermined
constant bound, a new tree is added to the collection and
becomes the current tree. ANN searches of the forest are
described below in Section VI.

In addition to the global database update, a local appear-
ance model is also constructed for each view. The local
model supports ANN searches over only the descriptors
present in the view, and is queried for the second stage of
view recognition.

VI. VIEW RECOGNITION

The view recognition process yields relative pose estimates
between single images and existing views. The recogni-
tion approach is hierarchical, first performing appearance
matching in a global database, and then applying structure
constraints at the view-local level.

The input to the view recognition algorithm is a set of
viewpoint invariant features extracted from an image, and a
global appearance model as described in Section V-C. The
output is zero, one, or multiple relative pose estimates to
existing views.

The recognition method proceeds as follows (see Fig-
ure 3).

1) Features in the query image are looked up in the global
appearance model database.

2) The results of the database lookup are used to rank
potential views by visual similarity, and the m top-
ranked views are chosen as candidates (we use m = 3
throughout).

3) For each candidate view, correspondences are estab-
lished between query features and the features in the
view.

4) Geometric constraints are applied to these correspon-
dences, using reprojection constraints and the esti-
mated view structure to reject outliers. This yields a
rough relative pose estimate.

5) The relative pose and structure estimates are refined
using by optimizing over the inlier correspondences

Global Database

?

? ? ?
?

View A

View B

View C

View D

View E

View F

Candidates

Most Similar

Least Similar

Visual Similarity 
Ranking

Global Feature Lookup Candidate Selection

Candidate−Local
Database

?

? ? ?
?

Local Feature Matching

Candidate−Local
Database

Local Bundle Adjustment Robust Outlier Rejection

Fig. 3. View recognition process

and internal correspondences of the view, yielding
maximum-likelihood relative pose with covariance.

6) The view’s stored structure estimate is optionally up-
dated using the optimization results.

A. Recognition Candidate Selection

The top k nearest neighbors in the global database for each
query feature are determined using ANN search (typically
k = 2). Then the putative matches are grouped by view. At
this point crude structure constraints can be applied, using
a Hough transform or RanSAC to enforce a loose similar-
ity, affine, homography, or reprojection transformation. The
views are then ranked by the number of matches satisfying
the constraints. The m highest ranked views are kept as
candidates.

B. Robust Matching and Pose Estimation

For each of the m candidate views chosen by the ap-
pearance matching stage, the query features are matched to
the view’s features using the local view appearance model.
Each view feature has an associated three-dimensional struc-
ture estimate, allowing the three-point pose algorithm[4] to
be applied within a standard RanSAC hypothesize-and-test
framework. If enough inliers result from this process, they are
passed to the pose estimation stage, along with the relative
pose estimate given by the three-point algorithm.

The pose estimation stage takes correspondences between
query features and view features, and computes the relative
camera pose between the query image and the view’s base
coordinate frame (the first image of the view pair). The
relative pose estimate is represented by mean and covariance
in the Lie group SE(3) of rigid 6DoF transformations. The
covariance is represented by a quadratic form in the tangent
space se(3).

The maximum likelihood estimation is performed using
Levenberg-Marquardt iteration. The camera motion between
the existing view frames is assumed fixed and known, and

3020



the feature structure estimates and relative pose to the novel
viewpoint are permitted to vary. The data matrix at the point
of convergence is taken as the information matrix (inverse
covariance) of the optimum, as per the Cramer-Rao lower
bound. The structure parameters are marginalized out of this
representation, and the resulting 6 × 6 matrix is inverted
to yield an estimate of the covariance on the relative pose
parameters. If the information matrix is singular or poorly
conditioned, the pose estimate is under-constrained, and the
view recognition is discarded.

VII. GRAPH CONSTRUCTION AND OPTIMIZATION

The SLAM back-end encodes view observations and robot
motion in a graph representation of a Gaussian Markov
random field (GMRF). The graph is constructed as the robot
moves and processes video frames. The graph is continuously
and incrementally optimized to improve the state estimate of
view and robot poses.

A. Graph Representation

The SLAM graph[16] consists of nodes and directed edges
between pairs of nodes. Each node represents the pose of the
robot at a certain time. Edges encode constraints between
nodes, arising from differential motion estimates (odometry),
view observations, and combinations thereof. All poses and
transformations are parametrized in the Lie group SE(2)
(for robot pose in 2D space) or SE(3) (for robot pose in
3D space), and any covariances or information matrices are
expressed in the respective tangent spaces.

Each node stores the estimated pose of the robot at a cer-
tain time. The pose describes the coordinate transformation
from the common global frame to the frame of the robot
at the specified time. Nodes are created for every timestep
when a view is recognized or created. Nodes corresponding
to the robot pose at view coordinate frames are called view
nodes and nodes corresponding to the robot pose at any other
times are called pose nodes.

Each edge stores a rigid transformation estimate, with
covariance, describing a constraint between its source and
destination endpoint. The constraint means and covariances
are represented in the Lie group and algebra, respectively.
Edges that encode only differential motion constraints (from
odometry) are called motion edges, and connect temporally
consecutive nodes. Edges that encode relative pose estimates
from view recognitions are called observation edges. Edges
that are formed by combining other edges (described below
in Section VIII-B) are called hybrid edges.

B. Graph Construction

After each image is processed by the front end, the graph
representation is updated:
• A new pose node is added for the current pose, and the

new node is connected to the preceding pose node by
a motion edge, encoding the accumulated differential
motion estimate between the two poses.

• If an existing view has been observed, an observation
edge is created from the observed view node to the

pose node, encoding the observation constraint. When
the back end is operating in SE(2), the relative pose
estimate (in SE(3)) is first projected into SE(2) before
creating the observation edge.

• If a new view has been created, one of the recent pose
nodes corresponding to the view is promoted to a view
node.

C. Incremental Optimization

The graph flexibly represents the GMRF corresponding to
the SLAM estimation problem. The negative log-likelihood
of the parameter estimates (encoded by the nodes) is the sum
residuals of the edges. Denote the edge set by E = {ei}. For
an edge e ∈ E, the source and destination are given by s(e)
and d(e) respectively. The edge’s constraint mean is denoted
by µ(e) and the covariance by Σ(e). Then the negative log-
likelihood −L of the graph (up to a constant offset) is given
in terms of the residuals vi by

vi ≡ µ(ei) · s(ei) · d(ei)−1 (1)

−L =
∑

i

vT
i

(
Σ(ei)−1

)
vi (2)

When the node pose estimates better satisfy the constraints
encoded in the edges, the negative log-likelihood −L is
lower. Graph optimization increases the likelihood of the
GMRF parameters by minimizing the negative log-likelihood
as function of the node parameters.

Because computation time must be bounded and the graph
is continually growing and changing, any feasible graph opti-
mization technique must be incremental. Several methods are
described in, e.g., [5]. Any general method for incremental
nonlinear optimization can be applied successfully to the
graph.

We employ spanning tree and blob-based optimizations,
which are run for a fixed number of iterations at each time
step following the graph update.

VIII. GRAPH COMPLEXITY REDUCTION

A. Complexity Growth

The SLAM graph grows every time a view is created or
observed. Even when the robot stays within a bounded space,
the views there are observed repeatedly, adding pose nodes
and edges to the graph and thus increasing the complexity
with time. The storage requirements and graph optimization
costs grow with the graph complexity, so in order to control
these costs, the graph complexity must be bounded.

The view nodes correspond to elements of the front end
relative to which pose estimates can be computed. Further,
the spatial density of view nodes is bounded by the front
end (as existing views will be recognized from nearby
viewpoints), so operation within a fixed spatial region implies
a bounded number of view nodes. The pose nodes, on the
other hand, represent past robot poses that are not directly
useful in subsequent operation, except as a data structure for
encoding constraints on other nodes. The number of pose
nodes grows with the number of observations, instead of with
the number of views. The graph complexity can be bounded

3021



by removing pose nodes and limiting node connectivity to
keep the complexity of the graph linear in the number of
views and thus linear in the amount of space explored.

B. Pose Node Marginalization

The graph represents a GMRF over past poses of the robot,
so nodes can be removed in statistically consistent manner
by marginalizing out the corresponding pose variables from
the GMRF state. The graph directly encodes the Markov
property of the system: a node is conditionally independent
of all nodes to which it is not directly connected. Thus
marginalizing out a node’s state involves only the Markov
blanket of the node (all of the nodes within one hop in the
graph). Further, because the marginal distributions of a Gaus-
sian are also Gaussians, the graph resulting from the removal
exactly encodes the appropriate Gaussian distribution over
the remaining variables[9].

Removing a node by marginalization induces pairwise
constraints between all pairs of nodes connected to the
removed node. If a constraint (edge) already exists between
such a pair, the new constraint is combined with the existing
constraint by multiplication of their Gaussians. A few opera-
tions on edges are needed to define the node marginalization
procedure:

1) Edge reversal: An edge e represents an uncertain rigid
transformation between its two endpoint nodes, given by a
mean and covariance (µ,Σ) in the appropriate Lie group
and Lie algebra respectively. The adjoint operator in a Lie
group allows elements of the Lie algebra to be moved from
the right tangent space of a transformation to the left. Thus
the reversed edge e−1, pointing in the opposite direction in
the graph but encoding the same transformation constraint,
is given by

e−1 =
(
µ−1,Adj

[
µ−1

]
· Σ ·Adj

[
µ−1

]T)
(3)

2) Edge composition: Given an edge e0 = (µ0,Σ0) from
node a to node b and an edge e1 = (µ1,Σ1) from node b to
node c, the two edges may be composed into one edge from
a to c by composing the uncertain transformations, as in a
Kalman filter motion update:

e1 · e0 =
(
µ1 · µ0,Σ1 + Adj [µ1] · Σ0 ·Adj [µ1]T

)
(4)

3) Edge combination: Given two edges e0 = (µ0,Σ0) and
e1 = (µ1,Σ1) connecting the same two nodes in the same
direction, their constraints may be combined by multiplying
the associated Gaussian distributions together to yield the
resulting Gaussian. Because the exponential map from the
tangent space to the transformation manifold is nonlinear,
the combination procedure for the mean is iterative. The
combined covariance ΣC is computed by summing the
information of the two edges:

ΣC =
(
Σ−1

0 + Σ−1
1

)−1
(5)

Let the initial estimate of the combined mean be the first
edge’s mean:

µ0
C = µ0 (6)

Fig. 4. Graph reduction by marginalizing out a node. In this example, the
number of edges in the graph is unchanged

Then the combined transformation is updated by taking the
information-weighted average between the two transforma-
tions and exponentiating the correction into the Lie group:

vi
j = ln

(
µi

C · µ−1
j

)
, j ∈ {0, 1} (7)

δi = ΣC ·
(
Σ−1

0 · vi
0 + Σ−1

1 · vi
1

)
(8)

µi+1
C = exp (δi) · µi

C (9)

This update is iterated until convergence (usually three or
four iterations), yielding the combined edge:

eC =
(
µk

C ,ΣC

)
(10)

Node Removal: Consider a node nr to be removed by
marginalization, with incident edges Er = {e0, . . . , em}.
Each pair of such edges (ei, ej) is composed into e(i,j)
according to the following cases:

e(i,j) =


ei · ej s(ei) = d(ej) = nr

ei · e−1
j s(ei) = s(ej) = nr

e−1
i · ej d(ei) = d(ej) = nr

ej · ei d(ei) = s(ej) = nr

(11)

The resulting composed edge is added to the graph between
the two incident nodes that are not nr. If such an edge al-
ready exists, the edges are combined, reversing the composed
edge if necessary. Finally, all incident edges Er are deleted
from the graph along with the node nr. An example is shown
in Figure 4.

C. Edge Pruning

While the node marginalization procedure always de-
creases the number of graph nodes and attempts to decrease
the number of edges, it might fail to bound the degrees
of nodes and thus the complexity of the graph. Indeed,
marginalizing out all pose nodes results in a completely-
connected graph over view nodes, with edge cardinality
quadratic in the number of views.

To limit the edge complexity of the graph, edges need to
be heuristically pruned during operation. Removing an edge
from the graph is equivalent to discarding the information
represented by the edge, as though the observation or mea-
surement had never been made.

One simple approach to limiting the number of edges is to
maintain a priority queue of nodes with degrees exceeding a
fixed, pre-determined bound. This queue needs to be updated
only when edges are added to the graph (measurements or

3022



SEQ1 SEQ2 SEQ3
Environment Warehouse Home Office

Frame Rate (Hz) 1.5 1.5 3.0
Timesteps 1035 1822 3896
Extent (m) 24 x 12 20 x 9 19x10

Views created 41 103 140

TABLE II
TEST SEQUENCES

Fig. 5. Example images from the SEQ2 (left) and SEQ3 (right). The
reflector beacons are NAV200 fiducials used for ground truth estimation

node removals). Edges are removed from each node in the
queue until no node degrees exceed the bound.

The heuristic operates as follows: the edges of a high-
degree node n are examined one at a time. If the opposite
endpoint through edge e is not connected to n through a
path that excludes e, with length under a pre-determined
bound, then e is not eligible for removal, as the graph would
be potentially disconnected. The eligible edge with the least
residual is deleted. Of the edges incident to n, such an edge
is in least disagreement with the current state of the graph,
and thus its removal should least affect the graph optimum.

This simple, greedy heuristic does not consider the collec-
tive effect of removing multiple edges in series. Nonetheless,
our evaluation shows that it performs adequately.

IX. EVALUATION

We use three indoor sequences (SEQ1, SEQ2, SEQ3) to
evaluate the performance of the system and the effects of
graph complexity reduction. SEQ1 and SEQ2 were collected
using an Evolution Robotics Scorpion, and SEQ3 with an
i-Robot Roomba. In each instance, the robot was equipped
with a web camera and wheel odometry. Fiducials placed
in the environment were observed by a SICK NAV200 laser
range finder mounted on the robot to provide ground truth.

The sequence parameters are described in Table II, and
example images are shown in Figure 5. The ground truth
trajectories are shown in Figure 6.

A. Metrics

We measure both the accuracy of the incrementally esti-
mated trajectory and of the final view map. The view map
is the set of poses of view nodes in the graph at the end of
the run, including incremental optimization but without any
post-processing.

Comparing the trajectory to the reference reflects local-
ization accuracy during the run. Comparing the map to the
appropriate subset of the reference indicates how well the
system can be expected to localize in the same environment

Fig. 6. Ground truth trajectories for the test sequences

given subsequent operation. Though the latter metric is more
common, and generally shows smaller errors compared to
the reference, it does not necessarily reflect how useful the
localization is during online operation.

The estimated and ground truth trajectories are compared
by first finding the rigid transformation between them that
minimizes sum-squared position error, using RanSAC and
least squares. The view map corresponds to a subset of the
total robot trajectory, so the same method is used to compute
the view map error over that subset.

B. Results

Figure 7 shows a portion of the graph computed for SEQ2
with and without reduction. The node and edge density is
significantly lower in the latter.

Table III shows error metrics and graph complexity for
full and reduced graphs. In the “Full” columns, the graph
is heavily optimized and no nodes or edges are removed.
The “Reduced” columns show the same metrics when the
number of pose nodes is bounded by the number of views
plus ten, and the maximum permitted node degree is eight.
The graph complexity is greatly reduced with little or no loss
of localization accuracy. As expected, the error of the view
map is smaller than that of the causally estimated trajectory
consisting of the best estimate at each timestep, as the map
has incorporated all the information up to the end of the run.

Figure 9 overlays the trajectories computed using the heav-
ily optimized, fully complex graphs with those computed
using reduced graphs. The qualitative similarity of the results
reflects the quantitative similarity of the errors to ground
truth. The deviation between the two traversals of the large
loop in SEQ3 occurs because the robot traverses in opposite
directions, so views are not reobserved.

Figure 8 shows the growth in number of graph nodes over
time for SEQ1, with and without reduction. Reduction keeps
the complexity linear with number of views rather than time.

3023



Fig. 7. Detail from middle of full and reduced graphs for SEQ2. View
nodes are red circles, pose nodes are green squares, and edges are blue
lines. Note the reduced density on the right

Error (cm) SEQ1 SEQ2 SEQ3
Odom. RMS 281 331 469
Odom. Max 773 667 852

Error (cm) Full Redu. Full Redu. Full Redu.
Traj. RMS 45 44 23 28 59 59
Traj. Max 109 105 81 74 138 149
Map RMS 24 18 21 20 43 47
Map Max 41 32 47 46 98 103

# Nodes 709 92 897 216 2491 290
# Edges 1471 155 1810 414 5154 501

TABLE III
METRICS FOR FULL AND REDUCED COMPLEXITY GRAPHS

Fig. 8. Graph complexity over time for SEQ1, with and without reduction.
The two regions bounded by vertical dotted lines are periods of revisitation,
during which views are reobserved rather than created. The reduced graph
complexity remains constant unless new views are created. Note the
difference in vertical scale

Fig. 9. Causally estimated trajectories: Graph reduction yields results
similar to those computed with full-complexity graphs

X. CONCLUSION

We have presented a view-based monocular SLAM sys-
tem that actively manages the complexity of the SLAM
graph to permit operation on constrained computational
platforms. Our results show that the complexity reduction
methods significantly limit graph node and edge cardinality,
while only negligibly affecting localization accuracy. Further
experiments are required to determine the boundaries of
applicability of these techniques, and to explore alternative
reduction heuristics and approximations.

REFERENCES

[1] M. Cummins and P. Newman. Accelerated appearance-only SLAM. In
Proc. 2008 IEEE Int’l Conf. on Robotics and Automation (ICRA’08),
Pasadena, CA, USA, April 2008.

[2] E. Eade and T. Drummond. Monocular slam as a graph of coalesced
observations. In Proc. 11th IEEE Int’l Conf. on Computer Vision
(ICCV’07), Rio de Janeiro, Brazil, October 2007.

[3] E. Eade and T. Drummond. Unified loop closing and recovery for real
time monocular slam. In Proc. British Machine Vision Conference
(BMVC’08), pages 53–62, Leeds, September 2008. BMVA.

[4] M.A. Fischler and R.C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Comm. ACM, 24(6):381–395, June 1981.

[5] G. Grisetti, D.L. Rizzini, C. Stachniss, E. Olson, and W. Burgard.
Online constraint network optimization for efficient maximum likeli-
hood map learning. In Proc. 2008 IEEE Int’l Conf. on Robotics and
Automation (ICRA’08), pages 1880–1885, Pasadena, CA, USA, April
2008.

[6] G. Grisetti, C. Stachniss, and W. Burgard. Nonlinear constraint net-
work optimization for efficient map learning. Trans. Intell. Transport.
Sys., 10(3):428–439, 2009.

[7] N. Karlsson, E. di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian,
and M.E. Munich. The vslam algorithm for robust localization and
mapping. In Proc. 2005 IEEE Int’l Conf. on Robotics and Automation
(ICRA’05), pages 24–29, Barcelona, Spain, April 2005.

[8] G. Klein and D. Murray. Improving the agility of keyframe-based
SLAM. In Proc. 10th European Conference on Computer Vision
(ECCV’08), pages 802–815, Marseille, October 2008.

[9] K. Konolige. Slam via variable reduction from constraint maps. In
Proc. 2005 IEEE Int’l Conf. on Robotics and Automation (ICRA’05),
pages 667–672, Barcelona, Spain, April 2005.

[10] K. Konolige, J. Bowman, J. D. Chen, P. Mihelich, M. Calonder,
V. Lepetit, and P. Fua. View-based maps. In Proceedings of Robotics:
Science and Systems, Seattle, USA, June 2009.

[11] H. Kretzschmar, G. Grisetti, and C. Stachniss. Lifelong map learning
for graph-based slam in static environments. Künstliche Intelligenz,
May 2010.

[12] D. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–100, 2004.

[13] D. Nistér. An efficient solution to the five-point relative pose problem.
IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 26(6):756–777, June 2004.

[14] E. Olson, J. Leonard, and S. Teller. Spatially-adaptive learning rates
for online incremental slam. In Proceedings of Robotics: Science and
Systems, Atlanta, GA, USA, June 2007.

[15] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object
retrieval with large vocabularies and fast spatial matching. In Proc.
IEEE Intl. Conference on Computer Vision and Pattern Recognition
(CVPR ’07), pages 1–8, 2007.

[16] S. Thrun and M. Montemerlo. The graph slam algorithm with appli-
cations to large-scale mapping of urban structures. The International
Journal of Robotics Research, 25(5-6):403–429, 2006.

[17] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle
adjustment – a modern synthesis. In B. Triggs, A. Zisserman, and
R. Szeliski, editors, Vision Algorithms: Theory and Practice, volume
1883 of Lecture Notes in Computer Science, pages 298–372. Springer-
Verlag, 2000.

[18] B. Williams, G. Klein, and I. Reid. Real-time SLAM relocalisation.
In Proc. 11th IEEE Int’l Conf. Computer Vision, 2007.

3024




