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Abstract—Eigendecomposition has been used to classify three-
dimensional objects from two-dimensional images in a variety of
computer vision and robotics applications. The biggest on-line
computational expense associated with using eigendecomposition
is the determination of the closest point on an image manifold
embedded in a high-dimensional space. The dimensionality and
complexity of the space is a result of the p principal eigenimages
that are selected. Unfortunately, for some real-time applications,
this search may be prohibitively expensive. This work presents
a method to reduce the on-line expense associated with using
eigendecomposition for pose estimation. The approach is based
on selecting a linear combination of the principal eigenimages
to design an eigenspace manifold having a desirable geometric
structure that reduces the cost associated with classification.

Index Terms—Object identification, pose estimation, eigende-
composition, manifolds.

I. INTRODUCTION

Over the last several decades, object identification and pose
estimation (referred to here as object classification) of three-
dimensional (3-D) objects from two-dimensional (2-D) images
has become an important issue in computer vision and robotics
applications. Subspace methods, also referred to as eigenspace
methods, principal component analysis, or the Karhunen-Loeve
transformation [1], [2], represent one computationally efficient
approach for dealing with object classification and have been
applied to a variety of application domains. Specific exam-
ples include robot vision [3], [4], face recognition [5]–[10],
object recognition [11]–[13], pose estimation [14]–[18], visual
tracking [19], [20], and automated inspection [21]. All of these
applications are based on the fact that a set of highly correlated
images can be approximately represented by a small set of
eigenimages [4], [11], [22].

The major drawbacks to using eigenspace methods are
threefold. First, eigenspace methods typically require a large
off-line expense to compute the principle eigenimages of a set
of images. Recent work in this area however has shown that for
highly correlated image sequences, the principle eigenimages
can be estimated efficiently using spectral thoery [15]–[18],
[23]. The second drawback to eigenspace methods is that
because they are strictly appearance based, they are typically
sensitive to background clutter and occlusion, i.e., they typi-
cally assume perfect segmentation of the object from the scene.
A solution to this problem was recently proposed by Chang et

al. in [24] where the authors use the image gradient to localize

the object in a cluttered scene (the object may be partially
occluded), and then use a quadtree eigendecomposition to
classify the object. The third drawback to using eigenspace
methods is the resulting search of the eigenspace manifold may
be computationally prohibitive when the number of images
and/or the dimension of the eigenspace is large. This third
drawback has been addressed in various ways, and is the
subject of this work.

The naive approach to searching the eigenspace manifold
is to use an exhaustive search, however when the dimension
of the eigenspace is large this is impractical. Other methods
include space partitioning algorithms such as R-tree, k-d tree,
and Voronoi polygons [25]–[28]; hashing techniques [29];
and random search methods [30]. The drawback of these
techniques is that they require a large amount of storage
space, or their computational complexity becomes large as the
dimension of the space increases. In [31], Nene and Nayar
propose a method to search for nearest neighbor points in high
dimensions using a space partitioning algorithm that is based
on the projection search paradigm. The algorithm consists of
generating hyperplanes in the eigenspace that ultimately “box-
in” the point of interest with a hypercube, each side of the
hypercube having length 2ε. An exhaustive search is then
performed within this hypercube to find the closest matching
point. The authors of [31] show that this algorithm is com-
putationally less expensive than previous search techniques,
however its complexity is still a function of the dimension of
the space.

In this paper a fundamentally different approach for clas-
sifying 3-D objects using eigenspace methods is presented. It
will be shown that rather than choosing the principal eigenim-
ages of the resulting eigendecomposition, a linear combination
of these basis vectors can be computed so that the resulting
eigenspace manifold has a desirable geometric structure. This
geometric structure allows for the classification of the object to
be computed using simple calculations rather than searching
the eigenspace. The advantage of this technique stems from
the fact that because it requires no search of the eigenspace,
its computational expense is constant.

The remainder of this paper is organized as follows. In
Section II, the fundamentals needed to apply an eigende-
composition to a related image data set is explained, much

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3509



of which is discussed in [23]. Section II also gives a brief
overview of the classification problem. In Section III, an
outline of the proposed eigenspace mapping is presented. The
proposed technique is applied to a general set of objects to
provide a comparison with the naive approach in Section IV.
Finally, Section V provides some concluding remarks and
future research directions.

II. PRELIMINARIES

A. Mathematical Description

In this work, a gray-scale image is described by an h×v ar-
ray of square pixels with intensity values normalized between 0
and 1. Thus an image is represented by a matrix X ∈ [0, 1]h×v .
Because sets of related images are considered in this paper,
the image vector f of length m = hv is obtained by “row-
scanning” an image into a column vector, i.e., f = vec(X T ).
The image data matrix of a set of images X1, . . . ,Xn is an
m × n matrix, denoted X , and defined as X = [f1, · · · ,fn],
where typically m > n with fixed n [23].

To construct the image data matrix X , consider capturing
images on the surface of the sphere where the object is placed
at the sphere’s center, as seen in Fig. 1. In the figure, a sample
image is taken at each of the black dots on the surface of the
sphere. Capturing images in this manner allows for the image
vector to be defined as f = f(ξi) where ξi, i ∈ {0, . . . , n −
1} is the unit vector pointing at the angle of co-latitude β
measured down from the upper pole, and the angle of longitude
αi ∈ [0, 2π), which is the parameterization of the sphere in
spherical coordinates. Setting β to a constant results in a one-
dimensionally correlated image data matrix that is correlated
on S1.

The thin singular value decomposition (SVD) of X is given
by

X = UΣV T , (1)

where U ∈ R
m×n is right orthogonal, i.e., UT U = I ,

V ∈ R
n×n is orthogonal, and Σ = diag(σ1, · · · , σn) with

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The columns of U , denoted
ui, i = 1, . . . , n, are referred to as the left singular vectors
or eigenimages of X , while the columns of V , denoted
vi, i = 1, . . . , n are referred to as the right singular vectors
of X . The left singular vectors (or eigenimages) of X can
be interpreted as the eigenvectors of the covariance matrix
XXT . The eigenimages provide an orthonormal basis for
the column space of X , ordered in terms of importance; the
corresponding singular values measure how “important” the
associated eigenimage is. The components of the ith column of
V measure how much each individual image in X contributes
to the ith eigenimage.

B. The Classification Problem

Classifying objects using eigendecomposition is done in
two separate phases, namely, the training phase and the
classification phase. The training phase is completed off-line
and consists of constructing the image data matrix X , and
computing the principle eigenimages Up, where Up consists

Fig. 1. This figure depicts sampling an object along a line of constant co-
latitude, which results in an image data matrix correlated on S1. A sample
image is captured at each of the black dots that reside on the sphere.

of the first p columns of U . Once the principal eigenimages
of an image data matrix have been computed, the images
in X are then projected onto the resulting eigenspace using
Mp = UT

p X . This projection generates a set of n points in the
eigenspace, each point having dimension p. This set of points
is a discrete approximation to the underlying one-dimensional
manifold embedded in p-dimensional space.1

The on-line classification of 3-D objects then consists of
projecting an input image f t into the eigenspace. Because
an object’s projection will likely be close to the eigenspace
manifold computed from training images of the same object,
distance to the manifold can be used for object identification.
Once identified, the pose of the object can be estimated by
determining the closest point on the manifold.

An example of this process is shown in Fig. 2, where the top
row shows five of 128 images of a boat sampled according to
Fig. 1. The curve in the figure shows a linear approximation
to the corresponding projection of the image data matrix X
onto the first three eigenimages U3, i.e., the curve is a linear
approximation of Mp = UT

p X where p = 3. The dots in
the figure show the projection of five of the original training
images into the eigenspace. An input image is also shown in
the figure, along with its projection into the three-dimensional
eigenspace. The projected input image, in general, will not lie
directly on the one-dimensional manifold. Instead, the pose
of the object in the input image is estimated by the pose
corresponding to the closest point on the manifold. This figure
also shows the projection of an image of an object other than

1This assumes the object’s pose is the only variable in generating the image
data matrix X .
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Fig. 2. An example subspace showing the image data matrix X (generated
from sampling on S1) being projected onto the first three eigenimages U3.
The projection generates a one-dimensional manifold in R

3 with five of the
images in the image data set highlighted. An input image ft is shown along
with its projection onto the three-dimensional eigenspace. The closest point
on the one-dimensional manifold determines the estimated pose of the object
in the test image. The projection of an image of an object other than the one
used to generate X is also shown.

the boat. Notice that because images of this object were not
contained in X , the projection of the image lies nowhere near
the eigenspace manifold. (This will typically, but not always,
be true.)

The projection of the input image onto the eigenspace can
be computed relatively quickly by calculating p dot products of
the image with the orthogonal vectors defining the eigenspace,
i.e., UT

p f t. This projection generates a new p-dimensional
point in the eigenspace. The classification of the object is
then determined by comparing this new point in the eigenspace
with all other points that constitute the underlying manifold.
Because the number of principle eigenimages p is typically
small compared to the number of images, the series of dot
products can be computed relatively quickly. The problem of
searching the manifold for the closest matching point however
can be computationally expensive. This computational expense
has been addressed using several different search methods,
however these methods either require a large amount of storage
space or their computational expense becomes large as the
dimension of the space increases [31]. Therefore, it is desirable
to either reduce the dimensionality of the search space, or
eliminate the search all together.

III. MANIFOLD MAPPINGS

One method of reducing the dimensionality of the search
space, or eliminating the search all together, is to guarantee that
the eigenspace manifold has a desirable geometric structure. In
particular, the manifold shown in Fig. 2 most closely represents
a circular coil in the eigenspace. This geometric structure is a
function of both the image data matrix X , and the subspace
(eigenimages) chosen. If a linear combination of the principal
eigenimages are chosen as the subspace however, the resulting

geometric structure of the manifold in the eigenspace can be
forced to have certain desirable characteristics. For example,
if the images in X are correlated in one-dimension, it would
be desirable for the eigenspace manifold to be approximately
represented by a circle in R

2 rather than a circular coil in R
p.

This representation would allow for a very fast determination
of where the projection of the input image f t resides in the
eigenspace.

Unfortunately, simply choosing two basis vectors that map
the image data matrix X onto a unit circle in R

2 may not be
sufficient for accurate classification because this space may not
capture the intrinsic characteristics of X , i.e., the eigenimages
are special because they represent the best subspace approxi-
mation of X . Therefore, we construct our transformation from
the eigenspace to retain as much of the norm of X as possible.
The problem of mapping the eigenspace manifold onto a unit
circle in R

2 can be formulated as follows:
Find a matrix Ap ∈ R

p×2 such that

||MT
p Ap − B||2F < ε (2)

for the user specified value ε, and

B =

⎡
⎢⎢⎢⎣

cos(θ0) sin(θ0)
cos(θ1) sin(θ1)

...
...

cos(θn−1) sin(θn−1)

⎤
⎥⎥⎥⎦ (3)

where θi = 2πi
n for i ∈ {0, 1, . . . , n−1}. Note that the columns

of B represent a unit circle in R
2 and

Mp = UT
p X

= ΣpV
T
p ,

(4)

is the p-dimensional manifold determined by the principal
eigenimages. Therefore,

MT
p Ap = (ΣpV

T
p )T Ap

= VpΣpAp
(5)

where Σp is the upper p×p sub-matrix of Σ and Vp ∈ R
n×p =

[v1, · · · , vp].
This results in the following proposition:

Proposition 1: Assume that the matrix X has full rank. Then
Ap = Σ−1

p V T
p B is the unique matrix that minimizes the

objective function ‖MT
p Ap − B‖2

F over the family of p × 2
matrices Ap. Furthermore, the value of the objective function
monotonically decreases to zero as p varies from 1 to n.
Proof: We have that

‖MT
p Ap − B‖2

F = ‖VpΣpAp − B‖2
F

= ‖V T (VpΣpAp − B)‖2
F

where the last equality follows from the fact that the Frobenius
norm is invariant under multiplication by an orthogonal matrix
such as V T . The objective function then simplifies to

‖MT
p Ap − B‖2

F =
∥∥∥∥
[

ΣpAp

0

]
−

[
B1

B2

]∥∥∥∥
2

F

=
∥∥∥∥
[

ΣpAp − B1

−B2

]∥∥∥∥
2

F
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where B1 = V T
p B, B2 = WT

p B, and Wp consists of the
last n − p columns of V . Since the Frobenius norm squared
is simply the sum of the matrix elements squared, it readily
follows that

‖MT
p Ap − B‖2

F = ‖ΣpAp − B1‖2
F + ‖B2‖2

F .

The second term on the right is independent of Ap, so the
problem becomes that of minimizing the first term on the
right, which is uniquely minimized to the value zero by
Ap = Σ−1

p B1 = Σ−1
p V T

p B.
Consider now the minimum remaining error:

‖VpΣpΣ−1
p V T

p B − B‖2
F = ‖(VpV

T
p − I)B‖2

F

= ‖(I − VpV
T
p )B‖2

F .

Each column of B can be expressed as a linear combination
of the vectors v1, . . . ,vn. In particular, bj = α1jv1 + · · · +
αnjvn, where bj is the jth column of B. The error is then
given by

‖(I − VpV
T
p )B‖2

F =

∥∥∥∥∥∥
⎡
⎣ n−1∑

i=p+1

αi1vi

n−1∑
i=p+1

αi2vi

⎤
⎦

∥∥∥∥∥∥
2

F

=
n−1∑

i=p+1

[α2
i1 + α2

i2],

and is zero when p = n. Note that the error clearly decreases
monotonically to zero as p varies from 1 to n. �

Note that if the rank of X is r < n, then Ap = Σ+
p V T

p B
is a minimizer where Σ+

p is the pseudoinverse of Σ. However,
for p > r, this minimizer is not unique, although the quantity
MT

p Ap is unique. Furthermore, the error does not go to zero
as p goes to n unless B is in the column space of XT .

A typical example illustrating the behavior of this proposi-
tion on an image data matrix is shown in Fig. 3. The upper
four plots show the convergence of the manifold Mp onto the
circle in R

2 as the value p increases. The circles represent
the columns of B and the asterisks represent the mapping
MT

p Ap. Each of these four plots also shows the value of
‖MT

p Ap − B‖2
F for a particular value of p. The bottom plot

in Fig. 3 shows how the value ‖MT
p Ap − B‖2

F decreases
monotonically as p increases for this particular example.

The complete projection onto the circle in R
2 encoding the

p-dimensional eigenspace can now be defined by P = UpAp.
When a new input image arrives from the imaging system
(f t), the projection through the eigenspace onto the circle is
simply PT f t. Note that the projection PT f t generates a point
p = [p1, p2] ∈ R

2. Classification of the object can be done by
computing ‖p‖2 for identification and

α = atan(p2, p1) (6)

to estimate the pose.

IV. EMPIRICAL EVALUATION

To evaluate the accuracy of the proposed technique, several
objects were imaged using the sampling procedure outlined in
Section II. The angle of co-latitude β was set to 60◦ and an

Fig. 3. Typical example of how the manifold Mp is mapped onto the circle in
R

2 as a function of p. The top four plots show how the approximation MT
p Ap

becomes closer to B as p increases. The circles represent the columns of B
and the asterisks represent the mapping MT

p Ap. The bottom plot shows how
the norm ‖MT

p Ap − B‖2
F decreases as a function of p.

image of each object was captured at a resolution of 128×128.
A total of 128 images were captured on S1 resulting in an
angular separation of 2.81◦ per sample. The images used in this
paper were generated by ray-tracing high fidelity CAD models.
An example image of each object is shown in Fig. 4 (the CAD
models were provided by [32]). For each of the objects in
Fig. 4, 64 test images were also captured on S1 at random but
known poses. None of the 64 test images were contained in
the original training data matrix X . The proposed technique
was then used to compute the matrix Ap mapping the original
eigenspace onto a circle in R

2. Each of the 64 images for each
of the 20 objects was then projected into this subspace using
PT f t and the pose in each image was estimated using (6). The
absolute error in pose angle was then calculated for each test
pose. To obtain a ground truth comparison, the pose of each
of the 64 test images was also calculated using the standard
eigendecomposition technique by finding the closest matching
manifold point.2 The dimension of the eigenspace p was the
same for both techniques.

The top plot in Fig. 5 shows the distribution of the absolute
pose estimation error using the proposed method for all objects
in Fig. 4. The horizontal bars represent the average error, and
the plus signs are outliers in the data. The circles represent the
average absolute error as computed by the standard eigende-

2This error could be reduced by applying an interpolation technique.
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Fig. 4. Example images of ray-traced CAD models courtesy of Kator
Legaz [32]. Each object is sampled as discussed in Section II at a resolution
of 128 × 128. The objects are ordered from left to right, then top to bottom.

composition search technique. As can be seen from the figure,
on average, the proposed technique is able to estimate the pose
of the object to a higher degree of accuracy than the standard
technique. It is important to note that the objects in Fig. 5 are
sorted according to their energy ratio (E.R.), defined as

E.R. =
‖(Upa1)T X‖2

F + ‖(Upa2)T X‖2
F

‖uT
2 X‖2

F + ‖uT
3 X‖2

F

, (7)

where ai is the ith column of Ap. The E.R. is a measure of how
aligned the vectors UpAp are with the dominant eigenimages,
and achieves a maximum value of one. The first eigenimage
is excluded in this calculation because it represents the mean
image of the data set and has no significance in classifying
the object. The bottom plot in Fig. 5 shows the E.R. for each
of the objects in Fig. 4. The data used for both of these plots
was computed using ε = 0.01.

To determine an appropriate value of ε to use in the
calculation of (2), the average absolute error for all 1280 test
images was calculated for different values of ε. The top plot
in Fig. 6 shows that for ε ≈ 0.1, the pose estimation error is
very close to that using the standard eigendecomposition search
technique. The bottom plot shows the average dimension p
required to achieve a desirable value of ε. As can be seen in
this plot, the average dimension p remains relatively small for
ε > 0.1. This shows that there is a trade-off between accuracy
of pose estimation and the required dimension p. This has a
significant impact on the off-line computation because higher
accuracy also requires more eigenimages to be computed.

Finally, Fig. 7 shows the relationship between the average
error in pose estimation and the number of training images
used. As can be seen in the figure, accurate pose estimation can
be achieved for training sets of 64 poses or more, resulting in
an angular separation of 5.6◦ per sample. This plot also shows
that for a similar number of training samples, the proposed

Fig. 5. The top plot shows the distribution of the absolute pose estimation
error using the proposed method for all objects in Fig. 4 sorted by their E.R.
The horizontal bars represent the average error, and the plus signs are outliers
in the data. The circles represent the mean error as computed by the standard
eigendecomposition search technique. The bottom plot shows the E.R. for each
of the 20 objects.

Fig. 6. The top plot shows the average absolute pose estimation error as a
function of ε for 1280 test poses. The bottom plot shows the average dimension
p required to achieve a desired value of ε.

technique outperforms the standard eigendecomposition search
technique in terms of the accuracy of the estimated pose of the
object.

V. SUMMARY AND FUTURE DIRECTIONS

This paper has presented a method to significantly reduce
the on-line computation required for object classification using
eigendecomposition. It has been shown that by choosing an
appropriate linear combination of the principle eigenimages of
an image data set, the eigenspace manifold can be forced to
have a desirable geometric structure. This geometric structure
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Fig. 7. The relationship between the average absolute error in pose estimation
and the number of training images used for both the proposed and true, i.e.,
standard eigendecomposition search technique.

allows for object classification to be performed by simply
computing a norm and arctangent as opposed to searching a
manifold in a high-dimensional space. An empirical investi-
gation was performed to validate the proposed technique, as
well as assess the accuracy of pose estimation as compared to
standard eigenspace search techniques. Future work will focus
on extending this technique to data sets correlated in higher
dimensions, as well as evaluating its robustness.
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