
  

 

Abstract—Concentric tube robots are a subset of continuum 
robots constructed by combining pre-curved elastic tubes.  As 
the tubes are rotated and translated with respect to each other, 
their curvatures interact elastically, enabling control of the 
robot’s tip configuration as well as the curvature along its 
length.  This technology is projected to be useful in many types 
of minimally invasive medical procedures. Because these robots 
are flexible by design, they deflect considerably when applying 
forces to the external environment. Thus, in contrast to rigid-
link robots, their kinematic and static force models are 
coupled. This paper derives a multi-tube quasistatic model that 
relates tube rotations and translations together with externally 
applied loads to robot shape and tip configuration. The model 
can be applied in robot design, procedure planning as well as 
control. For validation, the multi-tube model is compared 
experimentally to a computationally-efficient single-tube 
approximate model. 

I. INTRODUCTION 

HE goal of minimally invasive surgery (MIS) is to 
interact with tissue deep inside the body while 

minimizing collateral damage to surrounding tissues. In 
contrast to open surgery in which access is gained by 
making large incisions, MIS involves entering the body 
through small incisions and, whenever possible, following 
natural passages through the tissues to reach the surgical 
site. Manual and robotic catheters are successful examples 
of an MIS instrument technology which have been 
specifically developed for procedures inside the vasculature 
[1],[2]. 

There are many medical procedures that could benefit 
from an instrument technology with the ability of catheters 
to follow complex curves, but which require much more tip 
stiffness than that of a catheter. These include structural 
repairs inside the heart and tissue removal inside the brain.  

Few instrument technologies exist, however, that possess 
significant tip stiffness in combination with the ability to 
assume 3D curves inside the body. Conventional surgical 
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robots, for example, possess high stiffness, but consist of 
straight shafts comparable to traditional laparoscopic tools 
[3]. To address this shortcoming, bending snake-like robotic 
extensions have been proposed and constructed for 
mounting at the tip of the straight shaft [4]. A novel, 
alternate approach consists of a robotic sheath that can be 
extended along a 3D curve [5].  

Concentric tube robots offer a good compromise between 
shape control and stiffness. As illustrated by the example of 
Fig. 1, they can be constructed to possess a full six degrees 
of freedom at their tip while also enabling control of 
curvature along their length. Furthermore, they can be 
constructed with diameters comparable to catheters and 
lengths sufficient to reach anywhere inside the body while 
achieving a tip stiffness several orders of magnitude greater 
than that of a catheter. The lumen of the innermost tube can 
house additional tubes and wires for controlling articulated 
tip-mounted tools. 

 
Fig. 1.  Concentric tube robot comprised of four telescoping sections that 
can be rotated and translated with respect to each other. 

 
Concentric tube robots, like steerable catheters [1],[2] and 

snake-like multi-backbone devices [4], are continuum 
robots. In comparison to traditional robot arms, this class of 
robots lacks distinct links and joints. Continuum robots 
possess the shape of a smooth curve whose curvature can be 
controlled by adjusting the internal deformation of 
mechanically coupled elastic components of the body. 

Consequently, the kinematic modeling of continuum 
robots cannot be formulated solely in terms of constrained 
motion between rigid bodies, but must also incorporate 
deformation modeling of the elastic components [1],[4],[6]-
[9]. For concentric tube robots, the deformation is that of the 
individual tubes [6]-[9].  

Owing to both the complexity of the modeling problem as 
well as to the desire to derive numerically efficient models 
for real-time control, a succession of kinematic models of 
increasing complexity have been proposed over the last few 
years as described in [8]-[9]. While providing significantly 
improved accuracy over earlier models, these new models 
are considerably more complex. They consist of second-
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order differential equations with split boundary conditions. 
To achieve computational efficiency, these equations can be 
pre-computed over the workspace and stored either in the 
form of a functional approximation or as a lookup table [8]. 
The inverse kinematic problem can be solved efficiently by 
root finding on the approximate forward solution [8]. 
Alternately, an inverse functional approximation or lookup 
table can be similarly constructed. 

While the kinematic models of [8]-[9]  assume that there 
is no external loading applied to the robot (see [10] for an 
exception), applications in minimally invasive surgery can 
be expected to involve loads applied along the robot’s length 
as well as at its tip. Unlike robots whose links can be 
approximated as rigid bodies, however, the kinematic and 
static force models of continuum robots cannot be 
decoupled.  

Thus, when considering the important case of external 
loads applied to the robot, the model for implementing 
position, force or impedance control takes the form of a 
coupled 3D beam-bending problem in which the kinematic 
input variables (tube rotations and displacements at the 
proximal end) enter the problem as a subset of the boundary 
conditions. The remaining boundary conditions are 
comprised of point forces and torques applied to the distal 
ends of the tubes. Contact along the robot’s length (e.g., 
with tissue) generates additional distributed and point loads.  

In contrast to the models of [8]-[9], the inclusion of 
external loading significantly increases the number of state 
variables that must be integrated along the lengths of the 
tubes. As an alternative to this full-order model, a 
computationally-efficient approximate model that can be 
applied to all types of continuum robots has been proposed 
and successfully implemented for concentric-tube robot 
stiffness control [11]-[13]. In this approach, the continuum 
robot is modeled as a single Cosserat rod with properties 
along its length corresponding to the composite stiffnesses 
and initial curvatures of the unloaded robot. 

The contributions of this paper are the derivation of a 
multi-tube quasistatic model as well as a computational and 
experimental comparison of the multi-tube model with the 
single-tube model of [11]-[13]. The paper is arranged as 
follows. Section II derives the multi-tube externally-loaded 
model. Section III presents the simplified single-tube 
approximate model. Section IV provides an experimental 
comparison of the models. Conclusions are presented in 
Section V.  

II. QUASISTATIC MULTI-TUBE MODEL 

The multi-tube model derived here can be interpreted as 
an extension of the unloaded model presented in [8]. It 
includes bending and torsion for an arbitrary number of 
tubes whose curvature and stiffness can vary with arc length. 
Effects that are neglected include shear of the cross section, 
axial elongation, nonlinear constitutive behavior and friction 
between the tubes. Note that these effects are neglected, but 
are not necessarily all negligible.  

 In the remainder of the paper, subscript indices 
1, 2,...,i n  are used to refer to individual tubes with tube 1 

being outermost and tube n being innermost.  Arc length, s, 
is measured such that s = 0 at the proximal end of the tubes. 
The total length of each tube is designated by Li. 

As illustrated in Fig. 2, for two tubes, material coordinate 
frames for each cross section can be defined as a function of 
arc length s  along tube i  by defining a single frame at the 
proximal end, (0)iF , such that its z axis is tangent to the 

tube’s centerline. Under the unrestrictive assumption that the 
tubes do not possess initial material torsion, the frame, ( )iF s , 

is obtained by sliding (0)iF  along the tube centerline 

without rotation about its z axis (i.e., a Bishop frame [14]). 
As the tubes move, bend and twist, these material frames act 
as body frames tracking the displacements of their cross 
sections. It is also useful to define a reference frame, 0 ( )F s , 

which displaces with the cross sections, but does not rotate 
about its z axis under tube torsion.  

As the thi  tube’s coordinate frame ( )iF s slides down its 

centerline, it experiences a body-frame angular rate of 
change per unit arc length given by 

 
u

i
(s) = u
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iy
(s) u

iz
(s)é

ëê
ù
ûú
T

             (1) 

in which ( , )ix iyu u are the  components of curvature due to 

bending and izu is the curvature component due to torsion. A 

circumflex on a curvature component is used to designate 
the initial pre-curvature of a tube.  

The kinematic input variables consist of the rotation and 
translation of each tube about and along the common 
centerline of the combined tubes. The rotation angle, 

 qi
(s) , 

is defined as the z -axis rotation angle from frame 0 ( )F s  to 

frame ( )iF s . The translation variable, 
 
l
i
, is defined as the 

arc length distance from frame 
  
F

0
(0)  to the initially 

coincident frame F
i
(0) . In the rest of the paper, all vector 

quantities associated with tube i , e.g., ( )iu s , are written 

with respect to frame ( )iF s . Vectors associated with the 

robot, e.g., net bending moment, are written with respect to 
frame 0 ( )F s . 

As shown in the figure, insertion of one tube inside the 
other causes each to bend and twist along their length. The 
application of externally applied wrenches generates 
additional bending and twisting of the tubes.  

A. Derivation of Multi-tube Model 

The quasistatic model including external loading can be 
derived by combining three equations – a constitutive model 
relating bending moments to changes in curvature of 
individual tubes, the equilibrium of bending moments and 
shear forces on the cross section of the assembled tubes, and 
a compatibility equation relating the individual curvatures of 
the assembled tubes. Additional equations are needed to 
compute the net shear force and bending moment on the 
robot as a function of arc length.  
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The constitutive model and compatibility equations are 
independent of the external loading and so are identical to 
those of the unloaded kinematic model presented in [8]. The 
equilibrium equation of [8], however, must be modified to 
include the net bending moment arising from external loads. 
Furthermore, to compute net bending moment, new 
differential equations must be introduced to compute both it 
and net shear force. Each is described below. 

 

 
Fig. 2.  Tube coordinate frames are denoted ( )iF s . The relative z-axis twist 

angle between tube frame 0 ( )F s and frame ( )iF s  is ( )i s . 

 
 (1) Constitutive Model: When a tube with initial 

curvature ˆ ( )iu s is deformed to a different curvature ( )iu s , a 

bending moment is generated. Assuming linear elastic 
behavior, the bending moment vector ( )im s at any point s  
along tube i  is given by 
  ˆ( ) ( ) ( )i i i im s K u s u s   (2) 

 Given the coordinate frame convention described above, all 
vectors are expressed with respect to frame ( )iF s , and iK  is 

the frame-invariant stiffness tensor given by 
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ix i i
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 (3) 

in which iE  is the modulus of elasticity, iI is the area 

moment of inertia, iJ  is the polar moment of inertia and iG  

is the shear modulus of tube i. 
 
 (2) Compatibility of Deformations: Assuming that the 
clearance between each pair of adjacent tubes is just 
sufficient to enable relative motion, all tubes must conform 
to the same final x-y (bending) curvature.  Each tube is free, 
however, to twist independently about its z axis. The z 
component of curvature, ( )i z

u s , equates to the rate of 

change of twist angle with respect to arc length, ( )i s , 

 ( ) ( )i i z
s u s  . (4) 

The resulting bending curvatures can be equated when 
written in the same frame. Expressing tube curvatures in 
terms of the robot frame curvature, 0u , results in 

 0( ) ( ) ( ) ( )T
i z i i zu s R u s s e     (5) 

in which ( ) (3)z iR SO is a rotation about the z axis by 

angle i  and [0,0,1]T
ze  . 

 
(3) Equilibrium of Bending Moments: On each cross section, 
the bending moments in each tube must sum to the robot’s 
net bending moment, 0 ( )m s , generated by the external 

loading. 

 0
1

( ) ( ) ( )
n

z i i
i

m s R m s


    (6) 

As in (5), ( )z iR  is used to transform tube bending moments 

from frame ( )iF s to frame 0 ( )F s . 

Combining (2) and (6) expresses net bending moment in 
terms of tube curvatures, 

 0
1

ˆ( ) ( ( )) ( )( ( ) ( ))
n

z i i i i
i

m s R s K s u s u s


  . (7) 

Solving (5) and (7) for 0 ( )u s provides an expression for 

robot curvature in terms of initial tube curvatures and net 
bending moment, 
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Since frame 0 ( )F s  by definition does not rotate about its 

z axis, 0 0
z

u  , and so this equation can written in two 

parts as 
1

0 0,
1 1

,

ˆ( ) ( ) ( ( )) ( ) ( ) ( )
n n

i z i i ix y
i i

x y

u s K s R s K s u s m s


 

     
       

   (9) 

 0
1 1

( ) ( ) ( ) ( ) ( )
n n

iz i iz izz
i i

m s k s s k s u s
 

    (10) 

Equations (5) and (9) enable the computation of the x and y 
curvatures of all tubes using 

 0, ,
( ) ( ) ( )T

i z ix y x y
u s R u s  (11) 

An expression is also needed to compute the z curvature of 

all tubes, , 1, ,iz iu i n   . Such an expression can be 

obtained from the equilibrium equation of the special 
Cosserat rod model [15]-[17]. Setting time dependent terms 
to zero, the body-frame equilibrium equations for a curved 

rod undergoing distributed loading of    t Î3 torque per unit 

length and   f Î  3 force per unit length can be applied to 

each tube 

 
( ) ( ) [ ( )] [ ( )] ( )

( ) ( ) 0 [ ( )] ( )
i i i i i

i i i i

m s s u s v s m s

n s f s u s n s

       
        

       




 (12) 

2327



  

Derivatives are with respect to arc length along the rod, s , 
and 3,i im n Î  are the bending moment and shear force 

vectors acting on the tube’s cross section. Here, and in the 
remainder of the paper, the square brackets on the vectors 

iu and iv denote the skew-symmetric form 

 

0

[ ] 0

0

iz iy

i iz ix

iy ix

u u

u u u

u u

 
   
  

 (13) 

Consistent with the previous notation, 3( ), ( )i iu s v s Î   are 

the angular and linear strain rates per unit arc length, 
respectively, experienced by the tube's cross section. Thus, 
as described previously, ( )iu s has the units of curvature. 

Similarly, the x and y components of ( )iv s are the shear 

strain components of the cross section while the z 
component is 1iz izv    in which iz is the longitudinal 

strain. Given the assumptions of negligible shear and 
longitudinal strain, 

  ( ) 0 0 1
T

iv s   (14) 

It can be helpful to note that ( )iu s and ( )iv s  are analogous 

to body-frame angular and linear velocities if time is 
substituted for arc length. Wrenches applied at either end of 
the rod enter the equations as boundary conditions. 

Since tube interaction is limited to distributed forces, 
( ) 0i st =  in (12) and, for each tube, it reduces to 

 [ ] [ ]i i i i im u m v n    (15) 

To eliminate moments from these equations, we can use the 
constitutive model for moments (2) and its derivative to 
arrive at 

 
 

ˆ ˆ( ) ( ) ( ( ) / ( ))( ( ) ( ))

ˆ ˆ( ( ) / ( )) ( ) ( ) ( ) ( )

iz iz z z z z

x z ix iy iy ix

u s u s k s k s u s u s

k s k s u s u s u s u s

  

 

 
 (16) 

Equations (4) and (16) are a set of second order differential 
equations for the tubes’ twist angles, i , that must be 

integrated using the algebraic equations (9) and (11). These 
equations are identical to those describing the unloaded 
kinematic model except that (9) now includes the net 
bending moment on the tubes, 0 ( )m s [8]. 

 
(4) Net Bending Moment and Shear Force: While (11) 
provides the z component of  0 ( )m s , it is the x and y 

components that are needed for (9). To compute net bending 
moment as a function of arc length, the equilibrium special 
Cosserat model (12) can be applied again, but this time to 
the collection of tubes. 

 0 0 0 0 0

0 0 0 0

( ) ( ) [ ( )] [ ( )] ( )

( ) ( ) 0 [ ( )] ( )

m s s u s v s m s

n s f s u s n s

       
        

       




 (17) 

Since net bending moment on the robot’s cross section 
evolves together with net shear force, 0 ( )n s , both must be 

simultaneously integrated. Here 0 ( )s and 0 ( )f s are the 

externally applied distributed torque and force per unit 
length of the robot as shown in Fig. 3. 

 
Fig. 3.  External loading on robot consists of distributed forces, 

0
( )f s , and  

distributed moments, 
0
( )st , as well as concentrated forces, 

0
( )n L , and 

concentrated moments, 
0
( )m L . 

 
Robot curvature, 0 ( )u s , is defined by (8) and since (14) 

applies to all tubes comprising the robot,  

  0 ( ) 0 0 1
T

v s  . (18) 

Equations (4),(9)-(11),(16)-(18) form a set of equations in 

the state variables  0 0( ), ( ), ( ), ( )i js s m s n s  , 1, ,i n  ; 

2, ,j n  . Observe that 1 1( ) ( )zs u s   can be computed 

algebraically from (10). 
The boundary conditions for the state variables are split 

between the proximal and distal ends of the robot. 

 
0

0

(0)  actuator positions

( ) ( )

( )  body frame external tip moment

( )  body frame external tip force

i

i izL u L

m L

n L













 (19) 

The x and y components of ( )iu L can be computed from (9) 

and (11). While (10) evaluated at s L  provides an 
expression for the weighted sum of  ( ), 1, ,izu L i n  , it is 

insufficient to solve for the individual values of ( )izu L . This 

can be resolved by assuming that the total external twisting 
moment is applied to a single tube, say tube j. The resulting 
values for ( )izu L are given by 

 0 ( ) / ,
( )

0
z iz

iz

m L k i j
u L

i j


  

. (20) 

Physically, this situation corresponds to tube j extending 
slightly beyond the other tubes so that it comprises the tip of 
the robot. 

There is, in fact, no reason that the tubes must be of the 
same length. The equations above apply to any telescoping 
arrangement of tubes in which the stiffness and pre-
curvature of each tube can be an arbitrary function of arc 
length. This includes discontinuities in both stiffness and 
pre-curvature. Consequently, there is no need to subdivide 
the domain during integration over a telescoping 
arrangement of tubes. Distal to the physical end of each 
tube, its stiffness and curvature can be defined as zero.  

B. Numerical Solution of Multi-tube Model 

When solving the multi-tube equations given by (4),(9)-(11), 
(16)-(18) together with boundary conditions defined by (19) 
and (20), three issues must be considered. First, the 
boundary conditions are split between the ends of the tubes. 

Second, integration of ( )3
0 0( ) , ( ) (3)v s u s soÎ Î to obtain 
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the robot coordinate frame, 0 ( )F s , must be performed such 

that it evolves on (3)SE . Thirdly, while the external loading 

in these equations is expressed in the body coordinate frame, 
it is often convenient to express external loads with respect 
to a different frame. Each of these issues is addressed in the 
paragraphs below. 
 (1) Split Boundary Conditions: The problem of split 
boundary conditions is one that has been addressed with the 
unloaded kinematic equations. In fact, the unloaded 
equations can be recovered by setting the external loading to 
zero [8]. 
 0 0 0 0( ) ( ) ( ) ( ) 0s f s m L n Lt = = = =  (21) 

While such equations can be solved by a variety of standard 
means, one approach is to pose the forward kinematics as a 
root finding problem in which guesses of ( )i L  are used to 

integrate from 0s L  until the desire values of (0)i  are 

obtained.   
 (2) Integration on SE(3): Integrating the unloaded 
kinematics required integrating tube curvatures with respect 
to arc length. Analogous to integrating body frame twist 
velocity, numerical integration of 

 
u

i
 and 

 
v

i
must preserve 

the group structure of SE(3). A variety of numerical 
integration methods are available for this purpose 
[16],[18],[19]. 

(3) External-Load Coordinate Frame: It is often desirable 
to express the loading  in different coordinates than the body 
frame coordinates of (19) and (20). In this case, however, 
the boundary condition is a function of the shape of the 
robot. For example, suppose it is desired to produce a tip 
wrench that is specified with respect to the base frame of the 
robot, 

  
F

0
(0) . Then the body-frame tip wrench, written with 

respect to frame 
  
F

0
(L) is related to the desired world frame 

tip wrench, written with respect to frame 
  
F

0
(0) , by 

 
0 0( ) (0)

0 00

0 00 0 0

( ) ( )0

( ) ( )[ ]

F L FT
L

T T
L L L

n L n LR

m L m LR p R

    
         

 (22) 

in which 
  
R

0 L
and 0Lp  describe the orientation and position of 

frame 
  
F

0
(L) with respect to frame 

  
F

0
(0) .  In this case, the 

equations must be solved iteratively with respect to both tip 
wrench and actuator positions. 

III. APPROXIMATE SINGLE-TUBE MODEL 

In contrast to the model presented above, references [11]-
[13] propose an approach in which the load-deflected shape 
of a continuum robot is computed as the sequence of two 
transformations. The first employs an unloaded kinematic 
model to compute the robot configuration. This 
configuration together with the external loading are the 
inputs to a second transformation that computes the 
deflected shape by modeling the robot as a single rod with 
its stiffness given by the composite stiffness of the robot’s 
elements. While approximate since it ignores internal 
displacements arising from loading, its solution takes the 
form of an initial value problem and so can be computed 

efficiently. 
 The equations to be solved are a subset of those for the 
multi-tube model and consist of (2), (17), (18) which are 
repeated here for clarity. 

 0 0 0 0 0

0 0 0 0

( ) ( ) [ ( )] [ ( )] ( )

( ) ( ) 0 [ ( )] ( )

m s s u s v s m s

n s f s u s n s
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 1
0 0 0 0ˆ( ) ( ) ( ) ( )u s K s m s u s   (24) 

  0 ( ) 0 0 1
T

v s   (25) 

As before, 0 ( )m s  and 0( )n s are the net bending moment and 

shear force on the robot as functions of arc length. Robot 
curvature, 0( )u s , described in coordinate frame 0( )F s , is 

algebraically related to 0 ( )m s . The composite robot 

stiffness, 0 ( )K s , is defined as the effective bending and 

torsional stiffness of the robot cross section as a function of 
arc length.  

The initial robot curvature, 0ˆ ( )u s , is obtained as the 

output of the unloaded forward kinematic model. The 
boundary conditions for these equations are given by a 
subset of (19) consisting of the applied tip force and bending 
moment. 

 0

0

( )  body frame external tip moment

( )  body frame external tip force

m L

n L




 (26) 

Since the boundary conditions are all defined at the distal 
end of the robot, they can be solved as an initial value 
problem by integrating from the tip back to the base. 
 The solution is, however, subject to the conditions 
described in sections II.B.2 and II.B.3 above. Namely, the 
equations must be integrated on (3)SE . Furthermore, if the 

tip loading is not defined with respect to the body frame 
then the initial value problem must be solved iteratively to 
account for the rotation of the body tip frame in response to 
deflection. In real-time use, the number of iterations can be 
minimized by using the tip frame rotation from the 
preceding time step as the initial guess. 

A. Comparison with Multi-tube Model 

The computational costs of the models can be assessed by 
considering the total number of state variables and the 
locations of the boundary conditions as summarized in Table 
1. While not included in the table, it is also necessary for 
both models to simultaneously integrate ( )0 0( ), ( )v s u s to 

obtain the coordinate frame 0( )F s . 

Exclusive of 0( )F s , the total number of state variables is 

2n+5 for the multi-tube model. Since each tube of a robot 
contributes two degrees of freedom corresponding to its 
rotation and translation, it requires three tubes to produce a 
robot with six degrees of freedom. For such a robot, solution 
of the multi-tube model involves integrating eleven state 
variables with respect to arc length using split boundary 
conditions. The single-tube model possesses six states 
regardless of the number of tubes and all boundary 
conditions are at the distal end. 

Since computation of the unloaded kinematic model 
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involves those variables that are omitted from the single-
tube model, it is tempting to argue that sequential solution of 
the unloaded kinematic model followed by the single-tube 
model of loading deflection is of the same computational 
complexity as the multi-tube model. This is not the case, 
however, for two reasons. First, solving two sets of 
decoupled equations is simpler than solving a single coupled 
set. Secondly, it has been shown that the unloaded kinematic 
model can be accurately represented by an algebraic 
functional representation [8] and so can be implemented 
without any on-line integration. 

 
TABLE 1. STATE VARIABLES USED BY  MULTI-TUBE AND SINGLE-TUBE 

MODELS. 
 
State variable 

Boundary 
Condition 

Multi-tube 
Model 

Single-tube 
Model 

, 1, ,( )
i

i nsq =   Base n - 

, 2, ,( )
j

j nsq =   Tip n-1 - 

3

0
( )m s Î   Tip 3 3 

3

0
( )n s Î   Tip 3 3 

Total number  2n+5 6 

IV. EXPERIMENTAL MODEL EVALUATION 

To compare the models, experiments were performed to 
measure the deflection and twisting of a pair of NiTi tubes 
experiencing a tip force. The tubes are shown disassembled 
in Fig. 4. Each tube is glued into a collar as shown and 
mounted in the motor drive system of Fig. 5. Motor 
positioning accuracy is better than 0.1 degrees. As shown in 
Fig. 4, the outer tube includes a straight section at its 
proximal end to accommodate the 18 mm length of the inner 
tube’s collar. To account for the twisting that will occur in 
the straight section, the motor angles are given in terms of 
the tube angles by 

 
1 1

2 2 2

(0)

(0) 18 (0)

m

m

 

  



   
 (27) 

As the tubes are rotated from the aligned configuration 
shown in Fig. 4 and Fig. 5, their combined curvature varies 
from its maximum value (1/241 mm-1) to approximately zero 
when 2 1(0) (0)    .  

Tube parameters are shown in Table 2.  Equation (9) 
requires values for both the bending and torsional stiffnesses 
of the tubes as defined by (3). The quantities I

i
, J

i
can be 

calculated from the tube cross sections and values of 

  
E

i
,G

i
are available in the literature. The combination of 

tube diameter tolerances and variation in moduli arising 
during shape setting, however, leads to large variations in 
estimated stiffness.   

To avoid this issue, stiffnesses were estimated as follows.  
First, the stiffness ratio 1, 1 2, 2x y x yk k was computed from (9) 

by measuring the pre-curvature of each tube and the 
combined curvature for 2 1(0) (0)    . Second, the 

combined tubes with 2 1(0) (0)  were deflected in the 

plane of the curvature using a 200 g mass and the resultant 

displacement measured. Treating the pair as a single tube, 
(17) was used to iteratively estimate the combined stiffness 

1 ,1 2 ,2( )x y x yk k from the measured deflection. The individual 

stiffnesses were calculated from these two measurements.  
The ratio of bending to torsional stiffness was calculated 
using the standard value of Poisson’s ratio, 0.3  , for 
NiTi. 
 , / / 1x y zk k EI JG     (28) 

 

 
Fig. 4.  Individual tubes comprising variable curvature tube pair. 

 

 
Fig. 5.  Tube pair mounted in drive system. Double exposure shows tubes in 
unloaded and gravity-loaded configurations. Tip-mounted disk for 
measuring relative tube twist is also shown. Orientation of coordinate frame 

0 (0)F is labeled. 

 
TABLE 2. PROPERTIES OF TUBES USED IN EXPERIMENTS. 

 Tube 1 Tube 2 
OD (mm) 2.77±0.01 2.41±0.01 
ID (mm) 2.55±0.01 1.97±0.01 
kx,y=EI (N·m2) - Calculated 3.34x10-2 3.67x10-2 
kx,y=EI (N·m2) - Measured 2.85x10-2 3.75x10-2 
Length (mm) 150 150 

Pre-curvature ˆ
y

u (mm-1) 

        ( ˆ ˆ 0
x z

u u  )   

1/233 1/248 

A. Experimental Procedure 

Gravity loading was used to generate tip forces on the robot 
in the three coordinate directions shown in Fig. 5. Since the 
forces are applied in the world frame (via gravity), the 
resultant tip frame forces generally contain x, y and z 
components.  Note that gravity deflection due to robot mass 
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(< 0.3mm) was within the measurement error of the camera 
system and was therefore neglected.  

For each tip load, the tubes were rotated with respect to 
each other through a full rotation. For every 10 degrees of 
relative rotation, tip position and tip rotation angle were 
recorded. In this way, measurements were recorded as the 
curvature of the robot varied from its maximum to its 
minimum (approximately straight) and back to its maximum. 
This was performed for both directions of relative rotation.  

Measurements of tip position were made using a stereo 
camera measurement system (Vision Appliance, Dalsa, Inc.) 
that determines points in world space to within ±0.5 mm and 
relative points to within ±0.2 mm. To measure tip rotation 
angle, a circular graduated disk was attached over the last 2 
mm of the outer tube. As shown in Fig. 6, a pointer attached 
to a tapered dowel was inserted into the end of the inner tube 
and zeroed for the configuration in which the curvature of 
the tubes is aligned. The error in measuring tip angle was 
estimated to be 2 degrees. Care was taken to ensure that 
the disk and pointer did not interfere with attachment of the 
mass.  

 

 
Fig. 6.  Disk and pointer for measuring relative angle at tip. 

 

B. Experimental Results 

The multi-tube model predicts that the individual tubes will 
twist in response to external loading. This effect was 
observed experimentally and can be seen by comparing Fig. 
7 and Fig. 8. In the unloaded case of Fig. 7, torsional 
twisting of the tubes causes the tip twist angle to lag twist at 
the motor for this range of relative angles. This occurs since 
smaller twist angles correspond to a lower energy state. The 
application of a tip force in the –y direction, however, acts to 
straighten the tube pair and so produce a corresponding 
increase in twist angle at the tip for nonzero twist angles at 
the motors. The maximum difference between the 
experimental data of Fig. 7 and Fig. 8 is about 15 degrees at 

180ma = deg. Note that it is this relative twisting in 

response to load that the single-tube model neglects. 
Model error is summarized in Table 3 for tip gravity loads 

of 0, 100 and 200 grams applied in the three coordinate 
directions of Fig. 5. Since deflection of the robot due to its 
own weight is negligible, model error for zero tip load does 
not vary with coordinate direction. 

In comparison to the unloaded model, tip loading 
increases the mean tip error by more than 50% from 1.91 
mm to about 2.98 mm.  Standard deviation increases by a 
factor of 6.8 from 0.29 mm to 1.97 mm, and maximum tip 

position error increases by a factor of 3.3 from 2.6 mm to 
8.54 mm. 

 
Fig. 7.  Relative tube twist angle, 

2 1
a q q= - , at the tip, ( )La , versus the 

motor, ma , for the case of no  external loading using the torsionally-rigid 

model of [6] and the torsionally-compliant model of [8]. 

 

 
Fig. 8.  Relative tube twist angle, 

2 1
a q q= - , at the tip, ( )La , versus the 

motor, ma , for a 200 gram gravity load in the -y direction of Fig. 5 (in the 

plane of robot curvature). 

 
TABLE 3, TIP POSITION ERROR FOR MULTI-TUBE (m) AND SINGLE-TUBE (s) 

MODELS. GRAVITY LOAD DIRECTION WITH RESPECT TO ROBOT CURVATURE 

IS SPECIFIED USING THE COORDINATE DIRECTIONS OF FIG. 5.  

Load direction,  
mass (grams) 

Mean 
(mm) 

Std Dev 
(mm) 

Max  
(mm) 

 m s m s m s 
{x,y,z}, 0 1.91 1.91 0.29 0.29 2.60 2.60 

-y, 100 1.95 2.19 0.42 0.54 3.26 3.26 
-y, 200 2.01 3.13 0.93 1.72 3.98 6.54 
-x, 100 4.26 4.44 2.29 2.23 6.55 6.59 
-x, 200 5.73 6.26 2.72 2.46 8.54 8.79 
z, 100 2.53 2.54 0.71 0.75 3.86 4.05 
z,  200 2.50 2.51 0.64 0.69 3.53 3.73 

{x,y,z}, 
{100,200} 

2.98 3.28 1.97 2.05 8.54 8.79 
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Perhaps most surprising, the mean error for the single-
tube model is only 0.3 mm larger than that of the multi-tube 
model. The differences between the standard deviation and 
maximum errors for the two models are even smaller. 
Furthermore, the directionality of tip position error was 
determined to be similar for the two models by plotting the 
data sets in three dimensional space. As an example, Fig. 9 
provides a planar view of a subset of the data corresponding 
to a load of 200 g applied in the negative y direction. 

 
Fig. 9.  Tip position in the x-y plane for robot loaded with 200 g in the –y 
direction. Data points correspond to unloaded robot curvature varying from 
the configuration of Fig. 5 to zero and then to the configuration in which 
robot is curved downward. Diamonds are measured positions; circles are the 
multi-tube model predictions; squares are the single-tube model predictions.  
Associated positions are connected by lines. 

V. CONCLUSIONS 

Understanding and predicting the deformation of concentric 
tube robots in response to environmental contact is 
important for design, planning and real-time control. The 
work presented here provides a multi-tube quasistatic model 
incorporating concentrated as well as distributed forces and 
torques.  A comparison with a simplified single-tube model 
is also included. Experiments show that the uncalibrated 
multi-tube model has a mean error of less than 4mm for the 
tubes presented. It is important to note that much of the error 
can be attributed to specific subsets of configurations, 
suggesting that the model omits some important phenomena. 
Surprisingly, the single-tube model showed similar tip error 
and may be more appropriate for real-time control 
applications. 
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