
Robot Motor Skill Coordination with EM-based

Reinforcement Learning

Petar Kormushev, Sylvain Calinon and Darwin G. Caldwell

Abstract— We present an approach allowing a robot to
acquire new motor skills by learning the couplings across
motor control variables. The demonstrated skill is first encoded
in a compact form through a modified version of Dynamic
Movement Primitives (DMP) which encapsulates correlation
information. Expectation-Maximization based Reinforcement
Learning is then used to modulate the mixture of dynamical
systems initialized from the user’s demonstration. The approach
is evaluated on a torque-controlled 7 DOFs Barrett WAM
robotic arm. Two skill learning experiments are conducted:
a reaching task where the robot needs to adapt the learned
movement to avoid an obstacle, and a dynamic pancake-flipping
task.

I. INTRODUCTION

Acquiring new motor skills involves various forms of

learning. The efficiency of the process lies in the intercon-

nections between imitation and self-improvement strategies.

Similarly to humans, a robot should be able to acquire new

skills by employing such mechanisms.

Some tasks can be successfully transferred to the robot

using only imitation strategies [1], [2]. Other tasks can

be learned very efficiently by the robot alone using Re-

inforcement Learning (RL) [3]. The recent development

of compliant robots progressively moves the robots from

industrial applications to home and office uses, where the

role and tasks given to the robots cannot be determined in

advance. While some tasks allow the user to interact with

the robot to teach it new skills, it is preferable to provide a

mechanism for the robot to improve and extend its skills to

new contexts on its own.

A tremendous effort has been brought by researchers

in machine learning and robotics to move RL algorithms

from discrete to continuous domains, thus extending the

possibilities for robotic applications [4]–[7]. Until recently,

policy gradient algorithms (such as Episodic REINFORCE

[8] and Episodic Natural Actor-Critic eNAC [9]) have been

a well-established approach to cope with the high dimen-

sionality. Unfortunately, they also have shortcomings, such

as high sensitivity to the learning rate. Trying to overcome

this drawback, the following two recent approaches were

proposed.

Theodorou et al proposed in [5] a RL approach for learn-

ing parameterized control policies based on the framework of

stochastic optimal control with path integrals. They derived

The authors are with the Advanced Robotics Depart-
ment, Italian Institute of Technology (IIT), 16163 Genova,
Italy. {petar.kormushev,sylvain.calinon,
darwin.caldwell}@iit.it.

Fig. 1. Experimental setup for the Pancake-Flipping task. A torque-
controlled 7-DOF Barrett WAM robot learns to flip pancakes in the
air and catch them with a real frying pan attached to its end-effector.
Artificial pancakes with passive reflective markers are used to evaluate the
performance of the learned policy.

update equations for learning which avoid numerical instabil-

ities because neither matrix inversions nor gradient learning

rates are required. The approach demonstrates significant per-

formance improvements over gradient-based policy learning

and scalability to high-dimensional control problems, such

as control of a quadruped robot dog.

Kober et al proposed in [10] an episodic RL algo-

rithm called Policy learning by Weighting Exploration with

the Returns (PoWER), which is based on Expectation-

Maximization algorithm (EM). One major advantage over

policy-gradient-based approaches is that it does not require

a learning rate parameter. This is desirable because tuning a

learning rate is usually difficult to do for control problems but

critical for achieving good performance of policy-gradient

algorithms. PoWER also demonstrated high performance in

tasks learned directly on real robots, such as underactuated

pendulum swing-up and ball-in-a-cup tasks [11].

In order to reduce the number of trials required to learn

a skill in a real robot learning scenario, another body of

work explored the use of efficient representations of the skill

that can be applied to RL. Guenter et al explored in [7]

the use of Gaussian Mixture Model (GMM) and Gaussian

Mixture Regression (GMR) to respectively encode compactly

a skill and reproduce a generalized version of it. The model

was initially learned by demonstration through Expectation-

Maximization techniques. RL was then used to move the

Gaussian centers in order to alter the reproduced trajectory

by regression. It was successfully applied to the imitation of

constrained reaching movements, where the learned move-

ment was refined in simulation to avoid an obstacle that was

not present during the demonstration attempts.

Kober and Peters explored in [12] the use of Dynamic

Movement Primitives (DMP) [13] as a compact represen-

tation of a movement. In DMP, a set of attractors is used

to reach a target, whose influence is smoothly switched

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 3232

along the movement.1 The set of attractors is first learned

by imitation, and a proportional-derivative controller is used

to move sequentially towards the sequence of targets. RL is

then used to explore the effect of changing the position of

these attractors. The proposed approach was demonstrated

with pendulum swing-up and ball-in-a-cup tasks.

Pardo et al proposed in [14], [15] a framework to learn

coordination for simple rest-to-rest movements, by taking

inspiration of the motor coordination, joint synergies, and

the importance of coupling in motor control [16]–[19].

The authors suggested to start from a basic representation

of the movement by considering point-to-point movements

driven by a proportional-derivative controller, where each

variable encoding the task is decoupled. They then extended

the possibilities of movement by encapsulating coordination

information in the representation. RL was then used to learn

how to efficiently coordinate the set of variables which were

originally decoupled. They showed simulation experiments

in which a humanoid learns how to stand up by coordinating

its joint angles to avoid falling during the rest-to-rest motion,

and in which a robot learns how to throw a ball to a desired

target.

Rosenstein et al proposed in [20] a robot weightlifting

experiment, where an appropriate coordination of the joints

exploiting the robot’s intrinsic dynamics is searched through

RL. Their work highlight the advantage of considering off-

diagonal elements in gain matrices to enable active coupling

of the individual joints. They showed through experiments

that skillful movements that exploit dynamics are best ac-

quired by first learning (or specifying) simple kinematic

movement,2 and then using practice to transform that move-

ment into dynamic solution with tighter coupling from the

control system.

We propose here to build upon the works above by taking

into consideration the efficiency of DMP to encode a skill

with a reduced number of states, and by extending the ap-

proach to take into consideration local coupling information

across the different variables.

II. PROPOSED APPROACH

The proposed approach represents a movement as a super-

position of basis force fields, where the model is initialized

from imitation. RL is then used to adapt and improve the

encoded skill by learning optimal values for the policy

parameters. The proposed policy parameterization allows the

RL algorithm to learn the coupling across the different motor

control variables.

A. Encoding of the skill

A demonstration consisting of T positions x, velocities

ẋ and accelerations ẍ is shown to the robot (x has D =
3 dimensions). By considering flexibility and compactness

1This approach can similarly be interpreted as a force disturbing a point-
to-point reaching movement.

2In contrast to DMP, their approach only considers hard-switching among
the different sub-controllers.

issues, we propose to use a controller based on a mixture of

K proportional-derivative systems (see also [21])

ˆ̈x =

K
∑

i=1

ℎi(t)
[

KP

i (�
X

i − x)− �V ẋ
]

. (1)

The above formulation shares similarities with the Dy-

namic Movement Primitives (DMP) framework originally

proposed by Ijspeert et al [22], and further extended in

[13], [23] (see [24] for a discussion on the similarities of

the proposed controller with DMP). We extend here the use

of DMP by considering synergy across the different motion

variables through the association of a full matrix KP

i with

each of the K primitives (or states) instead of a fixed �P

gain.

The superposition of basis force fields is determined in (1)

by an implicit time dependency, but other approaches using

spatial and/or sequential information could also be used [25],

[26]. Similarly to DMP, a decay term defined by a canonical

system ṡ = −�s is used to create an implicit time depen-

dency t = − ln(s)
�

, where s is initialized with s = 1 and

converges to zero. We define a set of Gaussians N (�T

i ,Σ
T

i)
in time space T , with centers �T

i equally distributed in time,

and variance parameters ΣT

i set to a constant value inversely

proportional to the number of states. � is fixed depending on

the duration of the demonstrations. The weights are defined

by ℎi(t) =
N (t; �T

i ,ΣT

i)
∑

K
k=1

N (t; �T
k
,ΣT

k
)
.

In (1), {KP

i }
K
i=1 is a set of full stiffness matrices, also

called coordination matrices in [15] (in this paper we use

the term coordination matrix rather than stiffness matrix).

Using the full coordination matrices allows us to consider

different types of synergies across the variables, where

each state/primitive encodes local correlation information.

Both attractor vectors {�X

i }
K
i=1 and coordination matrices

{KP

i }
K
i=1 in Eq. (1) are initialized from the observed data

through least-squares regression (see [21] for details).

B. Controller

To control the robot, we exploit the torque-feedback prop-

erties of the manipulator, where the robot remains actively

compliant for the degrees of freedom that are not relevant for

the task. We control the 7 degrees of freedom (DOFs) robot

through inverse dynamics solved with recursive Newton

Euler algorithm [27]. The joint forces fi at each joint i ∈
{1, . . . , 7} are calculated as fi = fa

i −fe
i +

∑

j∈c(i) fj , where

fa
i is the net force acting on link i, fj with j ∈ c(i) are the

forces transmitted by the child c(i) of link i. fe
i = FT +FG

are the external forces, where FT = [fT ,MT]
⊤ ∈ ℝ

6 is

the vector of force and momentum requested to accomplish

the task (only applied at the end-effector, i.e. when i = 7),

and FG = [fG, 0]
⊤ ∈ ℝ

6 is the gravity compensation force.

Tracking of a desired path in Cartesian space is insured by

the force command fT = mT
ˆ̈x, where mT is a virtual mass

and ˆ̈x is the desired acceleration command defined in (1).

C. Reinforcement Learning

To learn new values for the coordination matrices, we use

the state-of-the-art EM-based RL algorithm called PoWER

3233

developed by Kober and Peters [10]. PoWER inherits from

EM algorithm two major advantages over policy-gradient-

based approaches: firstly, PoWER does not need a learning

rate, unlike policy-gradient methods; secondly, PoWER can

be combined with importance sampling to make better use

of the previous experience of the agent in the estimation of

new exploratory parameters.

Similar to policy gradient RL, PoWER uses a parame-

terized policy and tries to find values for the parameters

which maximize the expected return of rollouts (also called

episodes or trials) under the corresponding policy. In our ap-

proach the policy parameters are represented by the elements

of the full coordination matrices KP

i and the attractor vectors

�X

i .3

The return of a rollout � is given by the undiscounted

cumulative reward R(�) =
∑T

t=1 r(t), where T is the

duration of the rollout, and r(t) is the reward received at

time t, defined differently according to the goal of the task.

In general, as an instance of an EM algorithm, PoWER

estimates the policy parameters � such as to maximize the

lower bound on the expected return from following the

policy. The policy parameters �n at the current iteration n

are updated to produce the new parameters �n+1 using the

following rule (see also [11])

�n+1 = �n +

〈

(�k − �n)R(�k)
〉

w(�k)
〈

R(�k)
〉

w(�k)

. (2)

In the above equation, (�k − �n) = Δ�k,n is a vector

difference which gives the relative exploration between the

policy parameters used in the k-th rollout and the current

ones. Each relative exploration Δ�k,n is weighted by the

corresponding return R(�k) of rollout �k, and the result is

normalized using the sum of the same returns.4

In order to minimize the number of rollouts which are

needed to estimate new policy parameters, we use a form of

importance sampling technique adapted for RL [3], [10] and

denoted by ⟨⋅⟩w(�k) in Eq. (2). It allows the RL algorithm to

re-use previous rollouts �k and their corresponding policy

parameters �k during the estimation of the new policy

parameters �n+1. The importance sampler we use is defined

as
〈

f(�k, �k)
〉

w(�k)
=

�
∑

k=1

f(�ind(k), �ind(k)), (3)

where � is a fixed parameter denoting the number of rollouts

used by the importance sampler, and ind(k) is an index

function which returns the index of the k-th best rollout

in the list of all past rollouts sorted by their corresponding

returns, i.e. for k = 1 we have ind(1) = argmaxi R(�i),
and R(�ind(1)) ≥ R(�ind(2)) ≥ ... ≥ R(�ind(�)). The effect

3Note that the magnitudes of the values in KP

i
and �X

i
are different,

which is taken into account when determining the exploration variance for
the policy parameters.

4Intuitively, this update rule can be thought of as a weighted sum of
parameter vectors where higher weight is given to the vectors which result
in higher returns.

(a) Using only the main diagonal of
KP

i
and �X

i

(b) Using the full coordination matri-
ces KP

i
and �X

i

Fig. 2. Simulation of a Reaching task with obstacle avoidance, using two
primitives to represent the trajectories. In (a), only the diagonal values of
KP

i
and �X

i
are used, and in (b), the full matrices KP

i
and �X

i
are used

as parameters to be optimized by the RL algorithm. In the figures, the red
sphere represents the obstacle, the green box is the target for the reaching
task, the 4 blue lines are the demonstrations recorded on the real robot,
and the green dot is the starting position of the end-effector for all rollouts.
Some of the rollout trajectories generated during the RL process are shown
with thin green lines. The final learned trajectory is shown with thick dark
green line.

of the importance sampler is significant because it allows the

RL algorithm to re-use the top-� best rollouts so far in order

to calculate the new policy parameters. This helps to reduce

the number of required rollouts and makes the algorithm

applicable to online learning, which we demonstrate with

the Pancake-Flipping task described in Section III-B.

III. EXPERIMENTS

The proposed method is evaluated on two experiments:

Reaching task with obstacle avoidance learned in simulation

using data from real-world demonstrations, and Pancake-

Flipping task performed both in simulation and on a real

physical robot.

A. Reaching task with obstacle avoidance

The goal of the Reaching task is for the robot to reach

with its end-effector towards a target, while at the same time

trying to avoid collision with a fixed obstacle.

1) Experimental setup: The demonstrations needed for

the initialization with imitation learning were recorded on

a gravity-compensated robot via kinesthetic teaching, i.e. a

human demonstrator is holding the arm of the robot and

manually guiding the robot to execute the task. These demon-

strations were done without any obstacle. The recorded

trajectories are then represented with the model described

in Sec. II-A. The model is initialized with least squares

regression (see [21] for details), and is later altered by the

RL algorithm in order to avoid a newly appeared obstacle

between the robot’s end-effector and the target for the

reaching task.

To better emphasize the differences between the proposed

method of using the full coordination matrices KP

i and

attractor points �X

i , and using only the main diagonal of

3234

KP

i and �X

i , we deliberately use a low number of primitives

(or states). To avoid a simple spherical obstacle, it is in this

case possible to use only two primitives.

For each rollout �k the end-effector trajectory is simulated

for a fixed number of steps T = 200. In case a collision is

detected, the end-effector remains still until the end of the

current episode. The reward function r(t) is defined based

on two criteria: to reach the goal and to stay as close as

possible to the original demonstrations

r(t) =

{

w1

T
e−∣∣xR

t −xD
t ∣∣, t ∕= te

w2 e−∣∣xR
t −xG∣∣, t = te

, (4)

where te is the end of the rollout, xR
t ∈ ℝ

3 is the position

of the robot’s end-effector at time t, xD
t ∈ ℝ

3 is the

initial demonstrated position at time t, xG is the position

of the target, and ∣∣ ⋅ ∣∣ is Euclidean distance. The first

term is maximized when the rollout trajectory matches the

demonstrated trajectory. The second term is maximized when

the goal is reached at the end of the task. The weights used

are w1 = 0.5 and w2 = 0.5.

2) Experimental results: A visualization of the Reaching

task with obstacle avoidance is shown in Fig. 2. Using only

the main diagonal of KP

i and �X

i with two primitives can

produce only trajectories which have at most one turn along

them, as shown in Fig. 2(a). On the other hand, the proposed

method of using the full coordination matrices KP

i and

attractor points �X

i is capable of producing more complex

trajectories, as shown in Fig. 2(b). The learned trajectory has

two turns and smoother curvature around the obstacle, which

allows it to be closer to the demonstrated trajectories without

colliding with the obstacle. Using the proposed method,

the expected return after 100 rollouts (averaged over 10

experiments) is increased from 0.61 to 0.73.

B. Pancake-Flipping task

The real-world evaluation of the presented method is done

on a dynamic Pancake-Flipping task. The goal of the task

is to toss a pancake in the air so that it rotates 180 degrees

before being caught. Due to the complex dynamics of the

task, it is unfeasible to try to learn it directly using tabula

rasa RL. Instead, a person presents a demonstration of the

task first, which is then used to initialize the policy.

1) Experimental setup: The experimental setup is shown

in Fig. 1. The experiment is conducted with a torque-

controlled Barrett WAM 7 DOFs robotic arm. Using a

gravity-compensation controller, the Pancake-Flipping task

is first demonstrated via kinesthetic teaching. The number

of states is fixed at 8, which is determined empirically by

examining the quality of the initial reproduced trajectories

with different number of states.

Custom-made artificial pancakes are used, which have 4

highly-reflective passive markers, in order to track both the

position and the orientation of the pancakes during the task

execution (See Fig. 1). For easier visual inspection, the two

sides of the pancakes are colored in different colors - white

and yellow. The pancake weights only 26 grams, which

makes it susceptible to air flow influence and makes its

motion less predictable.

The pancake’s position and orientation are tracked by a

marker-based NaturalPoint OptiTrack motion capture system

with 12 cameras. It tracks the position xp and orientation (qp

in quaternion representation, Mp in direction cosine matrix

representation) of the pancake at a rate of 30 frames per

second.

The return of a rollout � is calculated from the timestep

reward r(t). It is defined as a weighted sum of two cri-

teria (orientational reward and positional reward), which

encourage successful flipping and successful catching of the

pancake

r(tf) = w1

[arccos(v0.vtf)

�

]

+w2e
−∣∣xp−xF ∣∣+w3x

M
3 , (5)

where tf is the moment when the pancake passes with

downward direction the horizontal level at a fixed height

Δℎ above the frying pan’s current vertical position, v0 is

the initial orientation vector of the pancake (unit vector

perpendicular to the pancake), vtf is the orientation vector

of the pancake at time tf , xP is the position of the pancake

at time tf , xF is the position of the frying pan at time tf ,

and xM
3 is the maximum reached altitude of the pancake.

The first term is maximized when the pancake’s orientation

vector at time tf goes in the opposite direction to the initial

orientation vector, which corresponds to a successful flip.

The second term is maximized when the pancake lands

in the center of the frying pan. The weights we use are

w1 = w2 = w3 = 0.5. For all other time steps t ∕= tf
we define r(t) = 0.

The learning process is based on the PoWER algorithm

implementation provided by Kober et al [11]. � = 6 is used

as parameter for the importance sampler. The parameters �n
for the RL algorithm are composed of two sets of variables:

the first set contains the full 3×3 coordination matrices KP

i

with the positional error gains in the main diagonal and the

coordination gains in the off-diagonal elements; the second

set contains the vectors �X

i with the attractor positions for the

primitives. The RL algorithm is stopped when a successful

and reproducible pancake flipping is achieved with return

R(�) ≥ 0.9.

2) Experimental results: At each iteration of the RL loop,

the trajectory generated by the current policy is transferred to

the real robot for execution. While the rollout is performed,

the trajectory of the pancake is being recorded by the

motion capture system, and the trajectory of the end-effector

(obtained through forward kinematics) is recorded by the

robot controller. At the end of the rollout, the two trajectories

are transferred back to the RL algorithm. The rollout is then

evaluated using Eq. (5) and the data from the two recorded

trajectories. Using the update rule in Eq. (2), new values for

the policy parameters �n+1 are estimated, taking into account

previous experience via the importance sampler. Then, a new

trajectory for the end-effector is generated and the loop starts

over. Fig. 3 shows one sample rollout performed during the

online RL phase, during which the pancake rotated only

3235

Fig. 3. Semi-successful real-world pancake flipping rollout performed on
the robot. The pancake (in yellow) was successfully tossed and caught with
the frying pan (in grey), but it only rotated 90 degrees (for better visibility
of the pancake’s trajectory, the frying pan’s trajectory has been shifted to
the right). The calculated return of the rollout is 0.7. The normal vectors
perpendicular to the pancake and the frying pan are shown with blue arrows.

90 degrees before falling on the frying pan. The estimated

return of this rollout was 0.7, because the positional reward

was high in this case. Fig. 4 shows another rollout from

the online RL phase, during which the pancake rotated fully

180 degrees and was caught successfully with the frying pan.

The estimated return of this rollout was 0.9. Fig. 5 shows

the average expected return over rollouts.

A video of the Pancake-Flipping experiment accompanies

the submission (see also Fig. 6). It is interesting to notice the

up-down bouncing of the frying pan towards the end of the

learned skill, when the pancake has just fallen inside of it.

The bouncing behavior is due to the increased compliance

of the robot during this part of the movement. This was

produced by the RL algorithm in an attempt to catch the

fallen pancake inside the frying pan. Without it, a controller

being too stiff would let the pancake bounce off from the

surface of the frying pan and fall out of it. Such undesigned

discoveries made by the RL algorithm highlight its important

role for achieving adaptable and flexible robots.

IV. DISCUSSION

The Pancake-Flipping task is difficult to learn from mul-

tiple demonstrations because of the high variability of the

task execution, even when the same person is providing the

demonstrations. Extracting the task constraints by observing

multiple demonstrations, as in [21], is not appropriate in

this case for two reasons: (1) when considering such skillful

movements, extracting the regularities and correlations from

multiple observations would be too long, as consistency in

the skill execution would appear only after the user has

mastered the skill; and (2) the generalization process may

smooth important acceleration peaks and sharp turns in the

motion. Therefore, in such highly dynamic skilful tasks, early

trials have shown that it was more appropriate to select a

single successful demonstration (among a small series of

trials) to initialize the learning process.

Fig. 4. Successful real-world pancake flipping rollout performed on the
robot. The pancake (in yellow) was successfully tossed and caught with the
frying pan, and it rotated 180 degrees (for better visibility of the pancake’s
trajectory, the frying pan is not displayed here). The calculated return of
the rollout is 0.9. The trajectory of the end-effector is displayed with black
dots, and its orientation with blue arrows. The normal vectors perpendicular
to the pancake are shown with black arrows.

0 10 20 30 40 50

0.6

0.7

0.8

0.9

1

1.1

Number of rollouts

A
v
e

ra
g

e
 r

e
tu

rn

Fig. 5. This figure shows the expected return of the learned policy for
pancake flipping averaged over 6 sessions with 50 rollouts in each session.

The importance sampling technique proved to be ex-

tremely helpful for the online learning because it re-uses

efficiently previous rollouts. In practice, less than 100 roll-

outs were necessary to find a good solution for the Pancake-

Flipping task. Importance sampling is also computationally

efficient. It needs only linear O(n) memory to store the

return R(�k) and the RL parameters �k for all rollouts,

without need to store the whole rollout trajectories. The

value of the � parameter for the importance sampler was set

manually, but a possible future extension would be to have

an automatic mechanism to select � or even dynamically

change it during the learning.

In the experiments presented here, imitation learning is

used as an initialization phase, and afterwards RL is used to

explore for better solutions. Both processes could, however,

be interlaced. Depending on his/her availability, the user can,

3236

Fig. 6. Sequence of video frames showing a successful pancake flipping (after 50 rollouts), performed on the WAM robot.

for example, occasionally participate in the evaluation of

new policies explored by the robot. For example, the user

can manually give reward or punishment signals to the RL

module. He/she can also provide new examples in case the

robot’s improvement is too slow, or if the robot is looking for

inappropriate solutions. We plan to consider such interaction

in future work.

V. CONCLUSION

We have presented an approach based on a mixture of

dynamical systems for learning the couplings across multiple

motor control variables. An extension of Dynamic Move-

ment Primitive encapsulating synergy information is used to

compactly encode a demonstrated skill, where Reinforcement

Learning is used to refine the coordination matrices and

attractor vectors associated with the set of primitives. The

paper provides a mechanism to learn the local coupling

information across the different variables. It highlights the

advantages of considering probabilistic approaches in RL,

and of applying importance sampling to reduce the number

of rollouts required to learn the skill. The proposed method

was successfully implemented in two experiments. A Reach-

ing task experiment with obstacle avoidance illustrates the

advantages of using the full coordination matrices to learn

a skill with minimum number of states. A Pancake-Flipping

experiment that demonstrates the fitness of the proposed

approach to cope with real-world highly-dynamic tasks.

REFERENCES

[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Secaucus, NJ, USA: Springer, 2008, pp. 1371–1394.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robot. Auton. Syst., vol. 57,
no. 5, pp. 469–483, 2009.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning : an introduction,
ser. Adaptive computation and machine learning. Cambridge, MA,
USA: MIT Press, 1998.

[4] J.Peters and S.Schaal, “Policy gradient methods for robotics,” in Proc.

IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS), 2006.
[5] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of

motor skills in high dimensions: a path integral approach,” in Proc.

IEEE Intl Conf. on Robotics and Automation (ICRA), 2010.
[6] A. Coates, P. Abbeel, and A. Y. Ng, “Apprenticeship learning for

helicopter control,” Commun. ACM, vol. 52, no. 7, pp. 97–105, 2009.
[7] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement

learning for imitating constrained reaching movements,” Advanced

Robotics, vol. 21, no. 13, pp. 1521–1544, 2007.
[8] R. J. Williams, “Simple statistical gradient-following algorithms for

connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3-4,
pp. 229–256, 1992.

[9] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomput., vol. 71,
no. 7-9, pp. 1180–1190, 2008.

[10] J. Kober and J. Peters, “Learning motor primitives for robotics,” in
Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), May 2009,
pp. 2112–2118.

[11] J. Kober, “Reinforcement learning for motor primitives,” Master’s
thesis, University of Stuttgart, Germany, August 2008.

[12] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
in Advances in Neural Information Processing Systems, 2009, vol. 21,
pp. 849–856.

[13] S. Schaal, P. Mohajerian, and A. J. Ijspeert, “Dynamics systems vs.
optimal control a unifying view,” Progress in Brain Research, vol.
165, pp. 425–445, 2007.

[14] D. Pardo, “Learning rest-to-rest motor coordination in articulated
mobile robots,” PhD thesis, Technical University of Catalonia (UPC),
2009.

[15] D. E. Pardo and C. Angulo, “Collaborative control in a humanoid dy-
namic task,” in Proc. Intl Conf. on Informatics in Control, Automation

and Robotics, Robotics and Automation (ICINCO), Angers, France,
May 2007, pp. 174–180.

[16] T. Flash and N. Hogan, “The coordination of the arm movements:
an experimentally confirmed mathematical model,” Neurology, vol. 5,
no. 7, pp. 1688–1703, 1985.

[17] E. Todorov and M. I. Jordan, “Optimal feedback control as a theory
of motor coordination,” Nature Neuroscience, vol. 5, pp. 1226–1235,
2002.

[18] R. Huys, A. Daffertshofer, and P. J. Beek, “The evolution of coordina-
tion during skill acquisition: the dynamical systems approach,” in Skill

Acquisition in Sport: Research, Theory and Practice, A. M. Williams
and N. J. Hodges, Eds. Routledge, 2004, pp. 351–373.

[19] M. Bernikera, A. Jarcb, E. Bizzic, and M. C. Trescha, “Simplified
and effective motor control based on muscle synergies to exploit
musculoskeletal dynamics,” in Proc. Natl Acad. Sci. USA, vol. 106,
no. 18, 2009, pp. 7601–7606.

[20] M. T. Rosenstein, A. G. Barto, and R. E. A. Van Emmerik, “Learning
at the level of synergies for a robot weightlifter,” Robotics and

Autonomous Systems, vol. 54, no. 8, pp. 706–717, 2006.
[21] S. Calinon, I. Sardellitti, and D. G. Caldwell, “Learning-based control

strategy for safe human-robot interaction exploiting task and robot
redundancies,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and

Systems (IROS), Taipei, Taiwan, October 2010.
[22] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation for

imitation with nonlinear dynamical systems,” in Proc. IEEE Intl Conf.

on Intelligent Robots and Systems (IROS), 2001, pp. 752–757.
[23] H. Hoffmann, P. Pastor, D. H. Park, and S. Schaal, “Biologically-

inspired dynamical systems for movement generation: automatic real-
time goal adaptation and obstacle avoidance,” in Proc. IEEE Intl Conf.

on Robotics and Automation (ICRA), 2009, pp. 2587–2592.
[24] S. Calinon, F. D’halluin, D. G. Caldwell, and A. G. Billard, “Handling

of multiple constraints and motion alternatives in a robot programming
by demonstration framework,” in Proc. IEEE-RAS Intl Conf. on

Humanoid Robots (Humanoids), Paris, France, December 2009, pp.
582–588.

[25] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G.
Billard, “Learning and reproduction of gestures by imitation: An
approach based on hidden Markov model and Gaussian mixture
regression,” IEEE Robotics and Automation Magazine, vol. 17, no. 2,
pp. 44–54, 2010.

[26] M. Khansari and A. G. Billard, “BM: An iterative method to learn
stable non-linear dynamical systems with Gaussian mixture models,”
in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), An-
chorage, Alaska, USA, May 2010, pp. 2381–2388.

[27] R. Featherstone and D. E. Orin, “Dynamics,” in Handbook of Robotics,
B. Siciliano and O. O. Khatib, Eds. Secaucus, NJ, USA: Springer,
2008, pp. 35–65.

3237

