
Pursuit-Evasion in 2.5d Based on Team-Visibility

A. Kolling* A. Kleiner** M. Lewis* K. Sycara**

Abstract—In this paper we present an approach
for a pursuit-evasion problem that considers a 2.5d
environment represented by a height map. Such a
representation is particularly suitable for large-scale
outdoor pursuit-evasion, captures some aspects of
3d visibility and can include target heights. In our
approach we construct a graph representation of the
environment by sampling strategic locations and com-
puting their detection sets, an extended notion of
visibility. From the graph we compute strategies using
previous work on graph-searching. These strategies
are used to coordinate the robot team and to generate
paths for all robots using an appropriate classification
of the terrain. In experiments we investigate the
performance of our approach and provide examples
including a sample map with multiple loops and ele-
vation plateaus and two realistic maps, a village and
a mountain range. To the best of our knowledge the
presented approach is the first viable solution to 2.5d
pursuit-evasion with height maps.

I. Introduction

Pursuit-evasion problems are an interesting domain
for multi-robot systems as they model the detection of
an unknown number of smart and fast targets in large
environments. In such a setting the spatial distribution
and flexibility such systems can achieve are a great ad-
vantage compared to centralized and immobile systems.
So far most of the research in this domain has considered
graphs or two-dimensional environments, sometimes with
idealized sensors such as unlimited range target sensors.
The purpose of this paper is to extend this work and
apply it to a challenging scenario closer to a real world
pursuit-evasion problem, namely large 3d environments
represented by height maps and robots with limited
range sensors.

In previous work on visibility-based pursuit-evasion [1],
[2] unlimited range sensors in 2d environments have been
investigated. But these methods do not extend to very
large teams of robots nor limited range. Regarding 3d
pursuit-evasion very little work has so far been done.
A report by Lazebnik [3] discusses the challenges and
complications when extending ideas from 2d visibility-
based pursuit-evasion to 3d. In the 2d case so called
critical events that occur as a robot moves through the
environment fully determine changes in the information
about the evaders possible locations. The 3d analogue of

** Robotics Institute, Carnegie Mellon University, 500 Forbes
Ave., Pittsburgh, PA 15213 * School of Information Sciences,
University of Pittsburgh, 135 N. Bellefield Ave., Pittsburgh, PA
15260

such critical events turn out to be significantly more com-
plex. Not only is the catalogue of such events larger, they
also lead to non-local changes in the information states.
As a consequence the problem received little attention
so far and our approach for height maps and limited
range visibility is the first step to tackle at least some
of the complications of the 3d scenario with a tractable
approach. Apart from visibility-based pursuit-evasion we
also find a number of attempts to utilize various forms of
graph-searching, i.e. pursuit-evasion problems on graphs.
In [4], [5] the edge-searching problem is modified to better
suit a robotic application by considering vertex-located
intruder instead of edge-located. Furthermore, edge-label
based approaches are incorporated into an anytime algo-
rithm that tries many spanning trees of the graph. This
allows the computation of strategies on graphs from the
labels computed on a spanning tree. It is shown in [5]
that for some labeling approaches this leads to a proba-
bilistically complete algorithm for graphs. An alternative
graph model for robotic pursuit-evasion, called Graph-
Clear, is presented in [6], [7]. Therein actions on the
graph that can detect a target can require multiple robots
and the restriction of contamination is achieved not
through placing searchers in vertices but also on edges.
Automated methods to extract a graph representation
for Graph-Clear have been presented in [8] and are based
on detecting narrow parts of the environment via its
Voronoi Diagram. An extension to probabilistic sensing
models for Graph-Clear is found in [9] and can likely be
extended to the edge-searching model as well. Similarly,
the ideas of the anytime algorithm from [4] can also be
applied to the tree algorithms from [7]. Apart from [8],
[10] we have [11] in which a graph is extracted from the
environment through random sampling, similar to our
approach for obtaining an initial graph.

As can be seen from the above, most of the work
on robotic pursuit-evasion problems has been restricted
to 2d environments. In this paper we present the first
attempt for 2.5d environments and introduce a novel
method for computing guaranteed clearing strategies for
a team of robots searching for an evader on height maps.
Our method first randomly samples strategic locations

on the map and computes their detection set, i.e. the
set of locations on which an evader can be detected.
These locations become vertices of a graph and their
detection sets are used to determine their edges. On the
resulting graph we compute strategies using a using a
label-based algorithm. These strategies coordinate the
motion of all robots and determine at what time step

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4610

4611

0. In colloquial terms vi and vj get a regular edge if and
only if there is no third vertex vj′ whose guard region
of vi completely covers the guard region of vi from vj .
The second type, a so called shady edge, is created from
vi to vj iff Gi,j 6= ∅ and shady(vi, vj) = 1. In this case
there is a third vertex that completely covers the guard
region. Hence if Gi,j 6= ∅, then we have an edge [vi, vj]
that is either shady or regular. To get a graph without
directional edges, written (vi, vj), we simply add an edge
if we have either [vi, vj] or [vj , vi] with regular edges
dominating shady edges. Write E = Er ∪ Es for the
set of undirected edges where Er are the regular and Es

are the shady edges. The reasoning behind creating two
types of edges is straightforward. If a robot is placed at
pi, i.e. vertex vi, it sees all targets in D(pi) and hence
clears it. The robot can only be removed without causing
recontamination if it can be guaranteed that no target
can pass through δD(pi). This is satisfied if all vertices
that are neighbors of vi through regular edges are either
clear or have a robot on them. The shady edges capture
the remaining intersections between detection sets that
are dominated by larger intersections.

Let us now describe the pursuit-evasion model on
the graph level. At first sight it seems that we can
solve a standard edge-searching pursuit-evasion problem
on G, as done in [4], and use the resulting strategy
as a solution. But apart from the addition of shady
edges there is another crucial difference. In the edge-
searching scenario contamination spreads through any
vertex that is not guarded, but the robot on a guarded
can slide along an edge and guard a new vertex without
contamination spreading from the new vertex to the
old. For our problem this implies that while we move
a robot from vertex vi to vj we would have to guarantee
that no target could enter from contaminated areas of
vj to vi. Since we cannot guarantee that the path a
robot takes in our height map will continuously cover
the boundaries of these region we cannot allow such
sliding moves. Instead we only allow the removal and
placement of agents on vertices in order not to impose
additional requirements on the paths between vertices.
The following modification incorporates this into edge-
searching. As a basis we use the simple label-based
algorithm from [12] with a modified label equation. The
result of this algorithm is a contiguous strategy on a tree
without recontamination, i.e. a sequence of vertices that
guarantees that all clear vertices are a connected subtree.
Hence we assume that we converted our graph into a tree
by selecting a spanning tree T . For now we can ignore the
difference between shady and regular edges. The label
on an edge e = (vx, vy) is directional and represented
by λvx

(e) for the direction from vx to vy. If vy is a
leaf then λvx

(e) = 1. Otherwise let v1, . . . , vm be the
m = degree(vx) − 1 neighbors of vy different from vx.
Now define ρi := λvy

((vy, vi)) and order all v1, . . . , vm

with ρi descending, i.e. ρi ≥ ρi+1. The team of robots
now clears the subtrees that are found at each vi in the

order vm, . . . , v1. This leads to an overall cost represented
by the next label λvx

(e). In original edge searching the
label would now be λvx

(e) = max{ρ1, ρ2 + 1}. In our
modified version the equation becomes:

λvx
(e) =

{

ρ1 + 1 ifρ1 = 1
max{ρ1, ρ2 + 1} otherwise

(2)

Where we assume that ρ2 = 0 if m = 1. This change
results from the fact that the guard on vy can be removed
only after v1 is cleared. Hence if ρ1 = 1, i.e. v1 is a
leaf, then the label is ρ1 + 1. Otherwise, if ρ1 > 1,
then the robot can be removed after v1 is cleared and
used subsequently in the remaining subtree beyond v1.
In edge-searching the guard on vy can be move into v1

earlier to clear it.
Our formulation now allows us to use the idea from

the anytime algorithm, called GSST, from [4] which
tries multiple spanning trees to improve the strategy for
the graph. For this we generate a number of spanning
trees for our graph G and compute a strategy for each
which we convert to a strategy on the graph by leaving
robots at their position whenever a cycle edge leads to
a contaminated vertex. Finally we select the strategy
across all spanning trees that leads to the least robots
that are needed on the graph.

IV. Trajectory Planning on Height Maps

In this section we describe our approach for trajectory
planning on height maps according to the motion model
of the robot. A height map is represented by a two-
dimensional array storing at each discrete location the
corresponding elevation of the environment. Height maps
are widely available on the Internet as digital elevation
maps (DEMs), e.g. from USGS [13] at a resolution of
up to 10 meters. Higher resolutions can be achieved by
traversing the terrain with a mobile robot platform [14].

Height maps are classified into traversable and non-
traversable terrain, which is needed for computing E ,
but also for planing trajectories. The classification is
carried out according to the motion model of the robot
since different robot platforms have different capabilities
to traverse terrain. For example, whereas a wheeled
platform, such as the Pioneer AT, depend on even
surfaces, tracked platforms, such as the Telemax robot,
are capable of negotiating stairs and slopes up to 45◦.
This specific parameters are taken into account by the
classifier described in the following.

For each cell of the height map, representative fea-
tures are created that discriminate different structure
element from the environment. We choose to use fuzzified
features, which are generated by functions that project
parameters, as for example, the height difference between
cells, into the [0, 1] interval. In contrast to binary {0, 1}
features, fuzzification facilitates the continuous projec-
tion of parameters, as well as the modeling of uncer-
tainties. Fuzzification is carried out by combining the
functions SUp(x, a, b) (Equation 3) and SDown(x, a, b)

4612

(Equation 4), where a and b denote the desired range of
the parameter.

SUp(x, a, b) =

0 if x < a
x−a
b−a

if a ≤ x ≤ b

1 if x > b

(3)

SDown(x, a, b) = 1 − SUp(x, a, b) (4)

For example, the features Flat Surface, Wall Height and
Ramp Angle are build from the parameters δhi, denoting
the maximum height difference around a cell, and αi,
denoting the angle between the normal vector ni and
the upwards vector (0, 1, 0)T , as shown by Equation 5
and Equation 6, respectively.

δhi = max
j is neighbor to i

|hi − hj | (5)

αi = arccos
(

(0, 1, 0)T · ni

)

= arccos
(

niy

)

(6)

For example, on a tracked platform, these features are
defined by:

• Flat Surface = SDown(δhi, 15mm, 40mm)
• Wall Height = SUp(δhi, 200mm, 300mm)
• Ramp Angle = SUp(αi, 3

◦, 25◦) ·
SDown(αi, 25◦, 40◦)

Each time the elevation map is updated, the classifica-
tion procedure applies fuzzy rules on the latest height
estimates in order to classify them into regions, such as
flat ground, and steep wall.

Inference is carried out by the minimum and maximum

operation, representing the logical and and or operators,
respectively, whereas negations are implemented by 1−x,
following the definition given in the work of Elkan [15].
After applying the rule set to each parameter, the clas-
sification result is computed by defuzzification, which
is carried out by choosing the rule yielding the highest
output value. For discriminating more complex obstacle
types, such as ramps and stairs, Markov Random Field
(MRF) models, can be used [16].

We employ two-dimensional A* search for trajectory
planning. The A* algorithm performs informed search
on graphs, which have a cost function assigned to their
edges. To facilitate A* planning a graph has to be
constructed from the height map. This is carried out
by computing a distance map from the height map
encoding in each cell the minimal distance to the next
non-traversable cell. From the distance map a plan is
generated by expanding each connected traversable cell
with the following cost function:

c (si+1) = c (si) + α
d (si+1, si)

df (si+1)
(7)

Where d(.) is the Manhattan distance, df(s) the distance
map entry for cell s, and α a factor for varying the cost for
passing nearby obstacles. The heuristic used for guiding
the A* search is the Euclidean distance h =

√

δx2 + δy2,
which is commonly employed.

V. Experiments and Results

There are a number of variations that are possible
for the generation of multiple spanning trees as well
as the conversion of the spanning tree strategy to the
graph. In the first variant we generate a random depth-
first spanning tree using all edges from E and convert
the strategy from the spanning tree by considering all
cycle edges from E that are not in the spanning tree.
This treats all regular and shady edges equally. In the
second variant we modify the conversion of the spanning
tree strategy to the graph by only considering cycle
edges that are regular. This is equivalent to removing
all shady edges that are not part of the spanning tree
since they cannot lead to recontamination. Finally, we
can also bias the generation of the spanning tree to only
include regular edges for the depth-first traversal. This
leads to more cycle edges that are shady and can then
be removed for the second variant. Hence this bias is
expected to improve the cost of strategies for the second
variant and is equivalent to removing all shady edges.
Note that the removal of a shady edge does not neces-
sarily imply that strategies will get better since we are
considering contiguous strategies. Contiguous strategies
on graphs are generally more costly than non-contiguous
strategies since contiguity is an additional requirement.
Hence, removing an edge may prevent us to find a good
contiguous strategy because it then turns into a non-
contiguous strategy. Despite this potential effect we shall
show in our experiments that one can generally expect
an improvement when removing shady edges.

(a) (b) (c)

2: (a) Sample map for testing with a three-way canyon,
three plateaus with each its own ramp and several con-
cave sections (843x768 cells). (b) Map of a small village
with surrounding hills (798x824 cells). (c) Map of a
mountain area located in Colorado, US (543x699 cells).

We present result on three maps seen in fig. 2. The res-
olution of (a) and (b) is 0.1units/pixel, and 10units/pixel
for (c). Sensing ranges mentioned below are always mea-
sured in units. The height of cell in the map is given
by its grey level and ranges from 0 to 10 units with 0
as white and 10 as black. Traversability classification as
seen in fig. 3 is always based on a Telemax robot.

Recall that there are two random components to our
algorithm. First, the graph that covers the map with
vertices located within the map is generated by ran-
domly sampling points from free space on which target
cannot yet be detected. Hence, all our tests with every

4613

(a) (b)

3: (a) Terrain traversability on the Colorado map. Non-
traversable regions are marked red. (b) Detection sets on
the same map with according graph computed for robots
with hr = 2.0, sr = 10, and ht = 1.0.

configuration were run and averaged across 100 graphs
generated via the random sampling within E . Second, the
strategy on the generated graph is computed by trying
strategies on multiple random spanning trees. For this
we conducted extensive tests to investigate the effect
with our sample map seen in fig. 2. This is done with
the first variant that considers all edges and no bias in
the generation of the spanning trees. Then for each of
these graphs we computed the best strategies based on
1) 10, 2) 100, and 3) 1000 randomly generated depth-
first spanning trees, similar to [4]. Across all spanning
trees we selected the one leading to the best strategy,
i.e. with the least robots. The results are presented in
table I. Fig. 5 shows the distribution of number of robots
across the 100 randomly generated graphs for 100 and
10000 spanning trees. Only for the smallest sensing range
sr = 10 did the difference in the number of spanning
trees have an effect. For all other cases 100 spanning trees
sufficed. Notice that smaller sensing ranges lead to more
vertices and one would expect to require more spanning
trees for larger graphs. Regarding the sensing range an
increase from 10 to 30 reduced the number of robots
needed significantly, while a further increase to 50 had no
effect with a small improvement only at 70. Notice that
for complex environments a gain in the sensing range is
mediated through the number of occlusions. With many
occlusions an increase in sensing range is less likely to
lead to improvements.

We also tested the algorithm on a realistic map from
a small village also seen in fig. 2. Here we also varied the
sensing range from 10 to 70 again observing a decrease
in the number of robots from 10 to 30. Since this map
has considerably more elevation structure we also tested
the effect of varying hr and ht. A reduction of ht from 1
to 0.5 requires 9 instead of 8 for the same sensing range
and hr = 1. A reduction of hr from 1 to 0.5 requires
10 instead of 8 for the same sensing range and ht = 1.
Reducing both, ht and hr to 0.5 needs 11 instead of
8 robots. Changes in hr modify the set of visible cells
and thereby the detection sets while changes in ht only
modify the detection sets and the effect is not necessarily
identical as suggested by the data.

4: A strategy for our sample map from fig. 2 with 6
robots. Detection sets are marked red and cleared areas
not under observation are marked green. Robots are
deployed on the bottom left. The pictures show steps
3, 5, 6, 8, 10 and 12 from left to right and top to bottom.
At each step the path of the last robot moving is drawn.
At step 3 the first robot is on a plateau and two robots
are close to the bottom ramp. In step 6 all 6 robots are
required to avoid recontamination of the graph. In step 8
the first cleared but unobserved part of the environment
appears until in step 12 everything is cleared.

100 spanning trees

Robots

F
re

q
u

e
n

c
y

6 7 8 9 10 11

0
1

0
2

0
3

0
4

0

10,000 spanning trees

Robots

F
re

q
u

e
n

c
y

6 7 8 9 10 11

0
1

0
2

0
3

0
4

0

5: Two histograms of the distributions of the number of
robots needed for the 100 randomly generated graphs.

The next question we investigated relates to the second
variant which only considers regular edges as cycle edges
as well as the bias on the spanning tree generation. A
well chosen bias in the spanning tree generation can
potentially speed up the discovery of a good spanning
tree for the graph thereby reducing the number of trees

4614

sr spanning trees min max mean covariance
10 100 15 22 18.69 2.36
10 1000 14 20 16.8 1.58
10 10000 13 18 15.66 1.12
30 100 6 11 8.47 0.98
30 1000 6 10 7.96 0.73
30 10000 6 9 7.71 0.63
50 100 6 11 8.04 1.17
50 1000 6 11 7.70 0.98
50 10000 6 11 7.67 0.99
70 100 5 11 7.92 1.04
70 1000 5 10 7.70 0.98
70 10000 5 10 7.63 1.00

Table I: Results of the experiments on the sample map
from fig. 2 with hp = 1.0 and ht = 1.0 and varying range
and number of spanning trees.

sr hr ht min max mean covariance
10 1 1 16 22 19.46 1.71
30 1 1 9 17 12.14 2.69
50 1 1 8 15 11.76 2.10
70 1 1 8 16 11.66 2.47
50 0.5 0.5 11 21 15.46 3.44
50 0.5 1 10 17 12.82 2.23
50 1 0.5 9 18 14.52 2.57

Table II: Results of the experiments on the village map
from fig. 2 with varying range and hc,ht.

that need to be tested. Furthermore, the bias should
be more beneficial for the second variant than the first.
Table III shows the results for these questions. They
indicate that when generating 100 spanning trees the bias
significantly improves the average across all strategies,
although it does not have an effect on the minimum
number of robots. With 1000 spanning trees we only
see a significant improvement for the second variant
when using the bias. The second variant, as expected,
benefits more from the bias. Finally, when generating
a larger number of spanning trees the positive effect of
the bias diminishes. Comparing the minimum number
of robots for the first and second variant in Table III
shows a significant difference with a p−value < 2.210−16

for all conditions. In all cases the minimum number of
robots needed for the second variant is better by 2 or 3
robots. Also the variance of the cost of strategies across
the 100 generated graphs is less than the variance for
the first variant. Hence, the second variant is generally
preferable. This applies particularly to larger graphs for
which generating a large number of spanning trees is
computationally expensive.

Finally, we tested variant one and two with a biased
spanning tree generation on all three maps with sensing
ranges from 10 to 70 as seen in Table IV. Again variant
two always outperforms variant one at all sensing ranges.
This applies to the sample map and to more the realistic
and very complex maps Village and Colorado. Most
notably, as the sensing range increases in maps Sample

map and Village the number of robots decreases, but

trees v bias min max mean p − value

100 1 no 7 12 8.73 ± 1.05 0.0324
100 1 yes 7 12 9.05 ± 1.16
100 2 no 6 9 6.94 ± 0.56 <0.0001
100 2 yes 6 9 7.6 ± 0.61
1000 1 no 7 11 8.54 ± 1.02 0.7855
1000 1 yes 6 11 8.58 ± 1.13
1000 2 no 5 8 6.65 ± 0.43 0.0007
1000 2 yes 5 9 7.01 ± 0.66
10000 1 no 6 11 8.51 ± 0.90 0.3894
10000 1 yes 7 10 8.4 ± 0.73
10000 2 no 5 8 6.64 ± 0.45 0.2442
10000 2 yes 5 8 6.75 ± 0.43

Table III: The results from experiments with sr = 30,
hr = 1 and ht = 1. The last column shows the p− value

from a standard T-test between two subsequent rows.

map name sr Variant min max mean

Sample map

10.0 2 12 17 14.3 ± 1.1
10.0 1 13 20 16.5 ± 1.7
20.0 2 6 17 7.5 ± 3.0
20.0 1 7 19 9.2 ± 3.3
30.0 2 5 9 6.7 ± 0.5
30.0 1 6 12 8.3 ± 1.1
50.0 2 5 8 6.0 ± 0.5
50.0 1 6 10 7.8 ± 0.8
70.0 2 4 8 5.9 ± 0.4
70.0 1 5 10 7.9 ± 1.0

Village

10.0 2 15 20 17.2 ± 1.2
10.0 1 16 23 19.1 ± 2.0
20.0 2 9 14 11.0 ± 1.3
20.0 1 10 18 13.6 ± 2.2
30.0 2 7 12 9.5 ± 1.3
30.0 1 9 15 12.1 ± 1.9
50.0 2 6 12 8.8 ± 1.0
50.0 1 8 15 11.6 ± 1.8
70.0 2 6 11 8.6 ± 1.2
70.0 1 8 16 12.1 ± 2.7

Colorado

10.0 y 12 17 14.1 ± 1.2
10.0 n 13 20 16.3 ± 1.9
20.0 y 11 18 14.6 ± 2.7
20.0 n 12 20 17.1 ± 3.5
30.0 y 12 22 16.9 ± 5.3
30.0 n 14 25 19.1 ± 5.8
50.0 y 14 27 19.8 ± 5.8
50.0 n 16 30 22.0 ± 6.1
70.0 y 15 26 20.2 ± 5.6
70.0 n 18 29 22.8 ± 6.3

Table IV: Results of the experiments on all maps.

in map Colorado it first improves slightly and then gets
worse. Fig. 6 illustrates this. This is likely due to the more
complex structure of Colorado. In this case an increased
sensing range does not yield a much larger detection set,
but a detection set with a more complex boundary due to
many more occlusions. This complex boundary leads to
many more edges in the graph. The plot in fig. 7 verifies
that the number of edges increases for Colorado but not
for the other maps as the sensing range increases.

VI. Conclusion

We have proposed a novel and to our best knowl-
edge the first approach for 2.5d pursuit-evasion with
height maps. Our approach is as a first baseline for

4615

^

^

^ ^

^

10 20 30 40 50 60 70

4
6

8
1

0
1

2
1

4

Sensing range

N
u

m
b

e
r

o
f

ro
b

o
ts

*

*

*

* *

+

+

+

+

+

+
^
*

Colorado
Village
Sample Map

6: A plot of the number of robots needed for the best
strategy at a given sensing range for all three maps.

+
+ + + +

10 20 30 40 50 60 70

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0

Sensing range

N
u

m
b

e
r

o
f

e
d

g
e

s
/v

e
rt

ic
e

s

+ +

+

+
+

*

*
* * *

*

*

*
* *

^

^
^ ^ ^

^

^

^
^ ^

+
^
*

#vertices
#edges
Colorado
Village
Sample Map

7: A plot of the average number of vertices and edges
for all three maps.

the problem and as such serves for future comparisons
with improved methods. The random graph generation
can readily be substituted with either better sampling
by biasing selection towards points with large detection
sets or geometric methods that construct graphs such
as in [8] based on visibility information. We have pre-
sented a novel graph structure that captures visibility
information that arises in 2.5d problems and designed
several variants that utilize this information differently.
This graph model also poses a new set of questions for
further work. One next step is to consider non-contiguous
strategies which should lead to a significant improvement
since all shady edges can be ignored without jeopardizing
the graph strategy. Yet, despite this problem we have
shown that discarding shady edges generally leads to
better strategies. We have also demonstrated the effect of

changing target and robot heights on strategies. Another
important result relates to changes in the sensing ranges
which have an effect that is highly dependent on the
map. In complex maps a larger sensing range can lead
to worse strategies. Finally, our approach allows us to
identify a sensing range and robot height that leads
to strategies that requires less robots for a particular
map. Despite the fact that the presented approach is
based on heuristics we have demonstrated that it already
performs reasonably well in complex environments with
loops and many occlusions and height differences. Its
simplicity also makes it readily applicable to a variety of
environments, even those with structures that resemble
indoor environments, such as streets and building walls.

References

[1] S. Sachs, S. Rajko, and S. M. LaValle, “Visibility-based
pursuit-evasion in an unknown planar environment,” Int. J.
of Robotics Research, vol. 23, no. 1, pp. 3–26, Jan. 2004.

[2] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and
R. Motwani, “A visibility-based pursuit-evasion problem,” In-
ternational Journal of Computational Geometry and Applica-
tions, vol. 9, pp. 471–494, 1999.

[3] S. Lazebnik, “Visibility-based pursuit-evasion in three-
dimensional environments,” University of Illinois at Urbana-
Champaign, Tech. Rep., 2001.

[4] G. Hollinger, A. Kehagias, S. Singh, D. Ferguson, and S. Srini-
vasa, “Anytime guaranteed search using spanning trees,” The
Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep. CMU-RI-TR-08-36, August 2008.

[5] A. Kehagias, G. Hollinger, and A. Gelastopoulos, “Searching
the nodes of a graph: theory and algorithms,”Carnegie Mellon
University, Tech. Rep. ArXiv Repository 0905.3359 [cs.DM],
2009.

[6] A. Kolling and S. Carpin, “Multi-robot surveillance: an im-
proved algorithm for the Graph-Clear problem,” in Proc. of
the IEEE Int. Conf. on Robotics and Automation, 2008, pp.
2360–2365.

[7] ——, “Pursuit-evasion on trees by robot teams,” IEEE Trans-
actions on Robotics, vol. 26, no. 1, pp. 32–47, 2010.

[8] ——, “Extracting surveillance graphs from robot maps,” in
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2008, pp. 2323–2328.

[9] ——, “Probabilistic Graph-Clear,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation, 2009, pp. 3508–3514.

[10] ——, “Surveillance strategies for target detection with sweep
lines,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2009, accepted for publication.

[11] M. Moors, T. Röhling, and D. Schulz, “A probabilistic ap-
proach to coordinated multi-robot indoor surveillance,” in
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2005, pp. 3447–3452.

[12] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro,
“Capture of an intruder by mobile agents,” in Proc. of the
14th Annual ACM Symposium on Parallel Algorithms and
Architectures. ACM Press, 2002, pp. 200–209.

[13] (2010, March) U.S. Geological Survey (USGS). [Online].
Available: http://www.usgs.gov/

[14] A. Kleiner and C. Dornhege, “Real-time localization and el-
evation mapping within urban search and rescue scenarios,”
Journal of Field Robotics, vol. 24, no. 8–9, pp. 723–745, 2007.

[15] C. Elkan, “The paradoxical success of fuzzy logic,” in Pro-
ceedings of the Eleventh National Conference on Artificial
Intelligence, Menlo Park, California, 1993, pp. 698–703.

[16] C. Dornhege and A. Kleiner, “Behavior maps for online plan-
ning of obstacle negotiation and climbing on rough terrain,”
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems (IROS), San Diego, California, 2007, pp. 3005–3011.

4616

