
Multiple-Person Tracking devoted to distributed multi Smart Camera
Networks

Iker Zuriarrain†, Jose Ignacio Aizpurua†, Frederic Lerasle‡¶ and Nestor Arana†
† Signal Treatment and Communications Research Group, University of Mondragon, 20500 Mondragon, Spain

‡ CNRS; LAAS; 7 avenue du Colonel Roche, 31077 Toulouse Cedex, France
¶ Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; LAAS : F-31077 Toulouse, France

E-mail: {izuriarrain, narana}@eps.mondragon.edu, jose.aizpurua@alumni.eps.mondragon.edu, lerasle@laas.fr

Abstract— Camera networks are an important component of
modern complex systems, be it for surveillance, human/machine
interaction or healthcare. Having smart cameras that can,
by themselves, perform part of the data processing improves
scalability both in processing and network resources. In this
paper, we present the HYBRID algorithm for multiple person
tracking intended for implementation on a smart camera
platform, along with the development methodology to imple-
ment said algorithm in an FPGA-based smart camera. The
HYBRID strategy outperforms the well-known Markov Chain
Monte Carlo based particle filter (MCMC-PF) in terms of
(i) parallelization capabilities as the MCMC-PF sequentially
processes the particles, and (ii) tracking performances (i.e.,
robustness and precision).

I. INTRODUCTION

People detection and tracking in human-centered envi-
ronments is one of the most important and fundamental
technologies to develop distributed surveillance, autonomous
mobile robotics, or intelligent transports, even cooperative
distributed sensor (both static and mobile sensors) systems.
Each of these applications utilizes camera networks and
therefore share many of the same technical challenges. Video
processing for such systems is suitable for the information
richness it encompasses. Depending on the surveillance task,
the sensor type, and the number of sensors in the network,
the processing of the raw data can be quite a daunting task.
Distributing the processing of the meta level data to each
of the sensing nodes in the network can dramatically reduce
the bandwidth burden, allowing for larger and more capable
networks. These independently operating nodes within a
sensing network which provide a certain pre-processing of
video stream are often called smart cameras.

While a number of advances have been made in the area of
camera networks, many of them seem to be geared towards
having a central processing unit that takes the raw (or, at
most, low-level processed) data from the cameras, in order
to provide tracking across multiple cameras [1], [2], [3]. To
the best of our knowledge, there are no intelligent cameras
dedicated to multiple human tracking (as opposed to human
detection) currently available off-the-shelf, although some
efforts in that direction have been made in the last few years,
such as FPGA-based single target trackers [4], [5] or DSP-
based trackers [6].

Particle filters have also been implemented in embedded
systems. For instance, Hoffman et al. [7] implemented a

mixture of a particle filter with Active Appearance Models
in order to track single targets. While the appearance model
used by Hoffman is more complex than ours, it is still limited
to a single target, and the implementation does not take
advantage of the parallelism inherent in the particle filtering
algorithm.

Also in this vein, Cho et al. [8] implement a grayscale
particle filter in an FPGA. The main differences with our
work are three: first, the algorithm is the well-known and
trivial CONDENSATION for single target tracking using
gray-scale features, while we use a more complex multi-
target MCMC/PF algorithm and color cues; also, in our case,
the FPGA module is integrated in the camera, while Cho et
al. keep it separate, which makes the communication with the
camera more complex; third, no mention is made of which
methodology they followed in their work. In our case, the
methodology is explicitly explained in Section III-B.

Meanwhile, visual multiple person tracker (MPT in short)
has received tremendous attention in the Vision literature.
Monte-Carlo methods, especially particle filters (PF), are
well suited for parallelization and have proved to be a
powerful formalism to track varying numbers of people. Yet,
joint PF suffers from exponential complexity in the number
of targets and this is due to the inefficiency of importance
sampling which classically draws the particles from the
system dynamics and so ”blindly” w.r.t the measurements.
A remedy addressed in [9], [10] is to replace the traditional
importance step by a Markov Chain Monte Carlo (MCMC in
short) sampling step within the PF. An unweighted sample
swarm is obtained by storing the samples after the initial
burn-in iterations in the Markov chain. Yet, the drawback
of this filtering strategy remains its non parallelization on
clusters as the MCMC-based PF remains sequential like pure
MCMC strategies.

Our MPT differs from the aforementioned approaches as
follows. First, we propose an efficient proposal distribution
based on saliency maps which combine several information
sources like system dynamics, SVM-based person detec-
tion [11], and adaptive background mixture models [12]. Sa-
liency maps combined with a rejection sampling mechanism,
as far as we are aware, have never been used for particle
sampling within Monte Carlo methods. The motivation is
to draw the particles in the relevant areas of the high
dimensional state-space and so limits the notoriously burst in

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 2469

terms of particles and MCMC iterations. Second, we design
a novel MCMC-based PF which remains well suited for
parallelization.

The paper is organized as follows. Section II depicts
our MCMC-based PF, compares its performance with the
state-of-the art, and highlights its parallelization capabilities.
Section III describes the ongoing integration on our smart
camera with a focus on a motion detector based on back-
ground mixture modeling. Finally, section IV summarizes
our contributions and discusses future works.

II. MULTITARGET TRACKING

As mentioned, the camera is intended to perform tracking
of multiple interacting targets. As such, an algorithm has
been developed that can a) track a varying number of
interacting targets along a sequence of images and b) can
be implemented in a smart camera architecture capable of
parallel processing (as explained in Section III).

The aim of the algorithm is to fit the template relative to
each target all along the video stream through the estimation
of its status r = {New, Tracked, Lost,Dead}1, its image
coordinates (u, v) and its scale factor s. These continuous
parameters are accounted for in the state vector xk related
to the k-th frame. With regard to the system dynamics,
the unpredictable motion of humans leads to define the
state vector xk = (rk, uk, vk, sk)

′
and to assume that its

entries evolve according to mutually independent random
walk, viz. p(xk|xk−1) = N (xk; xk−1,Σ) where N (.;µ,Σ)
is a Gaussian distribution with mean µ and covariance Σ =
diag(σ2

u, σ
2
v , σ

2
s). Finally, the global state vector is defined

by Xk = (x1
k, . . . ,x

Nt

k)
′

where Nt is the number of targets.
Each target might be in one of four states: Dead, in which

case the target is eliminated from the state vector; New, in
which the target is newly appeared in the current image;
Tracked, in which the target has been tracked for at least
one previous image, and therefore, it is already known; and
Lost, in which the target has disappeared in the current
frame. Logically, New targets turn into Tracked targets at
the end of the processing of the current image, and Lost
targets likewise turn into Dead targets (and as such, are
removed from the state vector).

Our filtering scheme, called HYBRID for the next and de-
tailed in Table I, combines Markov chain iterations and prin-
ciples of the CONDENSATION algorithm [13]. Multiple
saliency maps {Sdk}d=1,...,Nd

are processed from visual
detector outputs Detd(zk) and from the targets’ dynamics
p(xjk|x

j
k−1). These maps, independent and so computed in

parallel on multi-core processing units, are then merged in
a unified saliency map (step #5) which highlights ”relevant”
areas of the state space. The underlying data driven pro-
posal densities and particle sampling mechanisms will (re)-
concentrate the particles on the right regions of interest. The
calculation of the saliency maps is independent of both the
number of targets and number of particles, depending only
on the detector’s runtime and the number of detectors.

In step #7, the continuous parameters (xi,1k , . . . ,xi,Nt

k) of
the i − th particle are randomly drawn from an uniform

1New and Dead status mean the target entering/leaving the field-of-view.

distribution, and the values for these positions in the saliency
map lead to a likelihood

∑Nt

j=1 Sk(ujk, v
j
k) which allow

to accept/reject the sample based on rejection sampling
mechanism. This involves simply looking up the value in
the saliency map Sk, and permits: (1) the reduction of the
computation cost, (2) an efficient sampling in the high likeli-
hood areas of the continuous state-subspace and so a drastic
limitation of the particle burst, (3) an easier implementation
of the proposal density where this is difficult to model
analytically2. An example of particle swarm drawn by this
mechanism is shown in Figure 1. As can be seen, the particles
naturally concentrate in areas where the saliency map shows
there is a high probability of target appearance.

Fig. 1. Detector outputs (MGM and HOG-SVM), associated saliency map
and particle sampling.

This first sampling ignores possible target jumps i.e. we
assume the tracked targets remain the same from one frame
to the next. In step #12, a second sampling step through
MCMC moves leads each individual particle from a current
targets’ configuration to another one (based on likely jumps)
which is more representative of the current image contents.
Drawing new samples by moving jointly all the dimensions
suffers from exponential complexity with the state-space
dimensionality [14]. The popular issue is to propose target-
wise marginal moves i.e. only moving one target at each
iteration. The transition from state hypothesis Xk to the
proposed next X′k is conditioned by a proposal density
q(x′k|xk, zk) for each jump in the targets’ status.

Traditionally, an MCMC process requires a high number
of burn-in iterations as the Markov chain must usually, given
an initial state, move between trans-dimensional state-spaces.
The iteration number Nmcmc, which role is to increase
diversity in the particle swarm, is here reduced drastically as:
(1) we only have to deal with targets’ configuration as the
continuous component subspace have been already sampled,
(2) the associated target number does not change significantly
from one frame to the next, (3) we consider a Markov chain
moves for each individual particle and the resulting particle
swarm induces diversity itself. A last observation concerns
the low computation cost of each iteration since it changes
the computation of the acceptance ratioRa into a lookup into

2Even if only Gaussian mixtures are considered in this work.

2470

[{Xi
k, w

i
k}]

N

i=1= HYBRID(Xk−1, zk)

1: IF k = 0, THEN Set status rt
k−1 = Dead for each target t END IF

2: IF k ≥ 1 THEN {}
3: Generate saliency maps {Sd

k(x|zk)}d=1,...,Nd
for each visual detector Detd(zk)

4: Generate a saliency map from the targets’ dynamics Sdyn
k (x) =

T∑
j=1

p(xj |xj
k−1)

5: Generate the unified saliency map Sk(x|zk) = Sdyn
k (x) +

D∑
d=1

Sd
k(x|zk)

6: FOR i = 1, . . . , Np, DO
7: FOR j = 1, . . . , Nt, DO
8: IF rj

k == Tracked THEN
9: Sample xi,j

k from Sk via rejection sampling
10: END IF
11: END FOR
12: FOR m = 0, . . . , Nmcmc, DO
13: Randomly pick a target j and propose an associated event/jump τ (events have all the same probability of happening)
14: Apply τ to Xi

k to generate X′ik with update of the j-th target’s status.
15: Draw threshold β according to a uniform distribution over (0, 1]

16: Calculate the acceptance ratio Ra =
p1(zk|x

′i
k).q(xi

k|x
′i
k, zk).Ψ(xj

k
,xm

k)

p1(zk|x
i
k

).q(xi
k
|x′i

k
, zk).Ψ(x′j

k
,x′m

k
)

17: IF Ra > β THEN
18: xi

k = x′k
i

19: END IF
20: END FOR
21: Update the weight wi

k associated to Xi
k according to wi

k ∝ p2(zk|Xi
k), prior to a normalization step so that

∑
i w

i
k = 1

22: END FOR
23: Compute the MAP estimator Ep(Xk|z1:k)[Xk] = argmax

Xi
k
[wi

k] to approximate the posterior p(xk|z1:k)

24: Remove all targets j where {rj
k}j=1,...,Nt == Lost, and set {rj

k} = Tracked for all targets where rj
t == New in Ep(Xk|z1:k)

25: END IF

a

TABLE I
OUR FILTERING STRATEGY (HYBRID).

the saliency map Sk, instead of a more expensive operation
e.g. the comparison of color distributions.

Step #21 corresponds to the particle weighting update. To
this end, we affect a particle Xi

k a weight wik involving its
likelihood p2(zk|Xi

k). This likelihood involves three different
calculations, depending on the target status. If a target is
Dead or Lost, it is calculated as a similarity measure to
the background (i.e., likelihood the target is not present);
if the target is New, it is a dissimilarity measure to the
background (i.e., likelihood the target is present); finally, if
the target is Tracked, it is calculated as both dissimilarity
to the background, and similarity to an adaptive per-target
appearance model (i.e., likelihood the target is present and is
similar in appearance to what we have seen in earlier frames).

Finally, the particle with the highest weight wik is chosen
as the most probable configuration of the system, and is used
as input to the dynamic model for the next frame.

The results of running this algorithm on a 3400 image
sequence taken from the public PETS 2006 dataset (with
manually tagged ground truth, as the ground truth included
with the dataset is not geared towards people tracking) are
shown in Table II, along with those from a well known mixed
MCMC-PF tracker[10][9]. The statistics shown are the False
Positive Rate (FPR), which measures the number of targets
tracked that do not really exist; the Tracking Success Rate
(TSR), which measures correct tracking percentage; and the
Precision Error (PE) which measures the deviation in pixels
from the target position in the ground truth. Each of these
statistics are averaged over four runs of the algorithm, and
the standard deviation for each stat is shown in parentheses.
Some snapshots of this sequence are also shown in Figure

2.
For this test, the HYBRID tracker was run with 150

particles, while the MCMC-PF tracker ran with an equivalent
number of iterations (i.e., since MCMC-PF only switches a
target per iteration, while a HYBRID particle may modify
any of its targets, MCMC-PF ran for 1500 iterations).

As we can see from the results, HYBRID maintains and
even noticeably improves performance when compared to
MCMCPF, with the added advantage that a number of
the operations may be performed in parallel (for example,
sampling of a particle can proceed in parallel with the
evaluation of a different particle, given that both utilize
different data: saliency map for sampling vs. image data for
evaluation), permitting predicted gains of between 20% to
30% in processing speed due to that single optimization.

TABLE II
RESULTS FOR THE PETS 2006 SEQUENCE.

Strategy FPR (σ) TSR (σ) PE (σ)

MCMCPF 0.026 (8.3.10−4) 72.9% (1.79.10−2) 10.17 (0.965)
HYBRID 0.023 (2.2.10−3) 77.9% (5.316.10−3) 7.62 (1.136)

III. CAMERA INTEGRATION

The HYBRID algorithm was intended for implementation
in an FPGA-based smart camera, in order to take advantage
of the parallelization posibilities offered by the architecture.
In this section, we will detail the camera platform we work
with, as well as the methodology we have followed for the
simulation and partial implementation of the algorithm.

2471

Fig. 2. Sample results from PETS dataset for the HYBRID algorithm

A. The smart camera platform

The camera we have been working with is an FPGA based
smart camera (Figure 3) by Delta Technologies Sud Ouest
(DTSO), a company from Toulouse, France.

Fig. 3. Our smart camera platform.

The DTSO iCam camera is currently fitted with two
FPGA modules. Each of these modules is based on an
Altera Cyclone-II FPGA, and includes a 18 megabit me-
mory module (with a 18 bit word-width), as well as the
communications with the neighboring modules. Currently,
all programming of the FPGA modules must be done using
the JTAG connector while the camera is out of its enclosure,
so there is no means for online reconfiguration.

Communications between the camera and other external
devices is currently done using wither an Ethernet com-
munications module or a Wi-Fi module, since the camera
is intended not as a stand-alone product, but as a node of
a network of cameras. This also allows for some of the
processing to be done in a more conventional processor, since
the communications module includes a Freescale processor.

B. Methodology

Implementing any non-trivial algorithm in hardware is
in itself a non-trivial problem that requires both a good
knowledge of low level design and programming techniques,
and a very intimate knowledge of the target algorithm. Even
then, there are a number of design decision that might have
unforeseen effects on the final implementation.

In order to lessen the effect of these factors, an accurate
model of the system is often an invaluable tool, since it
allows exploration of design decisions with a minimum
investment of time and effort. That way, it becomes possible

to test proposed changes to a hardware architecture in but a
fraction of the time and cost. Also, in cases where the system
is a mix of hardware and software (as many complex systems
are), partitioning becomes both easier and more efficient
in cases where an accurate working model of the system
exists[15].

There are a number of ways these models can be develo-
ped. For example, the Hardware Resource Model promoted
by the Object Management Group [16] offers a framework in
which developers may describe a model of the hardware for
a given system. This model is part of a broader framework
named MARTE (Modeling and Analysis of Real-Time and
Embedded systems) for the development of real-time sys-
tems. On the other hand, there are a number of languages
such as HandelC or SystemC oriented towards programming
the model in higher level languages (often derived from the
C family of languages).

SystemC, along with a methodology based on Transaction
Level Modeling (TLM), has been used in a number of
works[15], [17]. This methodology is based on the classic
Design-Implement-Redesign spiral model which is common
in software development, and takes advantage of the wide
range of simulation capabilities offered by SystemC: starting
from a functional model (i.e., a C++ implementation of the
algorithm), it is possible to iteratively add detail to different
components of the system, creating more detailed models
that approach the low-level RTL code necessary for actual
implementation without losing confidence in the functiona-
lity of the code. Table III shows a common classification of
the different detail levels involved in TLM. As the model
moves downwards in that table, it acquires an increasing
amount of detail, until it has reached the RTL level, where
it is possible to directly synthetize it with the correct tools.

In our case, the hardware architecture obtained from
iterating on the algorithm shown on Section II is divided
on three main blocks: first, detection and saliency map (Sk)
generation, which takes the input image, runs it through
a number of detectors (in this case, a Multiple Gaussian
Mixture background subtraction module and a Histogram of
Oriented Gradients-based SVM classifier) and along with the
data from the dynamic model generates the saliency map;

2472

TABLE III
DETAIL LEVELS OF TRANSACTION-LEVEL MODELS[18].

Model Communication Functionality

System Assembly Untimed Untimed

Component Assembly Untimed Approximated

Bus Arbitration Approximated Approximated

Bus Functional Cycle Accurate Approximated

Cycle Accurate Computation Approximated Cycle Accurate

RTL Cycle Accurate Cycle Accurate

second, a particle processor, which is a self-contained unit
that processes the different hypotheses that drive the particle
filter, using the saliency map and the image data; and finally,
the selection of the most probable particle. This architecture
is shown in Figure 4.

Fig. 4. Architecture of the tracking algorithm hardware after refinement
with the simulation.

There are a few things worth noting in this model: it is
clear that each detector can, along with the dynamic model,
be run in parallel with the others up until the choke point
that is the saliency map generation; a similar thing happens
with the particle processor, which can, since each particle is
independent to the others, be run multiple times in parallel
for different particles, greatly increasing the speed of the
whole system.

C. Simulation Results

According to the simulation of the previous model, the
algorithm has a maximum runtime of 55 ms per image for
up to 10 targets (approximation made by assuming the most
pessimistic case for all processes with a variable number of
iterations), which would allow it to run at slightly better than
18 fps. The breakdown of these 55 ms per image can be seen
in Table IV.

TABLE IV
WORST-CASE TIMING RESULTS FOR THE TRACKING SYSTEM (MAX 10

TARGETS).

Component Time (ms)
Detection and Saliency map 26.864

Particle sampling and evaluation 28.687
Particle selection 0.003

Total 55.554

Given that the detectors are heterogeneous, running them
in parallel reduces the runtime to that of the worst-
performing detector of the set, which is the HOG-SVM
classifier. However, as mentioned earlier, multiple particles
can be processed at the same time. Using four particle
processors, for example, cuts runtime by almost 40% down
to 34.039 ms, increasing performance to 29 fps, which is
enough for real-time video.

D. Result validation

In order to establish the validity and accuracy of the simu-
lation results, a component of the algorithm has been taken
to the RTL-level model and implemented in VHDL. The
component chosen was the MGM background subtraction
module, which we believe has enough complexity regarding
functions such as memory usage and parallelizability so as
to be a representative sample of the algorithm, while still
being simple enough that the implementation effort would
not be overly demanding.

The MGM background subtraction [12] compares each
pixel of the image with a multiple Gaussian model that indi-
cates a range of colors (modelled as Gaussian distributions)
that have most often appeared at that location. If the pixel
is close enough to the colors predicted by the model, then
it is recognized as a background pixel. The use of multiple
Gaussians (as opposed to a single one) allows the model to
recognize periodic variations of colouring in an area (such as
a rotating fan) as forming part of the background, reducing
the amount of false positives.

The pixels labeled as foreground by the model are then
relabeled by a classic two-pass connected components algo-
rithm, so that those blobs can then be used by the saliency
map generation to pinpoint the areas of the image that have
a high probability of containing targets to track.

The detailed hardware architecture model for this com-
ponent can be seen in Figure 5. It is divided in three areas,
corresponding to reception of images (left), background
subtraction (middle) and connected components clustering
(right). The input of the module is the image pixels from the
debayering module, and the output is an image with labeled
regions corresponding to each foreground blob of sufficient
size in the image.

The timing results for both the SystemC simulation and the
VHDL implementation are shown in Table V, showing that
the result of the simulation seems to be relatively accurate,
if slightly pessimistic. This is mostly due to a particular case
in the SDRAM’s behaviour that was not properly modelled
when the SystemC model was created: the SDRAM allows

2473

Fig. 5. Detailed HW architecture model for the Background Subtraction
component.

for faster access for consecutive items in memory, while the
SystemC model used an average of the access times. Since
the data is structured in a way so as to take advantage of
this speed-up, the VHDL implementation is slightly faster.

Assuming that the code we have chosen is indeed re-
presentative of the complexity of the problem, these results
suggest that the simulation data we obtained from the Sys-
temC model is accurate enough for practical purposes such
as selecting the definitive arquitecture of the system and
establishing minimum requirements.

TABLE V
TIMING RESULTS FOR THE BACKGROUND SUBTRACTION.

Timing (ms per image)

HW model in SystemC 27.312
VHDL implementation 26.864

IV. CONCLUSION AND FUTURE WORKS

In this paper we have shown the current state of our
research in two fronts: first, an algorithm for multiple tar-
get tracking intended for implementation in a FPGA-based
smart camera; second, the methodology of implementation
of said algorithm via SystemC and TLM. According to our
predictions, the algorithm should run at 18 fps in the camera
when unoptimized, and upwards from 29 fps (i.e., real time
video) with some basic optimizations.

We have also validated the methodology and the pre-
dictions made by the simulation by the implementation of
a selected part of the algorithm, giving the smart camera
limited functionality.

Current research concerns the implementation of the full
functionality of the camera by implementing the remainder of
the algorithm, and the use of multiple communicating smart
camera nodes in order to reliably track people across large
scale human-centered environments.The major challenge is
to avoid sending many full-resolution, real-time images to

the video processor of the network PCs, by offloading the
processing power into the cameras themselves.

REFERENCES

[1] R. Goshorn, J. Goshorn, D. Goshorn, and H. Aghajan, “Architecture
for cluster-based automated surveillance network for detecting and
tracking multiple persons,” in 1st Int. Conf. on Distributed Smart
Cameras (ICDSC), 2007.

[2] C. Arth, C. Leistner, and H. Bischof, “Object reacquisition and
tracking in large-scale smart camera networks,” in Proceedings of
the First ACM/IEEE International Conference on Distributed Smart
Cameras, Vienna, pp. 156–163, 2007.

[3] M. Hoffmann, M. Wittke, Y. Bernard, R. Soleymani, and J. Hahner,
“DMCtrac: Distributed multi camera tracking,” in Distributed Smart
Cameras, 2008. ICDSC 2008. Second ACM/IEEE International Confe-
rence on, pp. 1–10, 2008.

[4] F. Dias, F. Berry, J. Serot, and F. Marmoiton, “Hardware, Design and
Implementation issues on a FPGA-based Smart Camera,” in Distribu-
ted Smart Cameras, 2007. ICDSC’07. First ACM/IEEE International
Conference on, pp. 20–26, 2007.

[5] S. Hong, X. Liang, and P. Djuric, “Reconfigurable particle filter design
using dataflow structure translation,” in 2004 IEEE Workshop on
Signal Processing Systems Design and Implementation, pp. 325–30,
2004.

[6] M. Litzenberger, A. Belbachir, P. Schon, and C. Posch, “Embedded
smart camera for high speed vision,” in Distributed Smart Came-
ras, 2007. ICDSC’07. First ACM/IEEE International Conference on,
pp. 81–86, 2007.

[7] M. Hoffmann, A. Swart, K. Hunter, B. Herbst, S. Flecky, and W. Stras-
ser, “Model-based robust and precise tracking embedded in smart
cameras: the PFAAM-CAM,” in Distributed Smart Cameras, 2008.
ICDSC 2008. Second ACM/IEEE International Conference on, pp. 1–
8, 2008.

[8] J. Cho, S. Hun Jin, X. Dai Pham, and J. Jeon, “Multiple object tracking
circuit using particle filters with multiple features,” in Int. Conf. on
Robotics and Automation (ICRA’07), (Roma, Italy), pp. 4639–4644,
April 2007.

[9] F. Bardet, T. Chateau, and D. Ramasadan, “Illumination aware MCMC
particle filter for long-term outdoor multi-object simultaneous tracking
and classification,” in Int. Conf. on Computer Vision (ICCV’09),
(Kyoto, Japan), September 2009.

[10] Z. Khan, T. Balch, and F. Dellaert, “MCMC-based particle filtering for
tracking a variable number of interacting targets,” Trans. on Pattern
Analysis Machine Intelligence (PAMI’05), vol. 27, no. 11, pp. 1805–
1818, 2005.

[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Int. Conf. on Computer Vision and Pattern Recognition
(CVPR’05), (San Diego, USA), June 2005.

[12] C. Stauffer and W. Grimson, “Adaptative background mixture models
for real-time tracking,” in Int. Conf. on Computer Vision and Pattern
Recognition (CVPR’99), vol. 2, (Fort Collins, USA), pp. 22–46, June
1999.

[13] M. Isard and A. Blake, “CONDENSATION – conditional density
propagation for visual tracking,” Int. Journal on Computer Vision,
vol. 29, no. 1, pp. 5–28, 1998.

[14] K. Smith, D. Gatica-Perez, and J. Odobez, “Using particles to track va-
rying numbers of interacting people,” in Int. Conf. on Computer Vision
and Pattern Recognition (CVPR’05), (San Diego, USA), pp. 962–969,
June 2005.

[15] J. Lee and S. Park, “Transaction Level Modeling for Hardware
Architecture Exploration with IEEE 802.11 n Receiver Example,” in
Communication Technology, 2006. ICCT’06. International Conference
on, pp. 1–4, 2006.

[16] S. Taha, A. Radermacher, S. Gerard, and J. Dekeyser, “An open
framework for detailed hardware modeling,” in Industrial Embedded
Systems, 2007. SIES’07. International Symposium on, pp. 118–125,
2007.

[17] C. Helmstetter and V. Joloboff, “SimSoC: A SystemC TLM integrated
ISS for full system simulation,” in IEEE Asia Pacific Conference on
Circuits and Systems, 2008. APCCAS 2008, pp. 1759–1762, 2008.

[18] D. Black and J. Donovan, SystemC: from the ground up. Springer-
Verlag New York Inc, 2005.

2474

