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Abstract—Although GPS/DGPS become the dominant
localization solution in the outdoor environment, it needs
assistant sensors or algorithms for the covering the area not to
get the position information from GPS. Especially, in the
robot navigation, the sensor fusion algorithm is needed. In
addition, it is hard to get the position information at the area
surrounded the high buildings such as the downtown because
GPS signals is so feeble. Therefore, this paper illustrates an
efficient method for the outdoor localization incorporating
DGPS, Encoder, and IMU sensor based on EKF. To show the
localization performances of the proposed fusion algorithm,
we have implemented the proposed algorithm and applied the
advertising robot platform which is operating well during 80
days in the real semi-outdoor structured environment. The
proposed sensor fusion algorithm and the experimental
results showed the feasibility of our novel sensor fusion
algorithm.

[. INTRODUCTION

he most well-known location sensing technology using

wireless communications may be GPS (Global
Positioning System for short); The advantages of GPS are
high accuracy, worldwide availability, and the other absolute
performance [1]. For the mobile robot application, GPS can
solve the kidnapped problem, for instance when the robot has
sudden catastrophic failure, the position recovery would be
possible. As an additional benefit, the typical GPS installation
is very simple. Thanks to the upper distinguished abilities,
GPS has especially become a dominant localization solution
in the outdoor mobile robot and widely applied in the various
research fields like the unmanned air vehicle, the car
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navigation, and the various military armaments. Although it
has many advantages, GPS signals are always not available
because the feeble signals of GPS can be disturbed by high
buildings, roadside trees in downtown or among others.

The other robot localization research is to use the relative
sensors (or it can be described such as dead reckoning
sensors-DR) contrary to the GPS which provide the position
information by means of an absolute measurement [2]. The
relative sensors, e.g., robot odometer and inertial
measurement unit (IMU), provide the location and pose
information relative to the initial state. In contrast, the
absolute sensors like GPS can provide the absolute position in
certain coordinate systems. Both the absolute sensors and the
relative sensors, have different advantages and disadvantages
as stated above, so from that reasons, many researchers have
been developed a lot of fusion algorithms. For the sensor
fusion, classical approaches to the state estimate problem for
a nonlinear stochastic system include the extended Kalman
filter (EKF) and the Gaussian sum filter (GSF) [3]. Recently,
particle filter techniques have been proposed with promising
results [4][5]. The Kalman filter has been widely applied to
process GPS data enhanced with dead reckoning in an
integrated mode, to provide continuous positioning in
built-up areas.

In this paper, we proposed the sensor fusion algorithm to
combine the position information from GPS and IMU based
on the extended Kalman filter. The proposed fusion algorithm
is implemented and applied the advertising robot platform
which is operating well during 80 days in the real
semi-outdoor structured environment.

This paper is organized as follows. In section II, we will
briefly introduce the semi-outdoor structured environments in
where the robot is operating and moving. In section III, we
propose the novel sensor fusion algorithm of EKF adapted the
conditions of DGPS and describe how to navigate the robot
based on the proposed algorithm. In section IV, it will be
shown for the experimental systems included the robot
platform and the results to verify the performances of the
proposed algorithm. Finally, in section V, we summarize the
contributions and limitations of our proposed algorithm and
suggest future works.



II. OUTDOOR ENVIRONMENT

A. Semi-Outdoor Structured Environments

The ‘Global Fair & Festival 2009, which shows the
advanced future technology and city, was held 80 days from
Aug. 7 to Oct. 25, 2009 at Incheon in Korea. Tomorrow-city
(T-city for short) is one of the places to be held the Festival.
Fig.1 shows the real environment; in T-city where the outdoor
robots installed our proposed algorithm have a role to
advertise or announce the information of T-city.

As can be seen from Fig.1 (a) and (b), the sunken square
reached 95 meters long and 60 meters wide. The height of the
roofs is from 16 meters to 20 meters. This environment is
different to the other general outdoor area. Therefore it is so
hard to get the high-quality position information from
GPS/DGPS in the T-city because there are surrounded by the
high roofs formed the dome. So, we developed a sensor
fusion module employing GPS, IMU, laser range finder, and
odometry even to be used highly GPS-denying environment
such as an outdoor plaza located in the middle of the T-city.

(© @
Fig. 1. (a) (b): Mock-up of the Tomorrow-city, (c)(d): Landscapes of the
sunken plaza of T-city.

III. PROPOSED SENSOR FUSION ALGORITHM

A. Robot Kinematic Model

The kinematic of our platform robot follows the differential
type. From the robot controller API, one can be known the
pose of the robot at any particular instance based on the
encoder calculation so called odometry. During period from
time ¢-/ to ¢, as shown Fig. 2, the odometry information is
considered as the control actions. The control actions consist
of two motions that are rotating (A#) and translating (D).
Since the odometry is provided as the pose information,
Robot pose at any instance which is given from odometry is
shown in Fig. 2. Subscript indicates the time and superscript
is abbreviation for odometry.

xf =[x ye 67 (1
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To calculate the control action at time ¢, (2)~(3) are used.
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Fig. 2. Kinematics of the advertising robot. Robot is moving from pose at ¢-/
to pose ¢.

B. Proposed Fusion Algorithm based on extended Kalman
filter (EKF)

Two steps are the core of EKF which are prediction and
update step. In prediction step, robot predicts its position one
step advance by utilizing the information about control
actions which are being taken. EKF formulates the predicted
pose under the influence of noise which might exist in
control actions information. The noise is assumed to be
Gaussian noise with zero mean and its covariance matrix Q.

B.1. Prediction Step
The prediction model is given in (4).
X =g, u) +wy we~N(0,Q) )

Where the function g(x,_;,u.) is defined in (5) and the
control action is wrapped in u matrix as (6).

xt_l + Dt * COS(Ht_l + Aet)
91, Ue) = | Yo + Dy - sin(B;—q + A6,) (%
9,:_1 + Agt
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Due to noise existence during the prediction step, one
cannot guarantee that the predicted pose is accurate. Up to
this point, what the robot believes is the predicted pose with
some degree of uncertainty. The degree of uncertainty
appears in term of prediction covariance matrix () as
formulated in (7).

ZAt =Vg(xe—q,ue) + Z¢ Vg(xt_l,ut)T +q @)



Where Vg(x;_1,us) is a gradient matrix of g(x._q,us)
evaluated at x,_; and shown in (8).

1 0 —D;-sin(6;,_,+A6,)
Vg(xe—p,u) =0 1 D, - cos(6,_, + A6,) (8)
0 0 1

As the distance increases, the level of uncertainty
increases as well. The process results the accumulated error.
The update step is needed to bring back robot predicted pose
closer to its real position. The update step is performed
immediately after the measurement from the DGPS receiver
and gyroscope come. To do this step, the Kalman gain and
residual between measurement likelithood and real
measurement need to be calculated in advance. The
measurement likelihood is equal as the process of predicting
a measurement based on current predicted pose. On the other
hand, Kalman gain gives amplification to the residual so that
it can correct the predicted pose closer to robot’s real
position. The measurement model shown in (9) takes into
account the noise which might exist during measurement
process. The measurement noise is assumed to follow
Gaussian distribution with zero mean and has its covariance
matrix R.

2, = h(®) +v;; v,~N(O,R) )
2
5 0 Ox gps 0 0
R= |9 = 0 42 0
“lo = = y gps
gyro 2
0 0 Tgyro

Where R € R3*3, 2, € R**2, 5, € RY

Since the robot receives the measurement already as
(xgps» Ygps) from the DGPS and (8gy,) from the gyroscope,
the likelihood of measurement h(X;) is the predicted pose
itself. The measurement likelihood and its gradient
evaluated at X; are shown in (10) and (11) respectively.

X
h(x,) = |V (10)
b,
100
Vh()?t)=[0 1 o] (1
0 0 1

B.2. Evaluation on Measurement

One key of the successful application of EKF is about the
level of conformity between the real world and what we
have modeled. It is related to the noise parameters both in
prediction and update step as well. As long the noise we
receive during robot operation conform to a priori noises
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parameter setting, the EKF will perform well. However, it is
difficult to tackle all condition which might occur in the real
world. Mainly, in the measurement part, the DGPS may
suffer from drift and outlier at some place and at any
particular period of time. In this case, the standard EKF will
tend to perform bad or even fail. This happens since the EKF
believes that the current measurement is correct and will be
used in normal way. Thus, it will result very wrong
estimation since the Kalman gain will amplify this current
measurement normally, as if it is a correct data. The
inconvenient fact is that robot cannot distinguish whether
the current measurement is correct or not without any
additional means. One of the simplest solutions is using
threshold distance by comparing current predicted pose and
current measurement. If the distance exceeds the threshold
distance, robot will not use the current measurement data.
However, we experienced that this method could not
perform well. This is due to the reason that predicted pose
has accumulated error and also we cannot guarantee that the
threshold always valid in any condition because modeling
DGPS error is a difficult task especially in T-city where the
multipath phenomenon exists extremely. By simply
comparing predicted pose and current measurement makes
sense if one can make sure that the threshold will be valid in
any circumstance and the odometry has small accumulated
error when the comparison is performed.

Rather than using simple threshold, we take into account
the uncertainty level which is shown by the covariance
matrix. By using the Mahalanobis distance [2], robot decides
whether current measurement is feasible to be used or not.
The location (x, y) and heading () information from
measurement are assumed to be uncorrelated. Therefore,
robot calculates two mahanolobis distance: location (dj,.)
and heading (dy) distance. Intuitively, the covariance used in
mahalobis distance calculation is a combination of current
predicted pose covariance and the measurement covariance.
The mahalanobis covariance is defined in (12) and (13).

Zioc = fLoc +2Z

§ 2x2
gps > ZLOC' ZLUC' ngs eR

(12)

z

29 = 2@ + gyro , Zg,fg eiRl (13)

Z10c and £y are taken from the predicted pose covariance
, for the corresponding random variables.
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The mahalanobis distances are calculated in (15) and (16).
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dg = (eyym - ét)T [29]_1(9!1311’0 - 91?) (16)

If the dyoc > dpoc Thresnola> the DGPS measurement will
not be used for the update. Same policy is also applied if the

dG > dG_Threshold-

B.3. Update Step
A set of policy is needed to exclude covariance of wrong
measurement from being counted. The set of policy follows.

(@) if dpoc < dpoc Threshota and dg < dg Threshota-

[(Ufgm)_l 0 0 ]
W= 0 (U;QPS)_l 0 j a7)
0 0 (a;yw)_l

(b) if dLoc < dLoc,Threshold and dG > deThreshold‘

(Uﬁggm)_l 0 0
W= 0 (nggps}_l 0 (18)
0 0 0

(C) if dLoc > dLoc,Threshold and de < dG,Threshold‘

0 0 0
w=|[0 0 o (19)
00 (UgyM)

(d) ifdioc > dioc Threshota @nd dg > dg Thresnola» update
step is skipped.

After that, the Kalman gain is calculated based on
following formulation (20).

K = (2{1 + w)_1 w (20)

Therefore, the update state will be amplified by Kalman gain
as in (21) and its covariance in (22).

X, = % + K(z, — 2,) 21)
2 =(I—K,-Vh(z))E, (22)

Where the z, is taken from the measurement device at
time &

Xgps
z, = | Yops ] (23)
ggyTO

1225

C. Navigation

Navigation is performed with incorporating with location
estimate, which is described in Section III.B. We apply our
robot navigation library, uRON (Fig. 3). It has a set of small
task such as path planning, path following, and obstacle
avoidance.

Odometer Data | Target Velocity = ons

Motor Controller

Range Finder

e
22 w - &
TE XL Y
A % o ‘2 B

Fig. 3. System architecture of uRON

Coarse-to-Fine A* (CFA*) [6] is equipped for fast path
planning on outdoor environments. CFA* automatically
generates a coarse map from the given fine map using scaling.
It performs path planning twice on the coarse map and fine
map. At first, A* is performed on the coarse map, and marks
its path on the fine map. Again, A* finds path on the fine map,
but only inside of marked region. Such hierarchical search
accelerates A* more than 20 ~ 40 times faster than the
original A*.Pure pursuit [7] is utilized for following the
resultant path. It selects a pivot point on the path (Fig. 4.),
which is ahead from the current location. Error is represented
by linear and angular components as follows:

D =/(x — %)% + (v — ¥)? (24)

60 = atan2(y; — Yy, Xy — X;) (25)

Where (x; —y;) is the pivot point and (x, —y,) is
location of robot. The target velocity can be derived to
approach the pivot point as follows:

(26)

Ve = Vmax

2v¢sin (60)

;= Zein @) @7
Where v, is the given linear velocity to follow the path.
The robot platform will control its linear and angular
velocity toward the target velocity, v, and w,. Pure pursuit



is simple, but effective on significant error in location
estimate [8].

Fig. 4. Pure Pursuit (Green: Path, Red: Error)

IV. EXPERIMENTAL SYSTEM AND RESULT

A. Experimental Systems

For the evaluation of localization performance of the
proposed EKF algorithm, we have developed the robot
platform named the Piero which is originally for the
advertisement of events or ceremonies at the outdoor sunken
square in the T-city. Fig. 5 shows the base station of
Differential GPS installed on the top of the T-city building
and Piero robot equipped all sorts of devices included GPS
receiver, gyro, laser range finder, bumper sensor and so on.

For the experiment, we have used commercial sensors like
Novatel FlexPak-V1 GPS mounted on the robot and
CruizCore R1001H gyro installed in the Piero robot.

FTY Y

Camem

G Artenna

=F
-

Laser scanner
Ultrasanic sensor
Bumper wensar

Base station Mobile Robot (Piero)
Fig. 5. Experimental systems (Differential GPS and Piero robot platform)

B. Initial Localization Result

First of all, we needed the initial test results of DGPS to
estimate whether DGPS will be operating well in the sunken
plaza of T-city shown in Fig.1 or not. For the initial tests, we
controlled the robot to be followed the designed path shown
in Fig. 6 (b). As can be seen from Fig.6 (a), the DGPS data is
not always available over the whole T-city Square. The
maximum error of the initial test is rarely about 25~30 meter
under the influence of the multi-pass of GPS. Worst of all, it
is impossible to get position information from DGPS in the
several areas.
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But our main goal is to create a localization sensor and to
develop an autonomous navigation. Although DGPS can’t
provide continuously the position information to the robot,
we came to the conclusion that it is possible to realize the
navigation using DGPS if our proposed EKF algorithm is
adopted [9][10].

(@ ®)
Fig. 6. Initial localization test results of DGPS: (a) Experimental result, (b)
Designed path for the initial test.

C. Navigation Result

This section shows the experiments of the proposed
algorithm at T-City sunken area. The main goal of the
experiment is to know the performance of algorithm under
condition (i) GPS is not always available (it might occur for
long period), (ii) GPS position information suffers multipath
phenomenon which causes drift and error position.

The robot was controlled to follow the designed path as the
ground truth. While the robot was running, all the necessary
data was saved. The EKF was performed as the tracking
mode.

Localization Performance at T-City Sunken Area
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Fig. 7. Experimental result
The robot initial position was located at O (Fig. 7). The
robot started to move counterclockwise to create close loop.
Even though the robot was at initial position, the GPS
measurement was already showing large position error. If we
were using just a simple EKF, the tracking process could
already fail immediately. Here is the benefit of calculating the



mahanolobis distance. It can filter out the wrong
measurement by taking into account the level of uncertainty.
Indeed, the robot is more certain about its position at initial.
As the time goes by, if the uncertainty level is increasing, the
robot is forced to accept the measurement as update since
there is no choice on how to update the position.

The blue line shows the odometry reading. It has
accumulated error as the time is increasing. At the B area, the
robot could receive GPS measurement continuously. Though,
the received GPS position has error, that information was
used in update step of EKF to refine the predicted position. At
the C area, the robot received many erroneous GPS position
for some period. It could be sourced from an abrupt changes
of satellite set used for fixing GPS position. However, the
EKF performed well under such kind of situation. At the A
area, the robot could not receive enough GPS satellites signal
for a long time. Thus, robot was greatly depending only on the
predicted position with its accumulated error. During this
period, the uncertainty increased as the distance increased.
When the robot acquired the GPS position again, robot
suddenly used that GPS position to recover the current
position. For the overall result, the robot could be tracked
until the last position even though it experienced long period
worse condition (at area A).

V. CONCLUSION

We proposed the localization and navigation algorithm
based on EKF in the semi-outdoor structured environment
(the sunken plaza in T-city) and we have developed the robot
platform named ‘Piero’ and DGPS for the evaluation of
localization/navigation performance of the proposed
algorithm in term of operating the robot during 80 days in the
real field. Our future work will be focused on that if GPS
signals are blocked continuously, the covariance in EKF is
increasing and then it can’t guarantee the fine localization
information. We will adopt the other absolute sensor such as
the ultra wideband in place of GPS. In addition, we will apply
the novel sensor fusion algorithm with the way of adding the
map matching algorithm in the present proposed fusion
algorithm.
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