
Motion Planning for an Omnidirectional Robot
with Steering Constraints

Simon Chamberland∗, Éric Beaudry∗, Lionel Clavien∗, Froduald Kabanza∗, François Michaud∗, Michel Lauria†

∗Université de Sherbrooke, Sherbrooke, Québec – Canada
Email: {firstname.lastname}@USherbrooke.ca

†University of Applied Sciences Western Switzerland (HES-SO), Geneva – Switzerland
Email: michel.lauria@hesge.ch

Abstract—Omnidirectional mobile robots, i.e., robots that can
move in any direction without changing their orientation, offer
better manoeuvrability in natural environments. Modeling the
kinematics of such robots is a challenging problem and different
approaches have been investigated. One of the best approaches
for a nonholonomic robot is to model the robot’s velocity state
as the motion around its instantaneous center of rotation (ICR).
In this paper, we present a motion planner designed to compute
efficient trajectories for such a robot in an environment with
obstacles. The action space is modeled in terms of changes of the
ICR and the motion around it. Our motion planner is based on
a Rapidly-Exploring Random Trees (RRT) algorithm to sample
the action space and find a feasible trajectory from an initial
configuration to a goal configuration. To generate fluid paths, we
introduce an adaptive sampling technique taking into account
constraints related to the ICR-based action space.

I. INTRODUCTION

Many real and potential applications of robots include
exploration and operations in narrow environments. For such
applications, omnidirectional mobile platforms provide eas-
ier manoeuvrability when compared to differential-drive or
skid-steering platforms. Omnidirectional robots can move
sideways or drive on a straight path without changing their
orientation. Translational movement along any desired path
can be combined with a rotation, so that the robot arrives to
its destination with the desired heading.

Our interest lies in nonholonomic omnidirectional wheeled
platforms, which are more complex to control than holonomic
ones. This complexity stems from the fact that they cannot
instantaneously modify their velocity state. Nevertheless,
nonholonomic robots offer several advantages motivating
their existence. For instance, the use of conventional steering
wheels reduces their cost and results in a more reliable
odometry, which is important for many applications. Our
work is centered around AZIMUT-3, the third prototype of
AZIMUT [1], [2], a multi-modal nonholonomic omnidirec-
tional platform. The wheeled configuration of AZIMUT-3,
depicted on Fig. 1, is equipped with four wheels constrained
to steer over a 180◦ range, and a passive suspension mecha-
nism.

There are different approaches to control the kinematics
of a wheeled omnidirectional robot. For AZIMUT, we chose
to model the velocity state by the motion around the robot’s

Fig. 1. The AZIMUT-3 platform in its wheeled configuration

instantaneous center of rotation (ICR) [3]. The ICR is defined
as the unique point in the robot’s frame which is instanta-
neously not moving with respect to the robot. For a robot
using conventional steering wheels, this corresponds to the
point where the propulsion axis of each wheel intersect.

The robot’s chassis represents a physical constraint on
the rotation of the wheels around their steering axis. These
constraints introduce discontinuities on the steering angle of
some wheels when the ICR moves continuously around the
robot. In fact, a small change of the ICR position may require
reorienting the wheels, such that at least one wheel has to
make a full 180◦ rotation. This rotation takes some time,
depending on the steering axis’ maximum rotational speed.
During such wheel reorientation, the ICR is undefined, and
because the robot is controlled through its ICR, it must be
stopped until the wheel reorientation is completed and the
new ICR is reset.

As a solution, a motion planner for an ICR-based motion
controller could return a trajectory avoiding wheel reorien-
tations as much as possible, in order to optimize travel time
and keep fluidity in the robot’s movements. One way to
achieve this is to use a traditional obstacle avoidance path

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4305

planner ignoring the ICR-related kinematic constraints, and
then heuristically smoothing the generated path to take into
account the constraints that were abstracted away. This is in
fact one of the approaches used to reduce intrinsically non-
holonomic motion planning problems to holonomic ones [4].

However, we believe this approach is not well suited
for the AZIMUT robot, as we would prefer to perform a
global optimization of the trajectories, instead of optimiz-
ing a potentially ill-formed path. To this end, we chose
to investigate another approach which takes directly into
account the kinematic constraints related to the ICR and to
the robot’s velocity. The action space of the robot is modeled
as the space of possible ICR changes. We adopt a Rapidly-
Exploring Random Trees (RRT) planning approach to sample
the action space and find a feasible trajectory from an initial
configuration to a goal configuration. To generate fluid paths,
we introduce an adaptive sampling technique taking into
account the constraints related to the ICR-based action space.

The rest of the paper is organized as follows. Sect. II
describes the velocity state of the AZIMUT-3 robot and
Sect. III characterizes its state space. Sect. IV presents a RRT-
based motion planner which explicitly consider the steering
limitations of the robot, and Sect. V concludes the paper with
simulation results.

II. VELOCITY STATE OF AZIMUT

Two different approaches are often used to describe the
velocity state of a robot chassis [3]. The first one is to use
its twist (linear and angular velocities) and is well adapted to
holonomic robots, because their velocity state can change
instantly (ignoring the maximum acceleration constraint).
However, this representation is not ideal when dealing with
nonholonomic robots, because their instantaneously accessi-
ble velocities from a given state are limited (due to the non-
negligible reorientation time of the steering wheels). In these
cases, modeling the velocity state using the rotation around
the current ICR is preferred.

As a 2D point in the robot frame, the ICR position can be
represented using two independent parameters. One can use
either Cartesian or polar coordinates to do so, but singularities
arise when the robot moves in a straight line manner (the ICR
thus lies at infinity). An alternative is to represent the ICR by
its projection on a unit sphere tangent to the robot frame at
the center of the chassis. This can be visualized by tracing a
line between the ICR in the robot frame and the sphere center.
Doing so produces a pair of antipodal points on the sphere’s
surface, as shown on Fig. 4. Using this representation, an ICR
at infinity is projected onto the sphere’s equator. Therefore,
going from one near-infinite position to another (e.g., when
going from a slight left turn to a slight right turn) simply
corresponds to an ICR moving near the equator of the sphere.

In the following, we define ΛΛΛ = {(u; v;w) : u2 + v2 +
w2 = 1} as the set of all possible ICR on the unit sphere (in
Cartesian coordinates), and µ ∈ [−µmax(λλλ);µmax(λλλ)] as the
motion around a particular λλλ ∈ ΛΛΛ, with µmax(λλλ) the fastest
allowable motion. We also define µmax = max

λλλ∈ΛΛΛ
µmax(λλλ) as

(a) ICR at (0.8; 0.43) (b) ICR at (0.8; 0.51)

Fig. 2. ICR transition through a steering limitation. Observe the 180◦
rotation of the lower right wheel.

30

60

90

120

150

180

210

240

270

300

330

3603 11

2

2

45

6 7

Fig. 3. Different control “zones” induced by the steering constraints. The
dashed square represents the robot without its wheels.

an upper bound over all possible ICR. The whole velocity
state is then specified as ηηη = (λλλ;µ).

AZIMUT has steering limitations for its wheels. These
limitations define the injectivity of the relation between ICR
(λλλ) and wheel configurations (βββ, the set of all N steering
angles). If there is no limitation, one ICR corresponds to
2N wheel configurations, where N ≥ 3 is the number of
steering wheels. If the limitation is more than 180◦, some
ICR are defined by more than one wheel configuration. If
the limitation is less than 180◦, some ICR cannot be defined
by a wheel configuration. It is only when the limitation is
of 180◦, as is the case with AZIMUT, that the relation is
injective: for each given ICR, there exists a unique wheel
configuration.

Those limitations restrict the trajectories along which the
ICR can move. Indeed, each limitation creates a frontier in
the ICR space. When a moving ICR needs to cross such
a frontier, one of the wheel needs to be “instantly” rotated
by 180◦. One example of such a situation for AZIMUT-
3 is shown on Fig. 2. To facilitate understanding, the ICR
coordinates are given in polar form. As the ICR needs to
be defined to enable motion, the robot has to be stopped for
this rotation to occur. As shown on Fig. 3, the set of all
limitations splits up the ICR space into several zones, and
transitions between any of these zones are very inefficient.
In the following, we refer to these ICR control zones as
“modes”.

4306

Fig. 4. State parameters. R(0; 0; 1) is the center of the chassis.

III. PLANNING STATE SPACE

The representation of states highly depends on the robot
to control. A state sss ∈ S of AZIMUT-3 is expressed as sss =
(ξξξ;λλλ), where ξξξ = (x; y; θ) ∈ SE(2) represents the posture of
the robot and λλλ is its current ICR, as shown on Fig. 4.

As mentioned in Sect. II, the ICR must be defined at all
times during motion for the robot to move safely. Keeping
track of the ICR instead of the steering axis angles therefore
prevents expressing invalid wheel configurations. Since the
relation λλλ 7→ βββ is injective, any given ICR corresponds to
a unique wheel configuration, which the motion planner can
disregard by controlling the ICR instead. Because AZIMUT
can accelerate from zero to its maximal speed in just a few
tenths of a second, the acceleration is not considered by the
planner. Thus, instantaneous changes in velocity (with no
drift) are assumed, which is why the current velocity of the
robot is not included in the state variables.

A trajectory σ is represented as a sequence of n pairs
((uuu1,∆t1), . . . , (uuun,∆tn) where uiuiui ∈ U is an action vector
applied for a duration ∆ti. In our case, the action vector
corresponds exactly to the velocity state to transition to:
uuu = ηηηu = (λλλu;µu), respectively the new ICR to reach and
the desired motion around that ICR.

It is necessary to have a method for computing the new
state s′s′s′ arising from the application of an action vector uuu for a
certain duration ∆t to a current state sss. Since the state transi-
tion equation expressing the derivatives of the state variables
is non-linear and complex, we use AZIMUT’s kinematical
simulator as a black box to compute new states. The simulator
implements the function K : S × U → S = s′s′s′ 7→ K(sss,uuu)
via numerical integration.

IV. MOTION PLANNING ALGORITHM

Following the RRT approach, our motion planning algo-
rithm (Alg. 1) expands a search tree of feasible trajectories
until reaching the goal. The initial state of the robot sssinit
is set as the root of the search tree. At each iteration, a
random state sssrand is generated (Line 4). Then its nearest
neighboring node sssnear is computed (Line 5), and an action
is selected (Line 6) which, once applied from sssnear, produces
an edge extending toward the new sample sssrand. A local

planner (Line 7) then finds the farthest collision-free state
sssnew along the trajectory generated by the application of the
selected action. The problem is solved whenever a trajectory
enters the goal region, Cgoal. As the tree keeps growing, so
does the probability of finding a solution. This guarantees the
probabilistic completeness of the approach.

Algorithm 1 RRT-Based Motion Planning Algorithm

1. RRT-PLANNER(sssinit , sssgoal)
2. T.init(sinitsinitsinit)
3. repeat until time runs out
4. sssrand ← GenerateRandomSample()
5. sssnear ← SelectNodeToExpand(sssrand, T)
6. (uuu,∆t)← SelectAction(sssrand, sssnear)
7. sssnew ← LocalP lanner(sssnear,uuu,∆t)
8. add snewsnewsnew to T.Nodes
9. add (sssnear, sssnew,uuu) to T.Edges

10. if Cgoal is reached
11. return EXTRACT-TRAJECTORY(sssnew)
12. return failure

The fundamental principle behind RRT approaches is the
same as probabilistic roadmaps [5]. A naive state sampling
function (e.g., uniform sampling of the state space) loses
efficiency when the free space Cfree contains narrow pas-
sages – a narrow passage is a small region in Cfree in which
the sampling density becomes very low. Some approaches
exploit the geometry of obstacles in the workspace to adapt
the sampling function accordingly [6], [7]. Other approaches
use machine learning techniques to adapt the sampling strat-
egy dynamically during the construction of the probabilistic
roadmap [8], [9].

For the ICR-based control of AZIMUT, we are not just
interested in a sampling function guaranteeing probabilistic
completeness. We want a sampling function that additionally
improves the travel time and motion fluidity. The fluidity of
the trajectories is improved by minimizing:

• the number of mode switches;
• the number of reverse motions, i.e., when the robot goes

forward, stops, then backs off. Although these reverse
motions do not incur mode switches, they are obviously
not desirable.

A. Goal and Metric

The objective of the motion planner is to generate fluid
and time-efficient trajectories allowing the robot to reach
a goal location in the environment. Given a trajectory
σ = ((uuu1,∆t1), . . . , (uuun,∆tn)), we define reverse motions
as consecutive action pairs (uuui,uuui+1) where |τi−τi+1| ≥ 3π

4 ,
in which τi = arctan(λλλv,i,λλλu,i)− sign(µi)

π
2 represents the

approximate heading of the robot. Let (sss0, . . . , sssn) denote
the sequence of states produced by applying the actions in σ
from an initial state sss0. Similarly, we define mode switches
as consecutive state pairs (sssi, sssi+1) where mode(λi) 6=
mode(λi+1). To evaluate the quality of trajectories, we
specify a metric f to be minimized as

q(σ) = t+ c1m+ c2r (1)

4307

where c1, c2 ∈ R+ are weighting factors; t, m and r are,
respectively, the duration, the number of mode switches and
the number of reverse motions within the trajectory σ.

B. Selecting a Node to Expand

Line 4 of Alg. 1 generates a sample sssrand at random from
a uniform distribution. As it usually allows the algorithm to
find solutions faster [4], there is a small probability Pg of
choosing the goal state instead.

Line 5 selects an existing node sssnear in the tree to be
extended toward the new sample sssrand. Following a tech-
nique introduced in [10], we alternate between two different
heuristics to choose this node.

Before a feasible solution is found, the tree is ex-
panded primarily using an exploration heuristic. This heuris-
tic selects for expansion the nearest neighbor of the sam-
ple sssrand, as the trajectory between them will likely be
short and therefore require few collision checks. Hence
sssnear = arg min

sssi∈T.Nodes
Dexp(sssi, sssrand).

The distance metric used to compute the distance between
two states sss1 and sss2 is specified as

Dexp(sss1, sss2) =
√

(x2 − x1)2 + (y2 − y1)2

+
1

π
|θ2 − θ1|

+
1

2π

∑
j∈[1;4]

|β2,j − β1,j |
(2)

which is the standard 2D Euclidean distance extended by the
weighted sum of the orientation difference and the steering
angles difference.

This heuristic is often used in the RRT approach as
it allows the tree to rapidly grow toward the unexplored
portions of the state space. In fact, the probability that a
given node be expanded (chosen as the nearest neighbor) is
proportional to the volume of its Voronoi region [11]. Nodes
with few distant neighbors are therefore more likely to be
expanded.

Once a solution has been found, more emphasis is given
to an optimization heuristic which attempts to smooth out
the generated trajectories. We no longer select the sample’s
nearest neighbor according to the distance metric Dexp (2).
Instead, nodes are sorted by the weighted sum of their
cumulative cost and their estimated cost to sssrand. Given two
samples sss1 and sss2, we define this new distance as:

Dopt(sss1, sss2) = q(σs1) + c3 h
2(sss1, sss2) (3)

where q(σs1) is the cumulative cost of the trajectory from the
root configuration to sss1 (see (1)), h(sss1, sss2) is the estimated
cost-to-go from sss1 to sss2, and c3 ∈ R+ is a weighting factor.
We select sssnear as the node with the lowest distance Dopt to
sssrand, or more formally sssnear = arg min

sssi∈T.Nodes
Dopt(sssi, sssrand).

We set h(sss1, sss2) as a lower bound on the travel duration
sss1 to sss2, which is found by computing the time needed to
reach sss2 via a straight line at maximum speed, i.e.

h(sss1, sss2) =
√

(x2 − x1)2 + (y2 − y1)2/µmax (4)

Since h(sss1, sss2) is a lower bound, the cumulative cost q(σs1)
and the cost-to-go h(sss1, sss2) cannot contribute evenly to the
distance Dopt(sss1, sss2). If this were the case, the closest node
(in the Dopt sense) to an arbitrary node sssj would always be
the root node, as

h(sssroot, sssj) ≤ q(σsi) + h(sssi, sssj) ∀sssi, sssj
Instead, we give h(sss1, sss2) a quadratic contribution to the total
distance. This is meant to favor the selection of relatively
close nodes, as the total cost rapidly increases with the
distance.

When the objective is to find a feasible solution as quickly
as possible, the optimization heuristic (3) is not used and the
algorithm rather relies on the standard exploration heuris-
tic (2). On the other hand, when the algorithm is allocated
a fixed time window, it uses both heuristics at the same
time. Indeed, prior to finding a solution, the exploration
heuristic has a higher likelihood of being chosen, while
the optimization heuristic is selected more often once a
solution has been found. Combining both heuristics is useful,
as performing optimization to improve the quality of the
trajectories can be beneficial even before a solution is found.
Similarly, using the exploration heuristic once a solution has
been computed can sometimes help in finding a shortest path
which was initially missed by the algorithm.

C. Selecting an Action

Line 6 of Alg. 1 selects an action uuu with a duration ∆t
which, once applied from the node sssnear, hopefully extends
the tree toward the target configuration sssrand. Obstacles are
not considered here.

Since we know more or less precisely the trajectory
followed by the robot when a certain action uuu is given, we can
sample the action space with a strong bias toward efficient
action vectors. Note that the robot’s velocity µu should be
reduced in the immediate vicinity of obstacles. For now, we
disregard this constraint as we always set µu = ±µmax(λλλu),
which instructs the robot to constantly travel at its maximum
allowable velocity. Additionally, we do not require the robot’s
orientation θ to be tangent to the trajectory.

Let pppnear = (xnear; ynear) and ppprand = (xrand; yrand)
be the coordinates of the chassis position of respectively
sssnear and sssrand. Given pppnear and ppprand, we can draw an
infinite number of circles passing through the two points.
Each circle expresses two different curved trajectories (two
exclusive arcs) which can be followed by the robot to connect
to the target configuration, assuming the robot’s wheels are
already aligned toward the circle’s center. In this context, the
sign of µu determines which arc (the smallest or the longest)
the robot will travel on. All the centers of these circles lie
on the bisector of the [pppnear;ppprand] segment, which can be
expressed in parametric form as

lλ(k) =
1

2
(pppnear − ppprand) + kvvv

where vvv · (pppnear −ppprand) = 0. This line therefore represents
the set of ICR allowing a direct connection to the target
configuration.

4308

However, some of these ICR should be preferred over
others, to avoid mode switches whenever possible. For this
purpose, we restrain lλ to the segment enclosing all ICR
in the same mode as the source ICR, i.e., we find all k
where mode(lλ(k)) = mode(λλλnear). Doing so involves
computing the intersection between lλ and the four lines
delimiting the different modes (see Fig. 3). If such a segment
exists, we can sample directly a value ku ∈]kmin; kmax[
and set λλλu = lλ(ku), an acceptable ICR which avoids
switching to another mode. However, this approach is not
adequate, as all 2D points along the segment have equal
likelihood of being selected. Indeed, we would prefer faraway
points to have less coverage, since each of them corresponds
to negligible variations of the wheel angles, and therefore
negligible variations of the trajectories.

We address this problem by sampling an ICR on the
unit sphere instead (depicted on Fig. 4). This is achieved
by projecting the line segment on the sphere, which yields
an arc of a great circle that can be parameterized by an
angle λ = λ(φ), where φ ∈ [φmin;φmax]. We then sample
uniformly φu = Un(φmin, φmax), from which we compute
directly the desired ICR λu = λ(φu). By considering the
relation between this angle and its corresponding point back
on the global plane, one can see that the farther the point
lies from the robot, the less likely it is to be selected. Hence
sampling an angle along a great circle instead of a point on
a line segment provides a more convenient ICR probability
distribution.

Since we determined the values of λu and |µu|, what
remains to be decided are the sign of µu and ∆t, the duration
of the trajectory. The sign of µu is simply set as to always
generate motions along the smallest arc of circle. We then
calculate the duration of the path as the time needed to
connect from pppnear to ppprand along this arc of circle centered
at λλλu, given |µu| = µmax(λλλu).

An overview of the algorithm is presented in Alg. 2.
Note that besides introducing an additional probability Pl
of generating straight lines, we allowed “naive” sampling to
take place with a finite probability Pn, i.e., sampling an ICR
without any consideration for the modes.

Algorithm 2 SelectAction Algorithm

1. SELECTACTION(sssrand, sssnear)
2. if Un(0, 1) < Pl
3. λλλu ← (u; v; 0) the ICR lying at infinity
4. else
5. find lλ(k) = kvvv +mmm
6. project lλ(k) on the sphere, yielding λ(θ) = (u, v, w)
7. if Un(0, 1) < Pn
8. λλλu ← λ(Un(0, π))
9. else

10. find [θmin, θmax] such that
∀θ∈[θmin,θmax]mode(λ(θ)) = mode(λλλsnear)

11. if @[θmin, θmax]
12. λλλu ← λ(Un(0, π))
13. else
14. λλλu ← λ(Un(θmin, θmax))
15. µu ← ±µmax(λλλu), so as to choose the smallest arc of a circle
16. ∆t← time to reach sssrand on the arc of a circle
17. return (λλλu;µu) and ∆t

TABLE I
PARAMETERS USED

q(σ) (1) Dopt (3)
c1 c2 c5 Pg Pl Pn

2.5 2.5 0.5 0.025 0.25 0.1

(a) Env #1 (5 seconds) (b) Env #2 (10 seconds)

(c) Env #3 (25 seconds) (d) Env #4 (20 seconds)

Fig. 5. Environments and time allocated for each query

V. RESULTS

Pending implementation on AZIMUT, experiments were
performed within the OOPSMP1 [12] library. Since the actual
robot and our simulator both use the same kinematical model
to compute the robot’s motion, we expect the results obtained
in simulation to be somewhat similar to real-world scenarios.

Table I summarizes the values used for the parameters
described in (1), (3) and the different probabilities. The
weighting factors c1 and c2 were both set to 2.5, which
means every mode switch or reverse motion contributes an
additional 2.5 seconds to the total cost. The exploration
heuristic is selected 70% of the time prior to finding a
solution, and 20% of the time after a solution has been found.

We compared our approach with a “naive” algorithm
ignoring mode switches and reverse motions. This naive
algorithm is a degenerate case of our main one, in the sense
that it minimizes the metric (1) under the special condition
c1 = c2 = 0 (duration only), and always selects an action
naively, i.e., with Pn = 1. Other parameters remain the same.

An Intel Core 2 Duo 2.6 GHz with 4 GB of RAM was used
for the experiments. The results are presented in Table II.
Exactly 50 randomly generated queries had to be solved
within each environment, with a fixed time frame allocated
for each query. However, the time allocated was not the same
for each environment, as some are more complicated than
others (see Fig. 5) and we wanted to maximize the number
of queries successfully solved.

The results show that the biased algorithm outperformed

1http://www.kavrakilab.rice.edu

4309

(a) Trajectory using a completely random sam-
pling

(b) Trajectory using a naive sampling (c) Trajectory using our proposed sampling

Fig. 6. Comparison of trajectories created by a random, a naive, and a biased algorithms

TABLE II
COMPARISON OF A NAIVE ALGORITHM AND OUR PROPOSED SOLUTION

Algorithm Travel
Time

Mode
switches

Reverse
motions

Metric
evaluation (1)

Env #1 Naive 36.36 4.71 0.71 49.91
Biased 32.41 2.65 0.46 40.19

Env #2 Naive 38.09 6.46 0.46 55.39
Biased 33.46 3.41 0.45 43.11

Env #3 Naive 48.70 12.96 1.19 84.08
Biased 45.18 10.48 1.92 76.18

Env #4 Naive 60.42 5.18 0.84 75.47
Biased 51.72 3.29 0.52 61.25

the naive one on all environments. Indeed, by minimizing the
number of mode switches and reverse motions, the biased
algorithm not only improves the fluidity of the trajectories,
but also decreases the average travel time. In heavily cluttered
environments like Env #3, feasible trajectories are impaired
by a large number of mode switches. To avoid these mode
switches, the biased algorithm had to increase the number
of reverse motions, which explains the slightly worse result
for this particular element. Fig. 6 presents examples of
typical trajectories generated by the different algorithms –
including an algorithm selecting an ICR randomly. The first
two include several steep turns corresponding to undesirable
mode switches and reverse motions, whereas the last one is
smoother and appears more natural. However, it is important
to note that our algorithm does not always produce good-
looking trajectories, as guarantees of quality are hard to
obtain via nondeterministic approaches.

VI. CONCLUSION

A new RRT-based algorithm for the motion planning of
nonholonomic omnidirectional robots has been presented. It
has been shown that by taking explicitly into account the
kinematic constraints of such robots, a motion planner could
greatly improve the fluidity and efficiency of trajectories.

We plan to expand our RRT-based motion planner to
constrain the orientation of the robot’s chassis, and to adapt
the robot’s velocity according to the proximity with obstacles.
We are also interested in computing a robust feedback plan
so that the robot does not deviate too much from the planned
trajectory, despite the inevitable real world unpredictability.

For AZIMUT, this would involve the additional challenge of
making sure the ICR stays as far as possible from the control
zones frontiers, as to avoid undesired mode switches. Future
work will integrate these additional elements.

ACKNOWLEDGMENTS

This work is funded by the Natural Sciences and Engi-
neering Research Council of Canada, the Canada Foundation
for Innovation and the Canada Research Chairs. F. Michaud
holds the Canada Research Chair in Mobile Robotics and
Autonomous Intelligent Systems.

REFERENCES

[1] F. Michaud, D. Létourneau, M. Arsenault, Y. Bergeron, R. Cadrin,
F. Gagnon, M.-A. Legault, M. Millette, J.-F. Paré, M.-C. Tremblay,
P. Lepage, Y. Morin, J. Bisson, and S. Caron, “Multi-modal locomo-
tion robotic platform using leg-track-wheel articulations,” Autonomous
Robots, vol. 18, no. 2, pp. 137–156, 2005.

[2] M. Lauria, I. Nadeau, P. Lepage, Y. Morin, P. Giguère, F. Gagnon,
D. Létourneau, and F. Michaud, “Design and control of a four steered
wheeled mobile robot,” in Proc. of the 32nd Annual Conference of the
IEEE Industrial Electronics, 7-10 Nov 2006, pp. 4020–4025.

[3] G. Campion, G. Bastin, and B. d’Andréa-Novel, “Structural properties
and classification of kinematic and dynamic models of wheeled mobile
robots,” IEEE Transactions on Robotics and Automation, vol. 12, no. 1,
pp. 47–62, 1996.

[4] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[5] G. Sanchez and J.-C. Latombe, “A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking,” in Proc. of the
International Symposium on Robotics Research, 2001, pp. 403–417.

[6] J. van den Berg and M. Overmars, “Using workspace information as
a guide to non-uniform sampling in probabilistic roadmap planners,”
International Journal on Robotics Research, pp. 1055–1071, 2005.

[7] H. Kurniawati and D. Hsu, “Workspace importance sampling for prob-
abilistic roadmap planning,” in Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2004.

[8] B. Burns and O. Brock, “Sampling-based motion planning using
predictive models,” in Proc. of the IEEE International Conference on
Robotics and Automation, 2005.

[9] D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic
foundations of probabilistic roadmap planning,” in Proc. of the In-
ternational Symposium on Robotics Research, 2005.

[10] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” AIAA Journal on Guidance, Control
on Dynamics, vol. 25, no. 1, pp. 116–129, 2002.

[11] A. Yershova, L. Jaillet, T. Simeon, and S. LaValle, “Dynamic-domain
RRTs: Efficient exploration by controlling the sampling domain,” in
Proc. of the IEEE International Conference on Robotics and Automa-
tion, 2005.

[12] E. Plaku, K. Bekris, and L. E. Kavraki, “OOPS for motion planning:
An online open-source programming system,” in Proc. of the IEEE
International Conference on Robotics and Automation, 2007, pp. 3711–
3716.

4310

