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Abstract—Although GPS/DGPS become the dominant 
localization solution in the outdoor environment, it needs 
assistant sensors or algorithms for the covering the area not to 
get the position information from GPS. Especially, in the 
robot navigation, the sensor fusion algorithm is needed. In 
addition, it is hard to get the position information at the area 
surrounded the high buildings such as the downtown because 
GPS signals is so feeble. Therefore, this paper illustrates an 
efficient method for the outdoor localization incorporating 
DGPS, Encoder, and IMU sensor based on EKF. To show the 
localization performances of the proposed fusion algorithm, 
we have implemented the proposed algorithm and applied the 
advertising robot platform which is operating well during 80 
days in the real semi-outdoor structured environment. The 
proposed sensor fusion algorithm and the experimental 
results showed the feasibility of our novel sensor fusion 
algorithm. 

I. INTRODUCTION 
he most well-known location sensing technology using 
wireless communications may be GPS (Global 

Positioning System for short); The advantages of GPS are 
high accuracy, worldwide availability, and the other absolute 
performance [1]. For the mobile robot application, GPS can 
solve the kidnapped problem, for instance when the robot has 
sudden catastrophic failure, the position recovery would be 
possible. As an additional benefit, the typical GPS installation 
is very simple. Thanks to the upper distinguished abilities, 
GPS has especially become a dominant localization solution 
in the outdoor mobile robot and widely applied in the various 
research fields like the unmanned air vehicle, the car 
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navigation, and the various military armaments. Although it 
has many advantages, GPS signals are always not available 
because the feeble signals of GPS can be disturbed by high 
buildings, roadside trees in downtown or among others. 

The other robot localization research is to use the relative 
sensors (or it can be described such as dead reckoning 
sensors-DR) contrary to the GPS which provide the position 
information by means of an absolute measurement [2]. The 
relative sensors, e.g., robot odometer and inertial 
measurement unit (IMU), provide the location and pose 
information relative to the initial state. In contrast, the 
absolute sensors like GPS can provide the absolute position in 
certain coordinate systems. Both the absolute sensors and the 
relative sensors, have different advantages and disadvantages 
as stated above, so from that reasons, many researchers have 
been developed a lot of fusion algorithms. For the sensor 
fusion, classical approaches to the state estimate problem for 
a nonlinear stochastic system include the extended Kalman 
filter (EKF) and the Gaussian sum filter (GSF) [3]. Recently, 
particle filter techniques have been proposed with promising 
results [4][5]. The Kalman filter has been widely applied to 
process GPS data enhanced with dead reckoning in an 
integrated mode, to provide continuous positioning in 
built-up areas. 

In this paper, we proposed the sensor fusion algorithm to 
combine the position information from GPS and IMU based 
on the extended Kalman filter. The proposed fusion algorithm 
is implemented and applied the advertising robot platform 
which is operating well during 80 days in the real 
semi-outdoor structured environment. 

This paper is organized as follows. In section II, we will 
briefly introduce the semi-outdoor structured environments in 
where the robot is operating and moving. In section III, we 
propose the novel sensor fusion algorithm of EKF adapted the 
conditions of DGPS and describe how to navigate the robot 
based on the proposed algorithm. In section IV, it will be 
shown for the experimental systems included the robot 
platform and the results to verify the performances of the 
proposed algorithm. Finally, in section V, we summarize the 
contributions and limitations of our proposed algorithm and 
suggest future works. 
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Where ݃׏ሺݔ௧ିଵ, ௧ሻݑ  is a gradient matrix of ݃ሺݔ௧ିଵ,  ௧ሻݑ

evaluated at  ݔ௧ିଵ and shown in (8). 
 

,௧ିଵݔሺ݃׏ ௧ሻݑ ൌ ൥
1 0 െ ܦ௧ · ௧ିଵߠሺ݊݅ݏ ൅ ௧ሻߠ∆
0 1 ௧ܦ      · ௧ିଵߠሺݏ݋ܿ ൅ ௧ሻߠ∆
0 0 1

൩       ሺ8ሻ 

 
As the distance increases, the level of uncertainty 

increases as well. The process results the accumulated error. 
The update step is needed to bring back robot predicted pose 
closer to its real position. The update step is performed 
immediately after the measurement from the DGPS receiver 
and gyroscope come.  To do this step, the Kalman gain and 
residual between measurement likelihood and real 
measurement need to be calculated in advance. The 
measurement likelihood is equal as the process of predicting 
a measurement based on current predicted pose. On the other 
hand, Kalman gain gives amplification to the residual so that 
it can correct the predicted pose closer to robot’s real 
position. The measurement model shown in (9) takes into 
account the noise which might exist during measurement 
process. The measurement noise is assumed to follow 
Gaussian distribution with zero mean and has its covariance 
matrix R.  
 

௧ݖ̂   ൌ ݄ሺݔො௧ሻ ൅ ,௧~ܰሺ0ݒ    ;௧ݒ Rሻ                  (9) 
 

R ൌ  ൤
௚௣௦ߑ 0
0 ௚௬௥௢ߑ

൨ ൌ ൦
௫ ௚௣௦ଶߪ 0 0
0 ௬ ௚௣௦ଶߪ 0
0 0 ௚௬௥௢ଶߪ

൪  

 
Where R Ԗ Ըଷ୶ଷ, ,௚௣௦ ߳ Ըଶ௫ଶߑ  ௚௬௥௢ ߳ Ըଵߑ

 
Since the robot receives the measurement already as 

ሺݔ௚௣௦,  ,୥୷୰୭ሻ from the gyroscopeߠ௚௣௦ሻ from the DGPS and ሺݕ
the likelihood of measurement ݄ሺݔො௧ሻ is the predicted pose 
itself. The measurement likelihood and its gradient 
evaluated at ݔො௧ are shown in (10) and (11) respectively. 
 

  ݄ሺݔො௧ሻ ൌ ቎
ො௧ݔ
ො௧ݕ
෠௧ߠ
቏                                    (10) 

 

ො௧ሻݔሺ݄׏ ൌ ൥
1 0 0
0 1 0
0 0 1

൩                             (11) 

 
B.2. Evaluation on Measurement  
One key of the successful application of EKF is about the 

level of conformity between the real world and what we 
have modeled. It is related to the noise parameters both in 
prediction and update step as well. As long the noise we 
receive during robot operation conform to a priori noises 

parameter setting, the EKF will perform well. However, it is 
difficult to tackle all condition which might occur in the real 
world. Mainly, in the measurement part, the DGPS may 
suffer from drift and outlier at some place and at any 
particular period of time. In this case, the standard EKF will 
tend to perform bad or even fail. This happens since the EKF 
believes that the current measurement is correct and will be 
used in normal way. Thus, it will result very wrong 
estimation since the Kalman gain will amplify this current 
measurement normally, as if it is a correct data. The 
inconvenient fact is that robot cannot distinguish whether 
the current measurement is correct or not without any 
additional means. One of the simplest solutions is using 
threshold distance by comparing current predicted pose and 
current measurement. If the distance exceeds the threshold 
distance, robot will not use the current measurement data. 
However, we experienced that this method could not 
perform well. This is due to the reason that predicted pose 
has accumulated error and also we cannot guarantee that the 
threshold always valid in any condition because modeling 
DGPS error is a difficult task especially in T-city where the 
multipath phenomenon exists extremely. By simply 
comparing predicted pose and current measurement makes 
sense if one can make sure that the threshold will be valid in 
any circumstance and the odometry has small accumulated 
error when the comparison is performed. 

Rather than using simple threshold, we take into account 
the uncertainty level which is shown by the covariance 
matrix. By using the Mahalanobis distance [2], robot decides 
whether current measurement is feasible to be used or not. 
The location (x, y) and heading (θ) information from 
measurement are assumed to be uncorrelated. Therefore, 
robot calculates two mahanolobis distance: location (dloc) 
and heading (dθ) distance. Intuitively, the covariance used in 
mahalobis distance calculation is a combination of current 
predicted pose covariance and the measurement covariance. 
The mahalanobis covariance is defined in (12) and (13).  
 

௅௢௖ߑ ൌ ෠௅௢௖ߑ  ൅ ,௅௢௖ߑ   , ௚௣௦ߑ ,෠௅௢௖ߑ  ௚௣௦  ߳ Ըଶ௫ଶ      (12)ߑ
 

ఏߑ ൌ ෠ఏߑ  ൅ ,ఏߑ ,     ௚௬௥௢ߑ  ෠ఏ ߳ Ըଵ              (13)ߑ
 

 ෠ఏ are taken from the predicted pose covarianceߑ ෠௅௢௖ andߑ
 .෠௧ for the corresponding random variablesߑ
 

෠௧ߑ ൌ   ൥
෠௅௢௖ߑ

݁௫ఏ
݁௬ఏ

݁ఏ௫ ݁ఏ௬ ෠ఏߑ
൩    , ߑ෠௧ ߳ Ըଷ௫ଷ         (14) 

 
The mahalanobis distances are calculated in (15) and (16). 

݀௅௢௖ ൌ ሺሾݔ௚௣௦ ௚௣௦ሿݕ െ ሾݔො௧ ௅௢௖ሿିଵߑො௧ሿሻ் ሾݕ ൬ቂ
௚௣௦ݔ
௚௣௦ቃݕ െ

                ൤ݔො௧ݕො௧
൨൰                                                           (15) 
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݀ఏ ൌ ൫ߠ௚௬௥௢ െ ෠௧൯ߠ

் ሾߑఏሿିଵ൫ߠ௚௬௥௢ െ                ෠௧൯              (16)ߠ
 
If the ݀௅௢௖ >  ݀௅௢௖_்௛௥௘௦௛௢௟ௗ, the DGPS measurement will 

not be used for the update. Same policy is also applied if the 
݀ఏ >  ݀ఏ_்௛௥௘௦௛௢௟ௗ.  

 
B.3. Update Step  
 A set of policy is needed to exclude covariance of wrong 

measurement from being counted. The set of policy follows. 
 
(a) if ݀௅௢௖ <  ݀௅௢௖_்௛௥௘௦௛௢௟ௗ and  ݀ఏ <  ݀ఏ_்௛௥௘௦௛௢௟ௗ.  
 

ܹ ൌ

ۏ
ێ
ێ
௫ ௚௣௦ߪ൫ۍ

ଶ ൯ିଵ 0 0

0 ൫ߪ௬ ௚௣௦ଶ ൯ିଵ 0

0 0 ൫ߪ௚௬௥௢ଶ ൯ିଵے
ۑ
ۑ
ې
       (17)               

 
(b) if ݀௅௢௖ <  ݀௅௢௖_்௛௥௘௦௛௢௟ௗ and  ݀ఏ >  ݀ఏ_்௛௥௘௦௛௢௟ௗ.  
 

ܹ ൌ ൦
൫ߪ௫ ௚௣௦ଶ ൯ିଵ 0 0

0 ൫ߪ௬ ௚௣௦ଶ ൯ିଵ 0
0 0 0

൪              (18)         

 
(c) if ݀௅௢௖ >  ݀௅௢௖_்௛௥௘௦௛௢௟ௗ and  ݀ఏ <  ݀ఏ_்௛௥௘௦௛௢௟ௗ.  
 

ܹ ൌ ቎
0 0 0
0 0 0
0 0 ൫ߪ௚௬௥௢ଶ ൯ିଵ

቏                    (19)               

 
(d) if ݀௅௢௖ >  ݀௅௢௖_்௛௥௘௦௛௢௟ௗ  and  ݀ఏ >  ݀ఏ_்௛௥௘௦௛௢௟ௗ , update 
step is skipped. 
 

After that, the Kalman gain is calculated based on 
following formulation (20).  
 

ܭ ൌ ቀߑ෠௧
ିଵ ൅  ܹቁ

ିଵ
ܹ                   (20)               

 
Therefore, the update state will be amplified by Kalman gain 
as in (21) and its covariance in (22). 
 

௧ݔ ൌ ො௧ݔ ൅ ௧ݖሺܭ െ    ௧ሻ                    (21)ݖ̂
 

௧ߑ ൌ ൫ܫ െ ௧ܭ ·  ෠௧                  ሺ22ሻߑො௧ሻ൯ݔሺ݄׏
 

Where the ݖ௧ is taken from the measurement device at 
time t. 

௧ݖ ൌ ൥
௚௣௦ݔ
௚௣௦ݕ
௚௬௥௢ߠ

൩                              (23) 

 

C.  Navigation 
Navigation is performed with incorporating with location 

estimate, which is described in Section III.B. We apply our 
robot navigation library, uRON (Fig. 3). It has a set of small 
task such as path planning, path following, and obstacle 
avoidance.  
 

 
Fig. 3. System architecture of uRON 

 
Coarse-to-Fine A* (CFA*) [6] is equipped for fast path 

planning on outdoor environments. CFA* automatically 
generates a coarse map from the given fine map using scaling. 
It performs path planning twice on the coarse map and fine 
map. At first, A* is performed on the coarse map, and marks 
its path on the fine map. Again, A* finds path on the fine map, 
but only inside of marked region. Such hierarchical search 
accelerates A* more than 20 ~ 40 times faster than the 
original A*.Pure pursuit [7] is utilized for following the 
resultant path. It selects a pivot point on the path (Fig. 4.), 
which is ahead from the current location. Error is represented 
by linear and angular components as follows: 
 

ܦ ൌ ඥሺݔ௧ െ ௥ሻଶݔ ൅ ሺݕ௧ െ  ௥ሻଶ                     ሺ24ሻݕ
 

ߠߜ ൌ ௧ݕ2ሺ݊ܽݐܽ െ ,௥ݕ ௧ݔ  െ  ௥ሻ                     ሺ25ሻݔ
 

Where ሺݔ௧ െ ௧ݕ ) is the pivot point and ሺݔ௥ െ ௥ሻݕ  is 
location of robot. The target velocity can be derived to 
approach the pivot point as follows: 
 

௖ݒ ൌ  ௠௔௫                                      ሺ26ሻݒ
 

௖ݓ ൌ
ଶ௩೎௦௜௡ ሺఋఏሻ

஽
                                      ሺ27ሻ 

 
Where ݒ௠௔௫ is the given linear velocity to follow the path. 

The robot platform will control its linear and angular 
velocity toward the target velocity, ݒ௖ and ݓ௖. Pure pursuit 
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mahanolobis distance. It can filter out the wrong 
measurement by taking into account the level of uncertainty. 
Indeed, the robot is more certain about its position at initial. 
As the time goes by, if the uncertainty level is increasing, the 
robot is forced to accept the measurement as update since 
there is no choice on how to update the position. 

The blue line shows the odometry reading. It has 
accumulated error as the time is increasing. At the B area, the 
robot could receive GPS measurement continuously. Though, 
the received GPS position has error, that information was 
used in update step of EKF to refine the predicted position. At 
the C area, the robot received many erroneous GPS position 
for some period. It could be sourced from an abrupt changes 
of satellite set used for fixing GPS position. However, the 
EKF performed well under such kind of situation. At the A 
area, the robot could not receive enough GPS satellites signal 
for a long time. Thus, robot was greatly depending only on the 
predicted position with its accumulated error. During this 
period, the uncertainty increased as the distance increased. 
When the robot acquired the GPS position again, robot 
suddenly used that GPS position to recover the current 
position. For the overall result, the robot could be tracked 
until the last position even though it experienced long period 
worse condition (at area A). 

 

V.  CONCLUSION 
We proposed the localization and navigation algorithm 

based on EKF in the semi-outdoor structured environment 
(the sunken plaza in T-city) and we have developed the robot 
platform named ‘Piero’ and DGPS for the evaluation of 
localization/navigation performance of the proposed 
algorithm in term of operating the robot during 80 days in the 
real field. Our future work will be focused on that if GPS 
signals are blocked continuously, the covariance in EKF is 
increasing and then it can’t guarantee the fine localization 
information. We will adopt the other absolute sensor such as 
the ultra wideband in place of GPS. In addition, we will apply 
the novel sensor fusion algorithm with the way of adding the 
map matching algorithm in the present proposed fusion 
algorithm. 
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