
Active Learning of Confidence Measure Function
in Robot Language Acquisition Framework

Komei Sugiura, Naoto Iwahashi, Hideki Kashioka, and Satoshi Nakamura

Abstract— In an object manipulation dialogue, a robot may
misunderstand an ambiguous command from a user, such as
“Place the cup down (on the table),” potentially resulting in an
accident. Although making confirmation questions before all
motion will decrease the risk of this failure, the user will find it
more convenient if confirmation questions are not made under
trivial situations. This paper proposes a method for estimating
ambiguity in the commands by introducing an active learning
framework with Bayesian logistic regression to human-robot
spoken dialogue. We conducted physical experiments in which
a user and a manipulator-based robot communicated in spoken
language to manipulate toys.

I. INTRODUCTION

The needs of an aging society have raised the hope
of robots supporting humans in everyday situations. For
these assistive robots, the functional capability of natural
communication with users is crucial. However, the state-of-
the-art techniques used in current dialogue systems are well
short of satisfactory.

It is not an easy task for robots using these techniques
to choose the appropriate action to take, such as moving
toward a cupboard or reaching for a cup on a table upon
hearing the command “Bring me a cup.” Homes can have
many candidate cups within them and the specific cup that
needs to be handed over to the user differs depending on
the situation. For example, it could pertain to either a meal
being prepared or one being cleared away.

For practical reasons, most dialogue management mech-
anisms adopted for service robots process verbal (user’s
utterances) and nonverbal (e.g., vision, motion and context)
information separately. With these mechanisms, neither the
situation nor previous experiences are taken into account
when a robot processes an utterance, so there is a possibility
that it will execute motions that the user had not imagined.
In this study, we define “motion failure” as occurring when
a robot has executed an undesirable motion because of a
recognition error.

The goal of this study is to decrease the risk of mo-
tion failure. To focus on the relationship between language
understanding and motion, we do not deal with cases in
which a user’s command is successfully recognized but
the executed motion has ended up with undesirable conse-
quences. Consider a case in which a robot has successfully
recognized the command “Pick the object,” but the robot
failed to grasp the specified object when trying to pick it up.
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This failure is not defined as “motion failure” in this paper,
since our major concern is the relationship between language
understanding and motion. Although a problem like this is
obviously important in terms of dexterous manipulation, it
is beyond the scope of this paper. We also assume that
communication between the robot and user is not conducted
via text interfaces but via speech. The advantage of a speech
interface is remarkable, especially when a hands-free device
is needed since the user himself is manipulating multiple
objects.

A simple solution to decrease the risk of motion failure
is to make confirmation utterances before motion execution,
such as “You said ‘Bring me the cup.’ Is this correct?” How-
ever, there are two main hurdles to generating confirmation
utterances: when to confirm and how to confirm.

The problem of when to confirm is a decision-making
problem of whether a confirmation utterance should be made
or not. Although making confirmation utterances before all
motion executions would be simple and effective, it would
be more convenient for the user that confirmation questions
are not made under trivial situations. In the field of spo-
ken dialogue systems, the when-to-confirm problem receives
considerable attention in the context of error handling [1],
[2].

The problem of how to confirm is the problem of para-
phrasing user’s commands. The sentence “Bring me a cup”
is ambiguous when there are multiple cups, and asking a
confirmation question such as “Do you mean the blue cup?”
can disambiguate the sentence. Moreover, when direct and/or
indirect objects are omitted (object ellipsis) in the user’s
utterance, such as “Place the cup down (on the table),” it
would be preferable to generate an appropriate description
of the objects. The how-to-confirm problem deals with the
mapping between language and physical/virtual objects, and
has been widely explored in Natural Language Generation
(NLG) studies (e.g. [3]–[5]).

The robotics community has recently been paying greater
attention to the mapping between language and real-world
information, mainly focusing on motion [6]–[8]. [9] presents
an application of recurrent neural networks to the problem
of handling many-to-many relationships between motion
sequences and linguistic sequences. In [10], a linguistic
model based on the symbolization of motion patterns is pro-
posed. The model integrates a motion language model and a
natural language model that can be used to recognize motion
patterns as sentences and to generate motion from sentences.
Moreover, we have proposed a robot language acquisition
framework that integrates multimodal information such as
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speech, motion, and visual information [11].
In [12], LCore is extended to solve the when-to-confirm

and how-to-confirm problems using an adaptive confidence
measure called the integrated confidence measure (ICM)
function. The ICM function is acquired in the learning phase,
and is used to reduce motion failure in the execution phase.
Although experimental results have shown that the risk of
motion failure is reduced in the execution phase, the problem
is that motion failure is needed in the learning phase to avoid
overfitting.

In this paper, we propose a method for learning the ICM
function by introducing an active learning framework with
Bayesian logistic regression into dialogue management. The
proposed method has three key features:

1) A user model corresponding to each modality is
assumed to be shared by the user and robot. This
assumption enables us to introduce an active learning
framework into human-robot dialogue. The user model
is explained in Section III.

2) Active learning is used for selecting the optimal ut-
terances to generate, which effectively train the ICM
function. The introduction of active learning is evalu-
ated using likelihood criteria in Section V.

3) Bayesian logistic regression (BLR) [13] is used for
learning the ICM function that enables us to estimate
the probability that the user’s utterances will be suc-
cessfully understood from multimodal information.

II. TASK ENVIRONMENT

A. Object Manipulation Dialogue Task

Fig. 3 shows the task environment used in this study. A
user sits in front of a robot and commands the robot by
speech to manipulate objects on the table located between
the robot and the user. The robot is also able to command
the user by speech to manipulate the objects. The objects
used in the experiments are shown in Fig. 2.

We assume that linguistic knowledge (e.g., phoneme se-
quence and, word sequence) and non-linguistic knowledge
(e.g., motion and, visual information) are learned by using
LCore [11]. This knowledge is not given by the designer, but
is learned through interaction with users. Knowledge repre-
sentation in LCore is explained in Section III in detail. The
main functions given by the designer are object extraction
and calculation of visual features.

The task has three phases:
1) Robot command phase (learning phase (a))

The robot commands the user to manipulate objects.
The ICM function is trained using the proposed
method.

2) User command phase (learning phase (b))
The user commands the robot to manipulate objects.
The ICM function is trained with initialization based
on the results of the robot command phase.

3) Motion execution phase
The user commands the robot to manipulate objects,
however the ICM function is not updated. Motion and

Fig. 1. An example of object manipulation dialogue tasks.

Fig. 2. Objects used in experi-
ments.

Fig. 3. Robotic platform used in
the experiments.

confirmation utterances are generated by the method
proposed in [12].

Fig. 1 shows an example of the user command phase. The
figure depicts a camera image in which the robot is told to
place Object 1 (Barbabright) on Object 2 (red box). The
solid line shows the trajectory intended by the user. The
relative trajectory between the trajector (moved object) and
the reference object is modeled with a hidden Markov model
(HMM) [14]. The reference object can be the trajectory itself
or a landmark characterizing the trajectory of the trajector.
In the case shown in Fig. 1, the trajector, reference object,
and reference point are Object 1, Object 2, and Object 2’s
center of gravity, respectively.

B. Robotic Platform

Fig. 3 shows the robot used in this study. The robot con-
sists of a manipulator with seven degrees of freedom (DOFs),
a four-DOF multifingered grasper, a microphone/speaker, a
stereo vision camera, 3D time-of-flight camera (SR-4000),
and a gaze-expression unit. Teaching signals can be provided
by hitting a touch sensor on the grasper.

The visual features and positions of objects were extracted
from image streams obtained from the stereo vision camera.
The extraction and tracking of objects are done based on
their color. The visual features have six dimensions: three
for color (L*a*b*) and three for shapes. The shape features,
object area farea, squareness fsq, and width-height ratio
fwhr are defined as farea = wh and fsq = Nobj/wh, where
h,w and Nobj denotes the object’s height, width, and number
of pixels, respectively. For motion learning/recognition, the
trajectories of objects’ centers of gravity are used.
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III. THE LCORE FRAMEWORK

A. LCore Overview

The LCore [11] selects the optimal action based on an inte-
grated user model trained by multimodal information when a
user’s utterance is input. A user model corresponding to each
modality (speech, vision, etc.) is called a belief module. The
user model integrating the five belief modules – (1) speech,
(2) motion, (3) vision, (4) motion-object relationship, and (5)
behavioral context– is called the shared belief Ψ.

B. Utterance Understanding in LCore

An utterance s is interpreted as a conceptual structure z =
(WT ,WL,WM), where WT , WL, and WM represent the phrases
describing the trajector, landmark, and motion, respectively.
For motion concepts that do not require a landmark object,
z = (WT ,WM). For example, the user’s utterance, “Place-on
Barbabright red box,” is interpreted as follows:

WT : [Barbabright ], WL : [red , box ], WM : [place-on ]

The LCore does not deal with function words such as
prepositions and articles, i.e. the user is not supposed to use
words such as “on” and “the.”

Suppose that an utterance s is given under a scene O. O
represents the visual features and positions of all objects in
the scene. The set of possible actions A under O is defined
as follows:

A = {(it , ir,C
〈 j〉
V ) | it = 1, ...,ON , ir = 1, ...,RN , j = 1, ...,VN}

, {ak | k = 1,2, ..., |A|}, (1)

where it denotes the index of a trajector, ir denotes the index
of a reference object, ON denotes the number of objects in
O, RN denotes the number of possible reference objects for
the verb C〈 j〉

V , and VN denotes the total number of CV in the
lexicon.

Each belief module is defined as follows: First, the belief
module of speech, BS, is represented as the log probability
of s conditioned by z. Here, word/phrase orders is learned by
using bigrams/trigrams. Next, the belief module of motion,
BM , is defined as the log likelihood of a probabilistic model
given the maximum likelihood trajectory Ŷk for ak. The belief
module of vision, BI , is represented as the log likelihood
of WT given Object i’s visual features x〈i〉I , where Object
i is either the trajector it or the landmark ir. Similar to
BI , the belief module of motion-object relationship, BR, is
represented as the log likelihood of a probabilistic model
given the visual features of Objects it and ir.

The belief module of behavioral context, BH , represents
the adequateness of Object i as the referent under the context
q〈i〉 = (q〈i〉1 ,q〈i〉2 ). By using the parameter hc, BH is defined
as follows:

BH(i,q〈i〉;hc) =


10 (q〈i〉1 = 1)
hc (q〈i〉 = (0,1))
0 (q〈i〉 = (0,0))

, (2)

where q〈i〉1 and q〈i〉2 stand for truth values representing the
statements “Object i is being grasped” and “Object i was

manipulated most recently”, respectively. The Minimum
Classification Error (MCE) learning [15] is used to estimate
hc.

The shared belief function Ψ is defined as the weighted
sum of each belief module:

Ψ(s,ak,O,q〈it 〉) =

max
z

{
γ1 logP(s|z)P(z;G) [BS]

+γ2

(
logP(x〈it 〉I |WT )+ logP(x〈ir〉I |WL)

)
[BI]

+γ3 logP(Ŷk|x
〈it 〉
p ,x〈ir〉p ,C〈 j〉

V ) [BM]
+γ4 logP(x〈it 〉I ,x〈ir〉I |C〈 j〉

V ) [BR]

+γ5

(
BH(it ,q〈it 〉)+BH(ir,q〈ir〉)

)}
, [BH ]

(3)

where x〈ir〉p denotes the position of Object i, and γ =
(γ1, ...,γ5) denotes the weights of the belief modules. The
MCE learning [15] is used for the learning of γ.

Inappropriate speech recognition results are re-ranked
lower by using Ψ. There are several methods for re-ranking
an utterance hypothesis (e.g. [16]). In contrast, information
on physical properties such as vision and motion is used in
Ψ, since object manipulation requires physical interaction.

IV. ACTIVE LEARNING OF THE INTEGRATED
CONFIDENCE MEASURE FUNCTION

A. Modeling Confidence for Utterance Understanding

The proposed method quantifies ambiguities in a user’s
utterances. In this subsection, we first explain the ambiguity
criterion used in this study.

Given a context q, a scene O, and an utterance s, the
optimal action â is obtained by maximizing the shared belief
function.

â = argmax
k

Ψ(s,ak,O,q) (4)

We define the margin function d for the action ak ∈ A as
the difference in the Ψ values between ak and the action
maximizing Ψ, a j (a j 6= â) :

d(s, â,O,q) = Ψ(s, â,O,q)−max
a j 6=â

Ψ(s,a j,O,q) (5)

Let al be an action that gives the second maximum Ψ value.
When the margin for the optimal action â is almost zero, the
shared belief values of â and al are nearly equal; this means
that the utterance s is a likely expression for both â and al .
In contrast, a large margin means that s is an unambiguous
expression for â. Therefore, the margin function can be used
as a measure of the utterance’s ambiguity.

We now define the integrated confidence measure (ICM)
function by using a sigmoid function, as follows:

f (d;w) =
1

1+ exp−(w1d+w0) , (6)

where d is the value of the margin function for an action,
and w = (w0,w1) is the parameter vector. The ICM function
is used for modeling the probability of success.
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We now consider the problem of estimating the parameters
w of the ICM function based on logistic regression. The ith
training sample is given as a pair consisting of the margin di
and teaching signal ui. Thus, the training set T〈N〉 contains
N samples:

T〈N〉 = {(di,ui)|i = 1, ...,N}, (7)

where ui is 0 (failure) or 1 (success).
BLR [13] is used to obtain the MAP estimate of w. We

use a univariate Gaussian prior with mean mi and variance
τi (i = 0,1) on each parameter wi.

B. Utterance Selection as Active Learning

The schematic of the proposed method is illustrated in
Fig. 4. First, the utterance candidate generator generates
all possible linguistic expressions for each action ak and
calculates their margin. The set of margins is input into the
scoring function based on the Expected Log Loss Reduction
(ELLR) [17] and Bayesian logistic regression (BLR) [13].
Next, the optimal margin linked with an utterance is selected
and the utterance is output as a speech command to the
user. The true/false judgment module recognizes the motion
performed by the user, and judges the result as 0(false) or
1(true). The result is input into the training set and used by
the scoring function.

Fig. 4. Schematic of the proposed method.

Basically, a training sample for learning the ICM function
is obtained when a robot has executed a motion. Note that
we assume that belief modules and Ψ are shared by the user
and the robot to introduce active learning. Based on this
assumption, we can train the ICM function by using training
data obtained when the robot commands the user by speech
to manipulate an object.

The proposed method selects the utterance that is most ef-
fective for learning the function based on Expected Log Loss
Reduction (ELLR) [17]. Among many criteria, uncertainty
sampling [18] is the most basic method in active learning,
however it selects a sample with the most entropic prediction.
In contrast, ELLR asks for labels on examples that, once
incorporated into training, will result in the lowest expected
error on the test set [17].

Now, let f̂ 〈N〉(d) denote the ICM function trained by the

data set T〈N〉. The log loss L(T〈N〉) is defined as follows:

L(T〈N〉) =
N

∑
i=1

{
f̂ 〈N〉(di) log f̂ 〈N〉(di)+(1− f̂ 〈N〉(di)) log(1− f̂ 〈N〉(di))

}
In this case, L(T〈N〉) can be regarded as the sum of entropy.

Let V = {v j| j = 1, ..., |V |} denote the utterance candidates
in the scene O, and e j denote the margin linked with v j. Here,
V means the possible combinations of a word sequence that
consists of learned words. We make V a finite set by limiting
the length of a sequence. The proposed method selects the
utterance that minimizes the Expected Log Loss E(T〈N〉,e j).
E(T〈N〉,e j) is defined as follows:

E(T〈N〉,e j) = f̂ 〈N〉(e j)L(T〈N+1〉
+ )+(1− f̂ 〈N〉(e j))L(T〈N+1〉

− ),

T〈N+1〉
+ , T〈N〉∪ (e j,1),

T〈N+1〉
− , T〈N〉∪ (e j,0) (8)

Thus, Equation (8) takes into account the effect of a not-
yet-obtained sample. In ELLR, f̂ 〈N+1〉(e j) is trained in
advance of obtaining the (N + 1)th sample. On the other
hand, uncertainty sampling [18] does not take into account
the effect of selecting the (N +1)th sample.

V. EXPERIMENTS

A. Experimental Setup

To evaluate the proposed method, we conducted two kinds
of experiments: (1) active learning of the ICM function,
and (2) evaluation of the proposed method. The objective
of Experiment (1) is to investigate the number of samples
necessary for convergence of the learning. Experiment (2)
was aimed at evaluating the effectiveness of using the result
of Experiment (1) as the prior distribution. Although the
effectiveness is unclear since the assumption that the user
and robot share the ICM function is not always true, we will
clarify the advantages of the proposed method.

In Experiment (1), the robot commanded the user by
speech to manipulate objects based on the proposed method.
This flow which starts from the robot’s utterance and ends
with the user’s manipulation is called an episode. The maxi-
mum number of episodes was set to 30. The prior distribution
of the parameter wi was defined as a univariate Gaussian
distribution. The parameters of the prior, or hyperparameters,
were set as (m0,m1,τ0,τ1) = (0,1,100,100). The hyperpa-
rameters (m0,m1) were set as (m0,m1) = (0,1) so as to make
the initial ICM function be the standard logistic sigmoid
function. The maximum length of (WT ,WL,WM) were set to
(3,3,1), respectively.

In Experiment (2), we obtained the training and test data
as follows. First, the subject was instructed to command
the robot in the same environment as Experiment (1). This
enabled us to obtain 60 pairs of camera image and speech,
which we labeled with the indices of {motion, trajector,
landmark}. Half of the data was used as a training set and
the other half was used as a test set.
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We compared the case in which the parameter estimated
in Experiment (1) was used as the prior distribution with
a case involving a “standard” prior distribution without
parameter tuning. The parameters of the standard prior were
set as (m0,m1,τ0,τ1) = (0,1,100,100). To evaluate these
methods, we compared test-set likelihood, where ten different
combinations of a training and test set were used. Similar to
Experiment (1), we use the word “episode” to represent the
flow that begins from the user’s utterance and ends with the
robot’s manipulation.

In Experiment (2), the number of motion failures was
also compared. We compared the average number of motion
failures occurring from the first to the icth episodes, where
ic represents the episode in which a convergence condition
regarding log likelihood L was met. The convergence condi-
tion is set as L <−20, based on the results of the experiment
in [12]. Although we continued the actual experiment after
the convergence condition was met, the learning should be
terminated here for efficiency.

The lexicon used in the experiments contained 23 words (8
nouns, 8 adjectives, and 7 verbs). The user taught the names
or properties of objects in Japanese1 by showing the objects
to the robot. Unsupervised learning was used for obtaining
the phoneme sequences of the words [11]. Those words
had been grounded to the physical properties of objects and
motions in the learning phase of the lexicon [11], [14].

B. Results (1): Active Learning of the ICM Function

First, we address the qualitative results. Fig. 5 shows an
example dialogue between the subject (U) and the robot
(R). In this case, the number of possible combinations of
objects and motion were 45, which means that 45 pairs of
a word sequence and margin are generated by the utterance
candidate generator shown in Fig. 4. Among the pairs, the
margin d = 13.4 is selected based on Equation (8). Here, the
utterance linked with the margin d = 13.4 was “Jump-over
Pooh-doll Kermit (Make the Pooh doll jump over Kermit.),”

In Fig. 6, the selected margin is plotted against an episode
that represents the number of robot utterances. In the figure,
the dotted line shows the episode in which motion failure by
the user has occurred. From the figure, we can see that the
larger margin is selected at the (i∗ +1)th episode compared
with the i∗th episode, where i∗ represents the episode in
which such motion failure occurred. This means that an
utterance with less ambiguity is selected at the (i∗ + 1)th
episode.

C. Results (2): Evaluation of the Proposed Method

Fig. 7 shows examples of camera images input for the
proposed method. The inputs into the system were the visual
features of the extracted objects, context information (Object
X was manipulated most recently, etc), and user utterances.

The left-hand figure of Fig. 8 compares the average test-
set log likelihood of (1) the proposed method and (2) the
baseline which used a standard prior. The lines show the

1In this paper, the utterances are translated into English.

¤
£

¡
¢

[Situation: Object 1 was manipulated most recently]
R: Jump-over Pooh-doll Kermit.
U: (The user makes Object 3 jump over Object 2.)

Fig. 5. Dialogue example in the learning phase. The correct action is to
make Object 3 (Pooh-doll) jump over Object 2 (Kermit).

Fig. 6. Margin selected by Equation (8). The dotted line shows an episode
in which motion failure by the user occurred.

average log likelihood, where ten different combinations of
a training and test set were used. The figure clearly indicates
that the proposed method outperformed the baseline in the
early episodes.

The right-hand figure of Fig. 8 compares the average
number of motion failures occurring from the first to the
icth episodes. From the figure, we can see that the number
of motion failure could be reduced by using the proposed
method if we terminated the learning at the icth episode.
The reduction in the number of motion failures supports the
validity of the prior pre-trained by using active learning.

Fig. 7. Training samples. Yellow frames represent the most recently ma-
nipulated objects. Left: The input user utterance was “Move-away Kermit,”
and the correct output was to move Object 86 away from Object 82. Right:
The input user utterance was “Place-on red box,” and the correct output
was to place Object 76 on Object 77.
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Fig. 8. Left: The test-set log likelihood of (1) the proposed method and
(2) a baseline. Right: Average number of motion failures.

¨

§

¥

¦

[Situation: Object 2 was manipulated most recently]
U: Move-closer box Elmo.
R: Move-closer green box?
U: No.
R: Move-closer blue box?
U: Yes.
R: (The robot moves Object 3 closer to Object 1.)

Fig. 9. Dialogue example (2). Motion execution with a confirmation
utterance. The correct action is to move Object 3 (the blue box) closer
to Object 1 (Elmo).

D. Additional Result in Motion Execution Phase

In this subsection, we show an additional qualitative result
in the motion execution phase. The experiment conditions
are explained in detail in [12]. Fig. 9 shows a dialogue
example in which a user’s utterance is disambiguated by
using grounded information.

In Fig. 9, the ICM value of the optimal action â was small.
Therefore, the robot first asked whether “green box” was
the trajector. Here, the word “green” was used to describe
the major difference between Object 2 (the green box) and
Object 3 (the blue box). In the second confirmation utterance,
the word “blue” was inserted into the phrase WT , since this
gave the maximum margin. In contrast, the landmark was
not mentioned in either generated utterance since no word
insertion into WL had a significant influence on the ICM
values.

VI. CONCLUSION

Safe interaction with users is a critically important
requirement for assistive robots supporting users in
everyday environments. In this paper, we proposed a
method that decreases the risk of motion failure in the
learning phase. One of the contributions of this study is the
introduction of active learning into a multimodal spoken
dialogue system. Some demo video clips can be found

at http://mastarpj.nict.go.jp/∼ksugiura/
video gallery/video gallery en.html.
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[6] V. Krüger, D. Kragic, A. Ude, and C. Geib, “The meaning of action:
a review on action recognition and mapping,” Advanced Robotics,
vol. 21, no. 13, pp. 1473–1501, 2007.

[7] Y. Sugita and J. Tani, “Learning semantic combinatoriality from the
interaction between linguistic and behavioral processes,” Adaptive
Behavior, vol. 13, no. 1, pp. 33–52, 2005.

[8] T. Inamura, I. Toshima, H. Tanie, and Y. Nakamura, “Embodied
symbol emergence based on mimesis theory,” International Journal
of Robotics Research, vol. 23, no. 4, pp. 363–377, 2004.

[9] T. Ogata, M. Murase, J. Tani, K. Komatani, and H. G. Okuno, “Two-
way translation of compound sentences and arm motions by recurrent
neural networks,” in Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and System, 2007, pp. 1858–1863.

[10] W. Takano and Y. Nakamura, “Statistically integrated semiotics that
enables mutual inference between linguistic and behavioral symbols
for humanoid robots,” in Proceedings of the 2009 IEEE International
Conference on Robotics and Automation, 2009, pp. 2490–2496.

[11] N. Iwahashi, “Robots that learn language: Developmental approach
to human-machine conversations,” in Human-Robot Interaction,
N. Sanker et al., Eds. I-Tech Education and Publishing, 2007, pp.
95–118.

[12] K. Sugiura, N. Iwahashi, H. Kashioka, and S. Nakamura, “Bayesian
learning of confidence measure function for generation of utterances
and motions in object manipulation dialogue task,” in Proceedings of
Interspeech, 2009, pp. 2483–2486.

[13] A. Genkin, D. Lewis, and D. Madigan, “Large-scale bayesian logistic
regression for text categorization,” Technometrics, vol. 49, no. 3, pp.
291–304, 2007.

[14] K. Sugiura and N. Iwahashi, “Learning object-manipulation verbs for
human-robot communication,” in Proceedings of the 2007 workshop
on Multimodal interfaces in semantic interaction, 2007, pp. 32–38.

[15] S. Katagiri, B. Juang, and C. Lee, “Pattern recognition using a family
of design algorithms based upon the generalized probabilistic descent
method,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2345–2373,
1998.

[16] O. Lemon and I. Konstas, “User simulations for context-sensitive
speech recognition in spoken dialogue systems,” in Proceedings of
EACL 2009, 2009, pp. 505–513.

[17] N. Roy and A. McCallum, “Toward optimal active learning through
sampling estimation of error reduction,” in Proceedings of 18th
International Conference on Machine Learning, 2001, pp. 441–448.

[18] D. Lewis and W. Gale, “A sequential algorithm for training text classi-
fiers,” in Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval, 1994, pp. 3–12.

1779




